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Abstract
Studies/trials assessing status and progression of periodontal disease (PD) usually 
focus on quantifying the relationship between the clustered (tooth within subjects) 
bivariate endpoints, such as probed pocket depth (PPD), and clinical attachment 
level (CAL) with the covariates. Although assumptions of multivariate normal-
ity can be invoked for the random terms (random effects and errors) under a lin-
ear mixed model (LMM) framework, violations of those assumptions may lead to 
imprecise inference. Furthermore, the response-covariate relationship may not be 
linear, as assumed under a LMM fit, and the regression estimates obtained therein 
do not provide an overall summary of the risk of PD, as obtained from the covari-
ates. Motivated by a PD study on Gullah-speaking African-American Type-2 dia-
betics, we cast the asymmetric clustered bivariate (PPD and CAL) responses into a 
non-linear mixed model framework, where both random terms follow the multivari-
ate asymmetric Laplace distribution (ALD). In order to provide a one-number risk 
summary, the possible non-linearity in the relationship is modeled via a single-index 
model, powered by polynomial spline approximations for index functions, and the 
normal mixture expression for ALD. To proceed with a maximum-likelihood infer-
ential setup, we devise an elegant EM-type algorithm. Moreover, the large sample 
theoretical properties are established under some mild conditions. Simulation stud-
ies using synthetic data generated under a variety of scenarios were used to study 
the finite-sample properties of our estimators, and demonstrate that our proposed 
model and estimation algorithm can efficiently handle asymmetric, heavy-tailed 
data, with outliers. Finally, we illustrate our proposed methodology via application 
to the motivating PD study.
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1  Introduction

Epidemiological studies in a clustered, or longitudinal data setting often gener-
ate multivariate (repeated) outcomes that are analyzed under the ubiquitous mul-
tivariate normal (MVN) assumptions of the random terms (random effects, and 
within-subject random errors) via standard software, such as SAS, or R. How-
ever, violations of those assumptions can lead to imprecise parameter estimates 
(Bandyopadhyay et al. 2010). These non-Gaussian features are usually manifested 
through skewness of the response vector, and/or thick-tails. Although achieving 
close-to-normality via suitable data transformations of the responses (such as log, 
or Box-Cox) for standard linear mixed model (LMM) analysis are possible, they 
maybe avoided due to their non-universality, and difficulty in covariate interpreta-
tion on the original scale (Jara et al. 2008). To address this, various flexible (para-
metric) alternatives to the MVN density exists, such as the multivariate skew-
normal density (Azzalini and Capitanio 1999; Gupta et al. 2004; Azzalini 2010), 
the heavy-tailed multivariate skew t-density (Azzalini and Capitanio 2003), and 
others, that can accommodate departures from normality without resorting to ad-
hoc data transformations.

In practice, this setup can be further complicated in presence of multiple out-
comes recorded at each cluster units/components. The motivating data example in 
this paper comes from a clinical study of periodontal disease (PD) conducted on 
Gullah-speaking African-American Type-2 diabetics (henceforth, GAAD). Here, 
the multiple outcomes of interest are the tooth-level (mean) probed pocket depth 
(PPD) and clinical attachment level (CAL), which are recorded (in mm, via a per-
iodontal probe) simultaneously for each tooth nested/clustered within a subject. 
While PPD quantifies the current PD status, CAL measures the (past) disease his-
tory and progression (Page and Eke 2007). An oral clinician may be interested 
in studying the joint evolution of these outcomes over some features of covari-
ates, and the complexity is induced from two different sources of correlation—(a) 
Between repeated observations of any given outcome (PPD, or CAL) measured at 
a cluster unit (tooth), and (b) Between multiple outcomes (PPD and CAL) meas-
ured at the same tooth. The existing literature (both classical and Bayesian) in 
this context of multiple repeated outcomes modeling is also very rich (Luo and 
Wang 2014; Verbeke et al. 2014; Lin and Wang 2013; Michaelis et al. 2018; Ban-
dyopadhyay et al. 2010). However, a vast majority of these models are developed 
under the restrictive assumption of linearity of the covariate effects over the mul-
tivariate responses.

To motivate further, consider Fig. 1, which presents plots of the empirical Bayes’ 
estimates of random effects (panels a and b), corresponding Q-Q plots (panels c and 
d), and observed versus estimated (non-linear) curve (panels e and f), obtained from 
fitting a LMM separately to the PPD and CAL responses in the GAAD data, using 
the lme function in R. The plots clearly reveal evidence of asymmetryq (departures 
from the Gaussian assumptions), which cannot be explained by a standard LMM 
fit. In addition, the predictor space restricted to be linear combinations of covari-
ates may not provide an elegant picture of their cross-sectional association with 
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the (bivariate) response. Formulating an index for PD (that handles possible non-
linearity, confounding, and interaction effects between the PD outcomes and the 
covariates) via a single-index model, or SIM (Hardle et al. 1993) can be a clinically 
elegant alternative. SIMs are a popular class of semiparametric regression models 
that relaxes the assumption of linearity, and bypass the ‘curse of dimensionality’ by 
reducing the multi-dimensional predictor space X into an univariate (scalar) index 
U = XT� . A link function g(.) now connects the covariate space to the response Y, 
offering a pragmatic compromise between a fully nonparametric (and often non-
interpretable) multiple regression, and a restrictive (parametric) linear regression. 
Here, the magnitude of the index coefficient �j determine the relative importance 
of the j-th predictor on the index, and g(U) denotes the location of interest in the 
response curve at the index U. In biomedical research, the recent work by Wu 
and Tu (2016) develops an adiposity index via a (multivariate) SIM to efficiently 
predict multiple longitudinal outcomes (systolic and diastolic blood pressure) in 

β β

Fig. 1   GAAD Data: Plots of the empirical Bayes’ estimates of random effects (panels a and b), corre-
sponding Q-Q plots (panels c and d), and observed versus estimated (non-linear) curve (panels e and f), 
obtained from fitting a linear mixed model separately to the PPD and CAL responses
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children. However, their proposal considers the usual MVN assumptions for the ran-
dom terms (errors and effects), and may not well accommodate heavy tailed and 
other non-Gaussian features. Furthermore, they did not provide rigorous theoretical 
justification.

Considering Wu and Tu (2016) as our starting point, we seek to develop an 
index that can efficiently predict the clustered bivariate (PPD and CAL) PD out-
comes. Such a clinical index that links both outcomes is vastly absent in the oral 
health literature. Our bivariate single-index mixed (BV-SIM) model tackles non-
Gaussian features in the responses via the multivariate asymmetric Laplace density 
(ALD; Kotz et al. 2001) assumptions in the random terms. The multivariate ALD 
can accommodate asymmetric, peaked, and heavy-tailed data using fewer number 
of parameters than the popular multivariate skew-t density (Gupta 2003). The mul-
tivariate symmetric Laplace density (Naik and Plungpongpun 2006), a special case 
of the ALD, has been applied in other fields, such as speech clustering, classifica-
tion problems, and image/signal analysis. Under this framework, we consider a poly-
nomial spline approximation to the nonparametric index function, and propose an 
efficient EM-type algorithm for estimation and inference. The spline approximation, 
and the mixture normal representation of the multivariate ALD presents a computa-
tionally efficient, and intuitively appealing estimation setup, quantifying correlations 
from both sources.

The rest of the paper is organized as follows. In Sect.  2, we propose the BV-
SIM model under the assumptions of a multivariate asymmetric Laplace density. 
Using the polynomial splines approximation for the nonparametric (index) func-
tions, we derive the maximum likelihood (ML) estimate, and establish the large 
sample properties of the proposed estimators in Sect. 3, with the detailed technical 
proofs relegated to the Appendix, where we use the projection method to prove the 
asymptotic normality of parametric part. In Sect. 4, we develop an efficient MLE 
procedure based on the EM-algorithm. Simulation studies comparing finite sample 
performance of our approach to other alternatives appear in Sect. 5, while Sect. 6 
illustrates the method via application to the PD dataset. Finally, some concluding 
remarks are presented in Sect. 7.

2 � Statistical Model

We begin with a sketch of the multivariate shifted Laplace density (Kotz et al. 2001), 
and then develop our SIM mixed effects framework for bivariate clustered data. The 
multivariate ALD has the density

where K� is the modified Bessel function of the third kind with index � , 
� = (2 − d)∕2 , u =

√
(2 + �T�−1�)(yT�−1y) , � ∈ ℝ

d is a skewness parameter and � 
is a positive definite (p.d.) scatter matrix with dimension d × d . We denote (2.1) as 

(2.1)p(y;�, �) =
2 exp{yT�−1�}

(2�)d∕2|�|1∕2 ×

(
yT�−1y

2 + �T�−1�

)�∕2

K�(u),



21

1 3

Journal of the Indian Society for Probability and Statistics (2024) 25:17–45	

ALDd(�, �) . Note, the ALD forces each component density to be joined at the same 
origin. An extension, the multivariate shifted asymmetric Laplace distribution 
(SALD; Kotz et al. 2001), has the form

where u =

√
(2 + �T�−1�)�(y,�,�) , �(y,�,�) = (y − �)T�−1(y − �) , and �, �,� 

are defined in (2.1). Here, we use the notation Y ∼ SALd(�,�, �) to denote the ran-
dom variable y following a d-dimensional SALD. After some calculations, the mean 
and variance of SALD are given by

It is clear that the mean depends on the shifted location parameter � and skewness 
parameter � , while its variance depends on scatter matrix � and skewness parameter � . 
Also, � + ��T must be p.d. if � is p.d. The parameter � plays an important role in mul-
tivariate asymmetric data analysis, besides the location � and scatter matrix � . Note, the 
multivariate density in (2.2) reduces to (2.1) when � = 0 , and it further reduces to the 
multivariate symmetry Laplace distribution (Eltoft et al. 2006) when � = 0 . Moreover, 
(2.2) reduces to the univariate ALD when dimension d = 1 , � = (1 − 2�)∕�(1 − �) and 
�1×1 = 2∕�(1 − �) , and is popularly used in the likelihood framework for quantile regres-
sion with density p(y) = �(1 − �) exp{−��(y − �)} , where 𝜌𝜏(u) = u(𝜏 − I(u < 0)) . 
The SALD in (2.2) has the following stochastic representation

where V is a random variable from an exponential distribution with mean 1 and 
Z ∼ Nd(0,�) is generated independent of V. Using Bayes’s theorem, the density of V 
given Y = y is generalized inverse Gaussian, with the density

where �, �,�,�, �(y,�,�) and u are as defined in (2.2). The SALD allows for peak-
edness, heavy tails, and skewness, and hence provides more flexibility in modeling 
multivariate data with non-Gaussian features. More properties, extensions and 
applications of SALD appear in Kozubowski and Podgórski (2001); Franczak et al. 
(2014); Bouveyron and Brunet-Saumard (2014).

2.1 � Single‑Index Mixed‑Effects Model

Let yij = (y
(1)

ij
, y

(2)

ij
)T be the observed values of two response variables (here, mean 

PPD and CAL) for the ith subject at the jth location (here, tooth), where i = 1,… , n 
and j = 1,… ,mi . We assume

(2.2)p(y;�,�, �) =
2 exp{(y − �)T�−1�}

(2�)d∕2|�|1∕2 ×

(
�(y,�,�)

2 + �T�−1�

)�∕2

K�(u),

E(Y) = � + � and Var(Y) = � + ��T.

(2.3)Y = � + V� +
√
VZ,

(2.4)

pV (v|Y = y) =
v�−1

2K�(u)

(
�(y,�,�)

2 + �T�−1�

)−�∕2

exp
{
−

1

2v
�(y,�,�) −

v

2
(2 + �T�−1�)

}
,
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where g1 and g2 are two unknown nonparametric functions, x(1)
ij

= (x
(1)

ij1
,… , x

(1)

ijp1
)T , 

x
(2)

ij
= (x

(2)

ij1
,… , x

(2)

ijp2
)T , and z

(1)

ij
= (1, z

(1)

ij1
,… , z

(1)

ijq1
)T , z

(2)

ij
= (1, z

(2)

ij1
,… , z

(2)

ijq2
)T , 

�k ∈ ℝ
pk and bik ∈ ℝ

qk+1 are the (fixed) index coefficients and random effect for the 
k-th response (k=1 or 2), � is a 2 × 1 vector of skewness parameters, and � is the 
scatter matrix with dimension 2 × 2 for the random error � . To accommodate a 
robust specification, we also assume the random effects 
bi = (bi1

T, bi2
T)T ∼ SAL(q1+q2+2)

(0,�, 0) , where � is an unstructured covariance 
matrix with dimension (q1 + q2 + 2) × (q1 + q2 + 2) . Note, � carries information 
pertaining to both the clustering correlation within a response found on the two 
blocks of diagonal sub-matrices, with dimensions (q1 + 1) × (q1 + 1) and 
(q2 + 1) × (q2 + 1) , and the cross-correlations between responses, found on the off-
diagonal sub-matrices. In addition, we further assume the joint density of (�ijT, biT)T 
is SAL(q1+q2+4)

(0(q1+q2+4), blockdiag(�,�), (�T, 0T
q1+q2+4

)T) . We call model (2.5) as 
the single-index mixed-effects (SIME) model for bivariate clustered data.

For identifiability, we assume both ‖�1‖ = 1 and ‖�2‖ = 1 , and their first com-
ponents are positive, respectively. In this paper, the popular “delete one compo-
nent” method is used to avoid the equality constraints (Yu and Ruppert 2002; Cui 
et  al. 2011). Specifically, we write �1 = ((1 − ‖� (−1)

1
‖2)1∕2, �12,… , �1p1 )

Twhere, 
�
(−1)

1
= (�12,… , �1p1 )

T . Under this parametrization, �1 is a smooth deterministic func-
tion of �(−1)

1
 , with its Jacobian matrix given by

where Ip1−1 is the identity matrix with p1 − 1 rows/columns. The true parame-
ter �(−1)

1
 satisfies the constraint �(−1)

1
< 1 , which implies that it is a interior point 

in a unit ball in ℝp1−1 . Therefore, �1 is infinitely differentiable in a neighborhood 

of �(−1)

1
 . Similarly, we define �(−1)

2
 and J2 , and let �(−1) = ((�

(−1)

1
)T, (�

(−1)

2
)T)T , 

J = blockdiag(J1, J2) . Applying the stochastic representation in (2.3), model (2.5) 
admits the following hierarchical structure:

(2.5)

⎧
⎪⎪⎨⎪⎪⎩

yij = �̃ij + �ij, �̃ij = (�̃
(1)

ij
, �̃

(2)

ij
)T,

�̃
(1)

ij
= g1((x

(1)

ij
)T�1) + (z

(1)

ij
)Tbi1, �̃

(2)

ij
= g2((x

(2)

ij
)T�2) + (z

(2)

ij
)Tbi2,

�ij ∼ SAL2(0,�, �), i.i.d. ∀ i, j,

J1 =
��1

��
(−1)

1

=

�
−

�
(−1)

1

(1−‖�(−1)

1
‖2)1∕2

Ip1−1

,

�

(2.6)

⎧⎪⎨⎪⎩

yi�bi,Vi ∼ N2mi
(��i + Vi(1mi

⊗ �),Vi�i),

bi�Vi ∼ N2(q+1)(0,Vi�), Vi ∼ E(1),
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where yi = (yi1
T,… , yimi

T)T , �̃i = (�̃i1
T,… , �̃imi

T)T , E denotes the exponential dis-
tribution, �i = Imi

⊗ � , where ⊗ denotes the kronecker product, and 1mi
 is a mi col-

umn vector with element 1. From (2.5) and (2.6), it is clear that conditional on Vi , �ij 
and bi are independent. Integrating out bi in (2.6), we have the following hierarchical 
model

where �i = ((�i1)
T,… , (�imi

)T)T with �ij = (g1((x
(1)

ij
)T�1), g2((x

(2)

ij
)T�2))

T , 

Zi = (Zi1,… ,Zimi
) , Zij = blockdiag(z

(1)

ij
, z

(2)

ij
) , Gi = Zi

T�Zi + �i . Moreover, it fol-
lows from (2.7) that the yi are independent and marginally distributed as

where �∗
i
= 1mi

⊗ � . From (2.7) and by the properties of the generalized inverse 
Gaussian distribution in (2.4), we have

where ai = 2 + (�∗
i
)TG−1

i
�∗
i
 , bi = (yi − �i)

TG−1
i
(yi − �i) , R�(u) = K�+1(u)∕K�(u) 

and � = 1 − mi.

2.2 � Modeling the Index Functions

Since the two functions g1 and g2 in (2.5) are unknown, we use polynomial splines to 
approximate them in the subsequent ML estimation. Polynomial splines are simple, 
yet practical tools with computational tractability and statistical efficiency, and has 
been proven to be an extremely powerful method for smoothing.

For simplicity, we assume that the covariates x(1)
ij

 and x(2)
ij

 are bounded and the 
supports of (x(1))T�10 and (x(2))T�20 are contained in the finite interval [a, b]. Such a 
compactness assumption is almost always used in nonparametric regression with 
spline approximation. We use polynomial splines to approximate the nonparametric 
functions g1 and g2 . Let t0 = a < t1 < ⋯ < tK� < b = tK�+1 be the partitions of [a, b] 
into subintervals [tk, tk+1), k = 0,… ,K� with K′ internal knots. A polynomial spline 
of order d is a function whose restriction to each subinterval is a polynomial of 
degree d − 1 and globally d − 2 times continuously differentiable on [a, b]. The col-
lection of splines with a fixed sequence of knots has a B-spline basis 
{B1(x),… ,BK(x)} , with K = K� + d . We assume the B-spline basis is normalized to 
have 

∑K

k=1
Bk(x) =

√
K , although, any scaling can be used without changing the the-

oretical results.
Let B1(⋅) = (B1(⋅),… ,BK1

(⋅))T and B2(⋅) = (B1(⋅),… ,BK2
(⋅))T , where 

K1 = K�
1
+ d and K2 = K�

2
+ d with number of knots K′

1
 and K′

2
 for g1 and g2 . Then, 

we have gk(⋅) ≈ Bk
T(⋅)�k, k = 1, 2 where �k = (�k1,… , �kKk

)T, k = 1, 2 . As a result, 
we can write

(2.7)yi|Vi ∼ N2mi
(�i + Vi(1mi

⊗ �),ViGi), Vi ∼ E(1),

(2.8)yi ∼ SALD2mi
(�i,Gi, �

∗
i
), i = 1,… , n,

(2.9)�(Vi�yi) =
�

bi

ai
R�(

√
aibi) and �(V−1

i
�yi) =

�
ai

bi
R�(

√
aibi) −

2�

bi
,
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for i = 1,… , n, j = 1,… ,mi . By letting the number of knots increase with the sam-
ple size at an appropriate rate, the spline estimate of the unknown function can 
achieve the optimal nonparametric convergence rate.

3 � Theoretical Properties

In this section, we will investigate the theoretical properties for the index param-
eters and the index functions. In the following we establish the large sample prop-
erties based on the marginal distribution (2.8) of the proposed BV-SIM model in 
(2.5). For simplicity, we assume mi ≡ m , with the response viewed as i.i.d. data, 
yi ∼ SALD2m(�i,Gi, �

∗), i = 1,… , n . In (2.8), �∗ = 1m ⊗ � and Gi = Zi
T�Zi + � , 

with � = Im ⊗ � . We first introduce some notations.
Let �01 and �02 be the true index parameters, and g01 and g02 the corresponding 

true index functions. Let �0 = (�01
T, �02

T)T , �
(−1)

0
= ((�

(−1)

01
)T, (�

(−1)

02
)T)T , 

�0
i
= ((�0

i1
)T,… , (�0

imi
)T)T with �0

ij
= (g01((x

(1)

ij
)T�01), g02((x

(2)

ij
)T�02))

T . Denote the 

support of {Xi
T�0} as [a,  b], where a = mini{Xi

T�0} and b = maxi{Xi
T�0} , 

Xi = (Xi1,… ,Ximi
) with Xij = blockdiag(x

(1)

ij
, x

(2)

ij
) . Let Hs be the collection of all 

functions on the support [a, b] whose l-th order derivative satisfies the Hölder con-
dition of the order r with s = l + r . Then, for each g ∈ Hs , there exists a positive 
constant C0 such that |g(l)(u) − g(l)(v)| ≤ C0|u − v|r, ∀u, v ∈ [a, b] . From De  Boor 
(2001), there exists a constant C (see page 149) such that

if gk ∈ Hs , where �0k = (�0k1,… , �0kKk
)T , k = 1, 2 are the true value of spline coef-

ficients, which can be viewed as the best approximation coefficient vectors for gk.
Denote � = (�T, vech(�)T, vech(�)T)T and � as the parameter space 

of � = (�T,�T, �T)T . Given the covariates Xi and Zi , let �m(�i, �, yi) be 
the log-likelihood of the marginal distribution for response yi in (2.8) and 
�m(� , yi) ≜ �m(Wi

T(Xi
T�)�, �, yi) be the corresponding spline-approximated 

log-likelihood. Let �0 be the true value of � and �0 = (�01
T,�02

T)T . Define 
�̂ = (�̂T, �̂T, �̂T)T as the MLE, given by

where Wi(Xi
T�) = (Wi1,… ,Wimi

) , Wij = blockdiag(B
(1)

ij
,B

(2)

ij
) with 

B
(k)

ij
= Bk((x

(k)

ij
)T�k), k = 1, 2 . Define the space of square integrable single-index 

functions G = {g ∶ �‖g(Xi
T�0)‖2 < ∞} , where g(Xi

T�) = (gT(Xi1
T�),… , gT(Ximi

T�))T 

(2.10)�
(1)

ij
≈ B1

T((x
(1)

ij
)T�1)�1 and �

(2)

ij
≈ B2

T((x
(2)

ij
)T�2)�2

(3.1)sup
u∈[a,b]

|gk(u) − BT
k
(u)�0k| ≤ CK−s

k
,

(3.2)�̂ = argmax�

n∑
i=1

�m(Wi
T(Xi

T�)�, �, yi),
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with g(Xij
T�) = (g1((x

(1)

ij
)T�1), g2((x

(2)

ij
)T�2))

T . Denote 
Ci(�i, �) = −�2�m(�i, �, yi)∕��i��i

T and C0
i
= Ci(�

0
i
, �0) . Then, the projection of a 

2m-dimensional random vector � onto G (defined as �[�] = g(Xi
T�0)) is the mini-

mizer of

Note, the definition of projection involves the distributions of both Xi,Zi and � since 
we take the expectation over these random variables. This definition can be extended 
to any 2m × L matrix by column-wise projection. In the following, we list the regu-
larity conditions (Wang et al. 2014; Lian and Liang 2013; Zhao et al. 2017) that are 
necessary to study the asymptotic behavior of the MLEs.

	(A1)	 Both g1(⋅) ∈ Hs and g2(⋅) ∈ Hs for some s ≥ 2.

	(A2)	 Both x(1)
ij

 and x(2)
ij

 , i = 1,… , n, j = 1,… ,mi , are bounded, with density supported 
on a convex set.

	(A3)	 The true parameter point �0 is an interior point of the parameter space �.
	(A4)	 The log-likelihood �m(� , yi) is at least thrice differentiable on parameters � . 

Furthermore, the second derivatives of the likelihood function satisfy the equa-
tions

Also, there exists functions Mjkl(yi) , such that

for � ∈ � , and �[Mjkl(yi)] < C3 < +∞ . Here � j denotes the j-th component of 
�.

	(A5)	 The Fisher information matrix I(�0) = −�
{

�2�m(� ,yi)

����T

}||||�0
 satisfies the condi-

tions

where �min and �max denote the smallest and largest eigenvalues of a matrix.
	(A6)	 Suppose �G[Xijdiag{ġ(Xi

T�0)}] = (h1(Xi
T�0),… , hp1+p2 (Xi

T�0))
T . Assume all 

hj ∈ Hs� with s′ > 1 . We also assume that

is positive definite, where J is evaluated at �0.

min
g∈G

�
[
(� − g(Xi

T�0))
TC0

i
(� − g(Xi

T�0))
]
.

�

{(
��m(� , yi)

��

)(
��m(� , yi)

��

)
T

}
= −�

{
�2�m(� , yi)

����T

}
.

|||||
�3�m(� , yi)

�� j��k�� l

|||||
≤ Mjkl(yi)

0 < C1 < 𝜆min{I(�0)} ≤ 𝜆max{I(�0)} < C2 < +∞,

�
[
(JTXidiag{ġ(Xi

T�0)} − �G[J
TXidiag{ġ(Xi

T�0)}])
⊗2
]
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Remark 1  The smoothness condition in (A1) is a requirement to attain the best con-
vergence rate for single-index functions approximated in the spline space. Condition 
(A2) is widely used in the single-index modeling literature, ensuring that the index 
functions are defined in a compact set and thus facilitates the technical derivations. 
Conditions (A3) and (A4) are two common assumptions in the literature of maxi-
mum likelihood estimation with spline approximations (Wang et  al. 2011, 2014), 
implying that the information matrix of the likelihood function is positive definite. 
Condition (A5) is slightly stronger than that used in the usual asymptotic likelihood 
theory, however, widely used in high-dimensional likelihood estimation literature 
Fan and Peng (2004). Finally, Condition (A6) is related to the ‘projection’, or the 
‘orthogonalization’ technique common in a semiparametric setup, which includes 
partially linear model (Li 2000), partially linear additive model (Lian and Liang 
2013), and single-index models (Cui et al. 2011; Zhao et al. 2017).

Denote K = max{K1,K2} , and let rn =
√
K∕n + K−s . Then, we have the follow-

ing result.

Theorem  1  Under the Conditions (A1)–(A5), suppose that K4∕n → 0 , √
nK−2s+1

→ 0 , then we have

As an immediate implication of Theorem  1, we have ‖ĝ1 − g1‖ = Op(rn) and 
‖ĝ2 − g2‖ = Op(rn).

Remark 2  Note that the rate of convergence for nonparametric functions is 
Op(n

−s∕(2s+1)) if the optimal K ∼ n1∕(2s+1) , which is the same as that found in the non-
parametric and semiparametric literature.

Theorem  2  Under Conditions (A1)–(A6), suppose that K4∕n → 0 , 
√
nK−2 s+1

→ 0 
and 

√
nK−s−s�

→ 0 . Then, we have

where

and J is evaluated at the true �0.

Following Theorem 2 and invoking the Delta method, we have

‖�̂ − �0‖ + ‖�̂ − �0‖ = Op(rn).

√
n(�̂

(−1)
− �

(−1)

0
)

d
⟶N(0,�−1),

� = �
[
(JTXidiag{ġ(Xi

T�0)} − JT�G[Xidiag{ġ(Xi
T�0)}]) ⋅ C

0
i
⋅

(JTXidiag{ġ(Xi
T�0)} − JT�G[Xidiag{ġ(Xi

T�0)}])
T
]

√
n(�̂ − �0)

d
⟶N(0, J�−1JT).
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4 � Maximum Likelihood Estimation

In this section, we develop the ML estimation for our BV-SIM model. We utilize 
EM-type algorithms for obtaining the MLE, based on two types of missing data 
structures in (2.6). The EM algorithm is a popular iterative algorithm for MLE in 
models with incomplete data (Dempster et al. 1977), where each iteration of the EM 
algorithm consists of two steps, the expectation (E) step and the maximization (M) 
step. Despite desirable features, the M-step in the EM algorithm is often difficult to 
implement for complicated models, and is replaced with a sequence of computation-
ally simple conditional maximization (CM) steps, i.e. maximizing over one param-
eter with the other parameters held fixed. This leads to a simple extension of the EM 
algorithm, called the ECM algorithm (Meng and Rubin 1993).

Consider the hierarchical multivariate Laplace model in (2.6), where both Vi and 
bi are missing data. Let y = (y1

T,… , yn
T)T , b = (b1

T,… , bn
T)T , V = (V1,… ,Vn)

T 
and � = (�1

T,�2
T)T . The log-likelihood for the complete data in the multivariate 

Laplace single-index mixed-effects model up to an additive constant can be written 
as

where

and

where �̃ij is defined in (2.5) and N =
∑n

i=1
mi . Note that �1 can be further written as

Denote � as the full parameter vector to be estimated. We firstly compute the condi-
tional posterior mean and variance of bi at the current estimate �̂ , leading to

(4.1)�(�,�, �,�,�|y, b,V) = �1(�,�, �,�|y, b,V) + �2(�|b,V),

�1(�,�, �,�|y, b,V) = −N
2
log |�| − 1

2

n
∑

i=1

mi
∑

j=1
V−1
i (yij − �̃ij − Vi�)T�−1(yij − �̃ij − Vi�)

�2(�|b,V) = −
n

2
log |�| − 1

2
trace

(
�

−1

n∑
i=1

V−1
i
bibi

T

)
,

�1 = −N
2
log |�| − 1

2

n
∑

i=1
V−1
i (yi −Wi

T�)T�−1
i (yi −Wi

T�) − 1
2

n
∑

i=1
V−1
i biTZi�−1

i Zi
Tbi

+
n
∑

i=1
V−1
i (yi −Wi

T�)T�−1
i Zi

Tbi −
n
∑

i=1
(�∗i )

T�−1
i Zi

Tbi +
n
∑

i=1
(yi −Wi

T�)T�−1
i �∗i

− 1
2

n
∑

i=1
Vi(�∗i )

T�−1
i �∗i .

Cov(bi|� = �̂, y,V) = Vi

(
�̂

−1
+ Zi�̂

−1

i
Zi

T
)−1

≜ Vi ⋅ �̂i,

�(bi|� = �̂, y,V) = �̂iZi�̂
−1

i
(yi −Wi

T�̂ − Vi�̂
∗

i
) ≜ R̂i1 − ViR̂i2,
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for i = 1,… , n , where

After obtaining the estimates of the conditional mean and conditional covari-
ance of the random effect bi , we proceed to calculate the expectation of 
�(𝓁(⋅)) = �V{�b[𝓁(⋅)|V]} . Define the quantities

which can be computed from (2.9), using the current estimate �̂ . After some simple 
calculations, we have

and

Next, maximizing Q1 over parameters � , � , � and � , and maximizing Q2 over � , we 
can obtain their estimates, which constitutes the CM-steps 1-5 in the following ECM 
algorithm:

E-step	 Given current parameter estimates, for i = 1,… , n , update ci and di using 
(4.3), and update �̂i , R̂i1 and R̂i2 by (4.2).

CM-step 1	 Fix �̂, �̂ and �̂ , and update �̂ by maximizing (4.4) over � , which 
gives

CM-step 2	 Fix �̂, �̂ and �̂ , update �̂ by maximizing (4.4) over � , i.e.,

(4.2)
�̂i =

(
�̂

−1
+ Zi�̂

−1

i
Zi

T
)−1

, R̂1 = �̂iZi�̂
−1

i
(yi −Wi

T�̂) and R̂2 = �̂iZi�̂
−1

i
�̂
∗

i
.

(4.3)ĉi = �(Vi|� = �̂, y) and d̂i = �(V−1
i
|� = �̂, y),

(4.4)

Q1 ≜ �
�
𝓁1(⋅�y, b,V)�y, � = �̂

�

= −
N

2
log ��� − 1

2

∑n

i=1
d̂i(yi −Wi

T�)T�−1
i
(yi −Wi

T�) −
1

2

∑n

i=1
ĉi(�

∗
i
)T�−1

i
�∗
i

−
1

2

∑n

i=1
trace

�
Zi�

−1
i
Zi

T
�
d̂iR̂i1R̂i1

T − R̂i1R̂i2
T − R̂i2R̂i1

T + ĉiR̂i2R̂i2
T + �̂i

��

+
∑n

i=1
d̂i(yi −Wi

T�)T�−1
i
Zi

TR̂i1 −
∑n

i=1
(yi −Wi

T�)T�−1
i
[Zi

TR̂i2 − �∗
i
]

−
∑n

i=1
(�∗

i
)T�−1

i
Zi

TR̂i1 +
∑n

i=1
ĉi(�

∗
i
)T�−1

i
Zi

TR̂i2,

(4.5)

Q2 ≜ �
[

�2(⋅|y, b,V)|y, � = �̂
]

= − n
2 log |�| − 1

2
∑n

i=1 trace
{

�−1
[

d̂iR̂i1R̂i1
T − R̂i1R̂i2

T − R̂i2R̂i1
T + ĉiR̂i2R̂i2

T + �̂i

]}

+ C,

�̂ =

(
n∑
i=1

mi∑
j=1

d̂iWij�̂
−1
Wij

T

)−1 n∑
i=1

mi∑
j=1

Wij�̂
−1
[
d̂i(yij −Wij

T�̂ − Zij
TR̂i1) + Zij

TR̂i2 − �̂
]
.
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CM-step 3	 Fix �̂ , �̂ and �̂ , and update �̂ by maximizing (4.4) over � . Since 
there is no explicit expression for the estimate of the index parameter � , we use 
the Newton–Raphson method to obtain �̂ , leading to the following iterative for-
mula

where Hij =

⎡
⎢⎢⎣
J1

Tx
(1)

ij
{Ḃ1

T((x
(1)

ij
)T��

old

1
)��1} 0(p1−1)×1

0(p2−1)×1 J2
Tx

(2)

ij
{Ḃ2

T((x
(2)

ij
)T��

old

2
)��2}

⎤
⎥⎥⎦
 , and 

Ḃ(⋅) denotes the first derivative of the spline basis B(⋅).
CM-step 4	 Fix �̂ , �̂ and �̂ , and update �̂ by maximizing (4.4) over � . Denote

Applying the result in Lemma 1, we obtain �̂ =
1

N
D̂.

CM-step 5	 Update �̂ by maximizing (4.5) over � , which gives

Repeat the above E-step and CM-steps, until all parameters achieve the desired con-
vergence criterion. Since our estimation procedure requires initial values, we set 
�̂
(0)

= (0, 0)T , �̂
(0)

= I2 , and the estimates of �̂
(0)

1
 , �̂

(0)

2
 and �̂

(0) are obtained from fitting 
a linear mixed model via the R package lmer, where Xij = blockdiag(x

(1)

ij
, x

(2)

ij
) and Zij 

are the design matrices corresponding to the fixed effects and random effects, respec-
tively. Simulation studies (in Sect. 5) show that the above strategy works well.

�̂ =

∑n

i=1

∑mi

j=1
(yij −Wij

T�̂ − Zij
TR̂i1 + ĉiZij

TR̂i2)∑n

i=1
miĉi

.

�
�̂
(−1)

�new

=
�
�̂
(−1)

�old

+
�∑n

i=1

∑mi

j=1
d̂iHij�̂

−1
Hij

T
�−1

×

×
∑n

i=1

∑mi

j=1
Hij�̂

−1
�
d̂i(yij −Wij

T�̂ − Zij
TR̂i1) + Zij

TR̂i2 − �̂
�

D̂ =

n∑
i=1

mi∑
j=1

{[
d̂i(yij −Wij

T�̂ − 2Zij
TR̂i1) + 2(Zij

TR̂i2 − �̂)
]
(yij −Wij

T�̂)T + ĉi�̂�̂
T
}
+

n
∑

i=1

mi
∑

j=1
Zij

T
[

d̂iR̂i1R̂i1
T − R̂i1R̂i2

T − R̂i2R̂i1
T + ĉiR̂i2R̂i2

T + �̂i

]

Zij

+
n
∑

i=1

mi
∑

j=1
(Zij

TR̂i1 − ĉiZij
TR̂i2)�̂T.

�̂ =
1

n

n∑
i=1

[
d̂iR̂i1R̂i1

T − R̂i1R̂i2
T − R̂i2R̂i1

T + ĉiR̂i2R̂i2
T + �̂i

]
.
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5 � Simulation Studies

In this section, we conduct extensive simulation studies using synthetic data to study 
the finite-sample performance of the model parameters in our proposed method (Simu-
lation 1), and the robustness of our method when compared to existing alternatives, 
under data generated under various settings (Simulation 2).

5.1 � Knots Selection

It is well-known that the performance of any spline estimation depends on the 
knots selection. Here, we employed Schwartz information criteria (SIC) for adap-
tive know selection (Ma and Song 2015; Lu 2017; Zhao et al. 2017). In view of 
the order n1∕(2s+1) (of knots) to attain optimal convergence rate of nonparametric 
functions in 1, a sequence of knots are selected in a neighborhood of n1∕(2s+1) , 
such as 

[
0.5Ns, min(5Ns, n

1∕2)
]
 , where Ns = ⌊n1∕(2 s+1)⌋ , and s is the smoothing 

parameter. We choose s = 2 in both simulation studies and real data application. 
For simplicity, we use cubic polynomial splines and the number of interior knots 
K1 = K2 ≡ K are the same for the two nonparametric link functions. The number 
Kopt corresponding to the minimum SIC value is defined as the optimal number 
of knots SIC(K) = −

∑n

i=1
logL̂K

i
+ logn × 2K , where logL̂K

i
 denotes the estimated 

value of the log-likelihood function obtained from(2.8), with the given K knots.

5.2 � Simulation 1: Assessing Finite‑Sample Properties

Here, data is generated from the model (2.5), where the two nonparametric func-
tions are g1(u) = 2 sin(�u) and g2(u) = 8u(1 − u) , with the true index parameters 
�1 = (1∕

√
3,−1∕

√
3, 1∕

√
3)T and �2 = (2∕

√
6, 1∕

√
6, 1∕

√
6)T , respectively. Both 

covariates x(1)
ij

 and x(2)
ij

 are generated independently from the trivariate uniform 
distribution U3(0, 1) . The random effects bi = (bi1

T, bi2
T)T are generated from 

SAL4(0,�, 0) , with covariance matrix

and the corresponding covariates z(1)
ij

= (1, z
(1)

ij1
)T and z(2)

ij
= (1, z

(2)

ij1
)T , where z(1)

ij1
 and 

z
(2)

ij1
 are generated from the standard normal distribution. The random error �ij is gen-

erated from SAL2(0,�, �) with � =

(
1 0.6

0.6 1

)
 and � = (2, 1.5)T . The sample size n 

is set to be 50, 100 and 200, and the number of cluster members mi in each subject is 
generated from the discrete uniform distribution on 5, 6,… , 10 . Table 1 presents the 

� =

⎛⎜⎜⎜⎝

9 4.8 3.6 0.6

4.8 4 2 1.2

3.6 2 4 1

0.6 1.2 1 1

⎞⎟⎟⎟⎠
,
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averages of bias, absolute bias, and the empirical standard error estimates for the 
index parameters and the skewness parameter, over 400 replications.

From Table  1, all biases are close to zero for all sample sizes, implying our 
proposed estimators are consistent. Moreover, the absolute biases and the stand-
ard errors are smaller with increasing sample sizes, with the estimation perfor-
mance of index parameters significantly better than the skewness parameters. To 
further assess the estimation results, we calculate the integrated mean squared 
error (IMSE), defined as

where ĝ(s)
l
(⋅) is the spline approximation to gl(⋅) in the sth simulation run. We 

report the average of the IMSE as AIMSE =
1

2

∑2

l=1
IMSE(gl) in Table  2. For 

evaluating the estimation performances of the scatter matrix � (corresponding to 
the bivariate responses) and the covariance matrix � (for the random effects), we 
use the Frobenius-norm of the matrix of differences between the estimated and 
true values, i.e. ‖A‖F =

√
trace(ATA) , where A is either �̂ − � or �̂ −� . Simula-

tion results, together with the root of mean square error (RMSE) for �1 , �2 and � 
are listed in Table  2, where the RMSE for an arbitrary parameter � is defined as 

IMSE(gl) =
1

400

400∑
s=1

√√√√ 1

N

n∑
i=1

mi∑
j=1

{ĝ
(s)

l
((x

(1)

ij
)T�̂ l) − gl((x

(1)

ij
)T� l)}

2, l = 1, 2,

Table 1   Table entries are the average bias (BIAS), average absolute bias (ABIAS), and empirical stand-
ard error (ESE) estimates for n = 50, 100, 200 , calculated over 400 replications, corresponding to Simu-
lation 1

Parameters �
11

�
12

�
13

�
21

�
22

�
23

�
1

�
2

n = 50 BIAS 0.0011 0.0007 −0.0011 0.0007 −0.0013 −0.0005 −0.0294 −0.0429
ABIAS 0.0130 0.0125 0.0134 0.0061 0.0100 0.0096 0.2862 0.2479
ESE 0.0174 0.0163 0.0169 0.0080 0.0128 0.0123 0.3596 0.3093

n = 100 BIAS −0.0014 −0.0005 0.0005 −0.0001 0.0000 0.0000 −0.0417 −0.0144
ABIAS 0.0093 0.0093 0.0085 0.0043 0.0066 0.0068 0.2299 0.1931
ESE 0.0119 0.0120 0.0109 0.0053 0.0084 0.0085 0.2838 0.2424

n = 200 BIAS 0.0004 −0.0002 −0.0007 −0.0005 0.0004 0.0006 −0.0211 −0.0158
ABIAS 0.0056 0.0055 0.0052 0.0029 0.0040 0.0041 0.1592 0.1309
ESE 0.0072 0.0070 0.0067 0.0038 0.0052 0.0052 0.2084 0.1675

Table 2   Table entries are the averages of the IMSE (AIMSE), the Frobenius-norms for � and � , 
and the root of mean squared errors (RMSE) of the model parameters, under various sample sizes 
(n = 50, 100, 200) , calculated over 400 replications, corresponding to Simulation 1

AIMSE ‖�̂ − �‖
F

‖Ω̂ − Ω‖
F

RMSE�
1

RMSE�
2

RMSE�

n = 50 0.1397 0.2157 3.9259 0.0250 0.0169 0.4002
n = 100 0.0976 0.1894 2.4522 0.0173 0.0115 0.3172
n = 200 0.0616 0.1276 1.9059 0.0105 0.0071 0.2194
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RMSE� =

√
(�̂ − �)T(�̂ − �) . It is clear from Table 2 that the finite-sample perfor-

mances of our proposed estimation procedures are satisfactory, with increasing sam-
ple sizes. In sum, the simulation results show that both index parameters, the non-
parametric functions, and other parameters associated with the mixed effect models 
are reliably estimated, thereby confirming that our proposed algorithm works well in 
synthetic data settings.

5.3 � Simulation 2: Assessing Robustness, in Light of Competing Methods

Here, the data is generated similar to Simulation 1 (from a BV-SIM), except that the 
random effects and errors are independently generated under the following four distri-
butional assumptions:

Case 1:	 bi ∼ N(0,�), �ij ∼ N(0,�);
Case 2:	 bi ∼ t(0,�, v), �ij ∼ t(0,�, v);
Case 3:	 bi ∼ SAL4(0,�, 0), �ij ∼ SAL2(0,�, 0);
Case 4:	 bi ∼ 0.8N(0,�) + 0.2N(0, 10�), �ij ∼ 0.8N(0,�) + 0.2N(0, 10�),

for i = 1,⋯ , n, j = 1,⋯ ,mi,
Here, Case 1 corresponds to random effects and errors independently generated 

from the multivariate normal distribution. For Case 2, both are generated from the mul-
tivariate t-distribution with degree of freedom v (setting v = 5 ). For Case 3, the random 
effects and errors are generated from the multivariate symmetric Laplace distribution 
with covariance matrix � and � , respectively. Finally, Case 4 corresponds to generating 
both the random terms (effects and errors) from multivariate normal mixtures. Note, 
for the above four cases, the bivariate clustered response is symmetric, since both the 
random effects and errors are generated from symmetric distributions. This is to make 
our approach comparable to the following two existing alternatives, (a) The bivariate 
normal mixed effect single-index model of Wu and Tu (2016), and (b) The bivariate 
mixed effect single-index model using the multivariate t-distribution, which extends 
the univariate linear mixed model proposal of (Pinheiro et al. 2001). In (a), penalized 
splines were used to approximate the nonparametric index function, whereas we use 
polynomial splines. At each replication, we use the same dataset to obtain the estimates 
from these three competing methods. We focus on the estimation of the index param-
eters and the index functions for the fixed effect part, with the same interpretation for 
all cases.

The results are summarized in Table 3. For all cases, RMSEs and AIMSEs decrease 
quickly as the sample size increases for all three methods. That said, our proposed 
method performs well for all four cases, and is significantly better than both the alter-
natives for Cases 3 and 4. The advantages of our method appears more prominent if 
we further reduce the mixing proportion of the mixture distribution in Case 4 from 
0.8 to 0.7, 0.6 or 0.5 (results not reported here). In Cases 1 and 2, the performances of 
our method is comparable to the two others. In particular, our method performs almost 
similar to Pinheiro’s t-distribution method in Case 2 when n = 200 , while they are both 
better than the normal mixed-effects method of Wu and Tu (2016). To summarize, 
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the performance of our proposed method appears to be satisfactory in all cases, and 
is robust to misspecified (non-Gaussian) random effects and errors, under a bivariate 
mixed model framework.

6 � Application: GAAD Dataset

In this section, we illustrate our method via application to the GAAD dataset. 
Here, the tooth-level mean PPD and CAL measures are non-Gaussian bivariate 
responses representing PD status, and our objective is to evaluate the distribu-
tion of PD status for this population, and quantify the effects of various sub-
ject-level covariates such as Age (in years), body mass index (BMI), Gender 
( 1 = Female, 0 = Male ), Smoking status ( 1 = Smoker, 0 = Never Smoker ) and 
glycemic level or HbA1c ( 1 = High∕Uncontrolled ), 0 = Controlled ) on the PD 
status. For our analysis, we have n = 288 subjects with complete covariate infor-
mation. About 30% of the subjects are smokers. The mean age of the subjects is 
about 54 years with a range from 26–87 years. There is a predominance of female 
subjects (around 76%) in the data. Around 60% of subjects are obese (BMI ≥ 30 ), 
and 59% are with uncontrolled HbA1c. Each subject has varying number of teeth, 
ranging from 3 to 28, with a total of 5461 observations. A full dentition will 
constitute 28 teeth, however, missing tooth is very common in any oral health 
studies, with the actual cause of missingness mostly unknown. Hence, in order 
to avoid unverifiable missing data assumptions, we did not resort to missing data 
analysis, and present only complete case analysis.

As part of explanatory analysis, we present the bivariate kernel density esti-
mate of the PPD and CAL responses in Fig.  2 (left panel). The plot reveals 
significant (right) skewness for both responses. Also, the right panel in Fig.  2 
indicates presence of possible outliers. Recent research (Zhao et  al. 2018) con-
firmed possible non-linear relationship between oral health responses, and 
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Fig. 2   Bivariate kernel density estimate (left panel) and boxplots (right panel) for PPD and CAL 
responses, from the GAAD data
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continuous covariates, like Age. Motivated by this, we set forward to estimate a 
clinically meaningful single-index structure determining PD for the subjects in 
this database.

We consider fitting the following model to the GAAD data

where xij = (xij1,… , xij5)
T with xij1 = Age, xij2 = BMI, xij3 = Gender, xij4 = 

Smoker, xij5 = HbA1c and zij = (1, zij1, zij2, zij3)
T with zij1 = Gender, zij2 = 

Smoker, zij3 = HbA1c. We further assume bi = (bi1
T, bi2

T)T ∼ SAL8(0,�, 0) and 
�ij = (�ij1, �ij2)

T ∼ SAL2(0,�, �) . The estimates for index parameters, skewness 
parameter and their 95% confidence intervals are presented in Table 4, where the 
95% confidence intervals are obtained by bootstrap resampling with 200 replica-
tions. We observe that all parameters (except �13 corresponding to Gender for the 

⎧⎪⎨⎪⎩

PPDij = g1(xij
T�1) + zij

Tbi1 + �ij1,

CALij = g2(xij
T�2) + zij

Tbi2 + �ij2,
i = 1,… , 288, j = 1,… ,mi,

Table 4   Estimates of the index parameters, the skewness parameter and their 95% confidence intervals, 
corresponding to the PPD and CAL responses from the GAAD study

Parameter 
(PPD)

Estimate Confidence interval Parameter 
(CAL)

Estimate Confidence interval

�
11

0.7987 [0.7448, 0.8273] �
21

0.6129 [0.4571, 0.6983]
�
12

0.5312 [0.4841, 0.5923] �
22

0.7411 [0.6492, 0.8388]
�
13

−0.1219 [−0.1448, −0.1107] �
23

0.0318 [0.0109, 0.0577]
�
14

0.1958 [0.1806, 0.2169] �
24

0.1408 [0.0736, 0.2299]
�
15

0.1636 [0.1432, 0.1828] �
25

0.2330 [0.1805, 0.3388]
�
1

0.7977 [0.7037, 0.8844] �
2

0.6589 [0.5821, 0.7427]

Fig. 3   Estimated curves for the two index functions ĝ
1
 and ĝ

2
 , along with the 95% confidence bands. The 

left and right panels correspond to PPD and CAL regressions, respectively
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PPD regression) were positive and significant. Interestingly, the estimate of Gen-
der ( �13 ) is negative yet significant for PPD, while, the corresponding estimate ( �23 ) 
for CAL is positive and significant, implying that Gender is contributing to the index 
development for the two responses in opposite directions. Figure 3 presents the estimated 
curves corresponding to the two index functions, along with their 95% confidence bands 
using bootstrap method. Compared to the CAL, the 95% band is tighter for the PPD.

It is immediate that the correlation between PPD and CAL are signifi-
cant, implying the need to account for the crosswise correlation between the 
two responses, and the cluster-wise correlation of the responses within the 
same subject, while modeling the bivariate clustered responses. Furthermore, 
Fig.  4 presents the bivariate kernel density surface of the estimated residuals 
(left panel), and the same from random draws of n = 5461 observations from 
the bivariate ALD density ALD(�̂, �̂) , where �̂ and �̂  are plugged-in estimates 
derived from our fit. We observe that the estimated surfaces are very similar, 
confirming the adequacy of model fit to the GAAD dataset.

Correlation matrices � and � are estimates as:

and

�̂ =

(
1.2429 0.7937

0.7937 0.9024

)

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.6589 − 0.0089 − 0.0461 − 0.2792 1.5780 − 0.1832 − 0.1815 − 0.5760

−0.0089 0.8797 − 0.4081 0.1553 − 0.1685 0.5379 − 0.0466 0.4289

−0.0461 − 0.4081 0.8423 0.3273 − 0.0808 0.1296 0.1931 0.1264

−0.2792 0.1553 0.3273 0.7782 − 0.4164 0.3802 0.1290 0.6585

1.5780 − 0.1685 − 0.0808 − 0.4164 2.1987 − 0.8975 − 0.4840 − 0.8462

−0.1832 0.5379 0.1296 0.3802 − 0.8975 1.0517 0.3364 0.6420

−0.1815 − 0.0466 0.1931 0.1290 − 0.4840 0.3364 0.2016 0.1681

−0.5760 0.4289 0.1264 0.6585 − 0.8462 0.6420 0.1681 0.8158

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Y1 Y2

f(Y1,Y2)

Kernel Density Estimate of Residuals

Y1 Y2
f(Y1,Y2)

Kernel Density Estimate of Bivariate ALD

Fig. 4   Plots of bivariate kernel density estimates from model residuals (left panel), and from random 
draws of n = 5461 observations following ALD(�̂, �̂)
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To further evaluate the usefulness of our proposed new model, we consider the 
fitted and prediction errors in light of two alternatives, denoted as “AM1” (bivari-
ate normal, mixed effects SIM) and “AM2” (bivariate, asymmetric Laplace SIM, 
without random effects). We randomly partition the data into training and testing 
sets, where the training data is used to fit the 3 models, and the test data to eval-
uate the prediction errors. Using varying sizes of training and testing data, the 
average absolute fitted errors (AAFE), and the average absolute prediction errors 
(AAPE) for the two responses, based on 200 random partitions, are reported in 
Table 5, where

and

for k = 1 and 2, with ŷijk , the fitted value based on training data, and ỹijk , the pre-
dicted value based on the test data, and nb denote the number of subjects in the 
training data.

From Table 5, we observe that our model performs the best in terms of AAFE 
and AAPE, for various sizes of the training and testing set. More specifically, 
our proposed mixed-effects SIM model is superior to the bivariate asymmetric 
Laplace SIM (excluding random effects), implying the necessity to account for 
the within-subject correlation. Furthermore, our proposed model is also better 
than the SIM with the usual multivariate normal specification for the random 
effects, thereby providing evidence of the gain in accounting for data asymmetry 
during modeling.

AAFEk =
1∑nb

i=1
mi

nb�
i=1

mi�
j=1

�yijk − ŷijk�

AAPEk =
1∑n−nb

i=1
mi

n−nb�
i=1

mi�
j=1

�yijk − ỹijk�,

Table 5   Average absolute fitted and prediction errors for our model and 2 competing models (AM1 and 
AM2), for the PPD and CAL responses in the GAAD data, based on 200 random partitions

Size PPD response CAL Response

Training set Test set Our Model AM1 AM2 Our Model AM1 AM2

100 188 AAFE
1

0.8670 0.9046 0.9297 AAPE
1

0.8884 0.9339 0.9513
AAFE

2
0.6982 0.7005 0.7236 AAPE

2
0.7159 0.7164 0.7364

150 138 AAFE
1

0.8750 0.9209 0.9390 AAPE
1

0.8813 0.9335 0.9509
AAFE

2
0.7024 0.7054 0.7274 AAPE

2
0.7091 0.7138 0.7346

200 88 AAFE
1

0.8718 0.9237 0.9406 AAPE
1

0.8785 0.9317 0.9502
AAFE

2
0.6976 0.7050 0.7259 AAPE

2
0.7126 0.7172 0.7380

250 38 AAFE
1

0.8718 0.9265 0.9442 AAPE
1

0.8633 0.9185 0.9408
AAFE

2
0.6988 0.7095 0.7309 AAPE

2
0.6994 0.7082 0.7299



38	 Journal of the Indian Society for Probability and Statistics (2024) 25:17–45

1 3

7 � Conclusions

Derivation of useful medical indices that correlate with multiple health outcomes is 
an issue of significant practical importance. In this paper, we propose a single-index 
mixed-effects regression model for bivariate responses, where both the error term 
and random effect are assumed to follow multivariate asymmetric Laplace distribu-
tion. By the polynomial spline smoothing for index functions, we proposed a scal-
able ML estimation method based on EM-type algorithm, and study the asymptotic 
properties of the ML estimates under some mild conditions. Simulations and real 
data analysis reveal the potential of the proposed model under data asymmetry, com-
pared to existing alternatives.

There exists a number of future directions to pursue. To further improve model 
fit and prediction, we can consider the joint modeling of the location, skewness, and 
scatter matrix, within a multivariate ALD setup. When the number of covaiates is 
large in both fixed effects and random effects, it is of interest to select important 
variables in both parts to obtain a concise model. Some existing variable selection 
work of linear mixed effects model are available for univariate response case; see, 
for example, Kinney and Dunson (2010); Bondell et al. (2010); Fan and Li (2012); 
Schelldorfer and Geer (2011); Pan and Huang (2014), and others. However, for the 
case of single-index mixed effects models for multivariate responses, there is limited 
work, and pursuing the variable selection is a non-trivial journey. Another exten-
sion is to consider mixed effects quantile regression (Waldmann and Kneib 2015) 
for bivariate responses. These will be pursued elsewhere.

Appendix

Appendix 1: Lemmas

Lemma 1  Assume that A is a d × d positive definite matrix, then for any positive 
definite matrix � with dimension d × d , we have

if and only if � =
1

n
A.

Proof of Lemma 1  See proofs in Anderson (1984). � □

According to the MLE defined in (12), the likelihood estimating equations for � and 
� can be written as

f (�) = |�|−n∕2 exp
{
−
1

2
trace(�−1A)

}
≤
||||
1

n
A
||||
−n∕2

exp
{
−
nd

2

}
,

n∑
i=1

(
JTXidiag{Ẇi

T(Xi
T��)��}

Wi(Xi
T��)

)
𝜕�m(�i,

��, yi)

𝜕�i

|||||�i=Wi
T(Xi

T��)��

= 0.



39

1 3

Journal of the Indian Society for Probability and Statistics (2024) 25:17–45	

Denote �̇m(�,�, �, yi) ≜
𝜕�m(�i,�,yi)

𝜕�i

|||�i=Wi
T(Xi

T�)�
 and 

�̇m(g(Xi
T�), �, yi) ≜

�m(�i,�,yi)

𝜕�i

|||�i=g(Xi
T�)

 . Then we have the following Lemma 2.

Lemma 2  Assuming Conditions (A1)–(A6) hold, we have

and

uniformly over ‖�(−1) − �
(−1)

0
‖ + ‖� − �0‖ + ‖� − �0‖ ≤ Crn.

Proof of Lemma 2  We firstly prove (19). To obtain the bound, we only need to calcu-
late the conditional variance of the left term in (19) since the conditional expection 
�

(
�̇m(g(Xi

T�0), �0, yi)
|||Xi,Zi

)
= 0. By the Condition (A4), the eigenvalues of the 

conditional variance for �ar
(
�̇m(g(Xi

T�0), �0, yi)
|||Xi,Zi

)
 are bounded, hence we 

only need to obtain the bound of 
‖‖‖‖
JTXidiag{Ẇi

T(Xi
T�)� − Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�) −Wi(Xi

T�0)

‖‖‖‖.
By the properties of spline basis, we have

and

where both �∗ and �∗∗ lies on the line segment connecting � and �0 . As a result,

Then the order of (19) is Op(
√
nK3∕2rn) = op(

√
n) since d > 2.

We next prove (18). By the Taylor’s expansion and regularity conditions, it is 
clear that

(18)

�����

n�
i=1

��
JTXidiag{Ẇi

T(Xi
T�)�}

Wi(Xi
T�)

�
−

�
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

�������
�̇m(�,�, �, yi)

= op(
√
n)

(19)

�����

n�
i=1

��
JTXidiag{Ẇi

T(Xi
T�)�}

Wi(Xi
T�)

�
−

�
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

�������
�̇m(g(Xi

T�0), �0, yi)

= op(
√
n)

�Wi
T(Xi

T�)� −Wi
T(Xi

T�0)�0� ≤ �Ẇi
T(Xi

T�∗)�Xi
T(� − �0)� + �Wi

T(Xi
T�)(� − �0)�

≤ CK1∕2(‖� − �0‖ + ‖� − �0‖)

�Ẇi
T(Xi

T�)� − Ẇi
T(Xi

T�0)�0� ≤ �Ẅi
T(Xi

T�∗∗)�Xi
T(� − �0)� + �Ẇi

T(Xi
T�)(� − �0)�

≤ CK3∕2(‖� − �0‖ + ‖� − �0‖),

(20)
‖‖‖‖
JTXidiag{Ẇi

T(Xi
T�)� − Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�) −Wi(Xi

T�0)

‖‖‖‖ ≤ CK3∕2rn.
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Applying the results of (19) and (20), the order of (18) is 
op(

√
n) + Op(nK

3∕2r2
n
) = op(

√
n) .�  □

Lemma 3  Assume that Condition (A1)–(A6) hold, the singular values of the matrix

are bounded and bounded away from zero with probability approaching one.

Proof of Lemma 3  Note that we can replace Ẇi
T(Xi

T�0)�0 with 
ġ(Xi

T�0) in above expression with only a difference of op(1) since 
‖Ẇi

T(Xi
T�0)�0 − ġ(Xi

T�0)‖ ≤ CK−s+1 . Therefore we next only need to show that 
the eigenvalues of

are bounded and bounded away from zero.
By the Condition (A6), there exists a (p1 + p2) × (K1 + K2) matrix �0 such that

It is obvious that the singular values of 
(

I −�0

0 I

)
 are bounded and bounded away 

from zero. Thus, by pre-/post-multiplying this matrix, we only need to prove that the 
singular values of

are bounded and bounded away from zero. Apply the approximation of splines 
again, we only need to show that the singular values of

‖‖‖�̇m(�,�, �, yi) − �̇m(g(Xi
T�0), �0, yi)

‖‖‖ = Op(rn).

1

n

n∑
i=1

(
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

)
C0

i

(
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

)
T

1

n

n∑
i=1

(
JTXidiag{ġ(Xi

T�0)}

Wi(Xi
T�0)

)
C0

i

(
JTXidiag{ġ(Xi

T�0)}

Wi(Xi
T�0)

)
T

‖�G[Xidiag{ġ(Xi
T�0)}] −�0Ẇi(Xi

T�0)‖ ≤ CK−s� .

1

n

n∑
i=1

(
JTXidiag{ġ(Xi

T�0)} − JT�0Ẇi(Xi
T�0)

Wi(Xi
T�0)

)
C0

i

×

(
JTXidiag{ġ(Xi

T�0)} − JT�0Ẇi(Xi
T�0)

Wi(Xi
T�0)

)
T

1

n

n∑
i=1

(
JTXidiag{ġ(Xi

T�0)} − JT�G[Xidiag{ġ(Xi
T�0)}]

Wi(Xi
T�0)

)
C0

i

×

(
JTXidiag{ġ(Xi

T�0)} − JT�G[Xidiag{ġ(Xi
T�0)}]

Wi(Xi
T�0)

)
T
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are bounded, and bounded away from zero. By the law of large numbers, we only 
need to show its expectation has eigenvalues bounded and bounded away from zero. 
This is true by checking Conditions (A5) and (A6). � □

Proof of Theorem 1  By Lemma 2 and Taylor’s expansion, it is easy to show

if ‖�(−1) − �
(−1)

0
‖ + ‖� − �0‖ + ‖� − �0‖ = Op(rn).

By direct variance calculation

Moreover, by Lemma 3, the singular values of the matrix

are bounded and bounded away from zero with probability approaching one.
Combining the above results of (21) and (22) together with Lemma 2, if choos-

ing L sufficiently large enough for ‖�(−1) − �
(−1)

0
‖ + ‖� − �0‖ + ‖� − �0‖ = Lrn , we 

have

Thus we can conclude that ‖�̂ − �0‖ + ‖�̂ − �0‖ = Op(rn) . � □

Proof of Theorem 2  Denote T = (T1,… ,Tn)
T , D = diag(C0

1
,… ,C0

n
) and define the 

“projection matrix" P = T(TTDT)−1TTD , where Ti = Wi(Xi
T�0) . Let 

X∗
i
= JTXidiag{Ẇi

T(Xi
T�0)�0} , X

∗ = (X∗
1
,… ,X∗

n
)T and X̃

∗
= (I − P)X∗ . Then we 

can write X̃
∗

i
= X∗

i
− ATi where A = X∗TDT(TTDT)−1 . Let Ã =

(
I A

0 I

)
 . By the 

Lemma 2 and the proof shown in Theorem 1, we have

(21)

∑n
i=1

(

JTXidiag{Ẇi
T(Xi

T�0)�0}
Wi(Xi

T�0)

)

�̇m(�,�, �, yi)

=
∑n

i=1

(

JTXidiag{Ẇi
T(Xi

T�0)�0}
Wi(Xi

T�0)

)

�̇m(g(Xi
T�0), �0, yi)

−
∑n

i=1

(

JTXidiag{Ẇi
T(Xi

T�0)�0}
Wi(Xi

T�0)

)

C0
i

(

JTXidiag{Ẇi
T(Xi

T�0)�0}
Wi(Xi

T�0)

)

T

(

�(−1) − � (−1)

� − �0

)

+ op(
√

n) + Op(nrn)

(22)
n�
i=1

�
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

�
�̇m(g(Xi

T�0), �0, yi) = Op(
√
nK).

1

n

n∑
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(
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

)
C0

i

(
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

)
T

P

������
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i=1

�
JTXidiag{Ẇi

T(Xi
T�)�}

Wi(Xi
T�)

�
�̇m(�,�, �, yi)

�����
>
�����
∑n

i=1

�
JTXidiag{Ẇi

T(Xi
T�0)�0}

Wi(Xi
T�0)

�
�̇m(�0,�0, �0, yi)

�����

�
→ 1.
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where Ri = Wi
T(Xi

T�)� − g(Xi
T�0).

By parameter transformation, we can write � − �0 + AT(�(−1) − �
(−1)

0
) as � − �0 . 

Further denote

and the first p1 + p2 − 2 and the last K1 + K2 equations of U(�,�) as U1(�,�) and 
U2(�,�) , respectively. Let

It is easy to see that

and by the central limit theorem, we have

In the following, we only need to show ‖�̂(−1)
− �̃

(−1)

0
‖ = op(1∕

√
n).

For any � satisfying ‖�(−1) − �
(−1)

0
‖ = 𝜀∕

√
n,∀𝜀 > 0 , similar to the proof of 

Lemma A.6 in Zhao et al. (2017), we can show that

which lead to

sup
‖�(−1)−�

(−1)

0
‖+‖�−�0‖+‖�−�0‖≤Crn

�����
�A

n�
i=1

�
�X
∗

i

Ti

�
�̇m(�,�, �, yi)

−�A

n�
i=1

�
�X
∗

i

Ti

�
�̇m(g(Xi

T�0), �0, yi)

+ �A
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�
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∗

i

Ti

�
C0

i

�
(�X

∗

i
T,Ti

T)

�
�(−1) − �

(−1)

0

� − �0 + AT(�(−1) − �
(−1)

0
)

�
+ Ri

������
= op(

√
n),

U(�,�) ≜ �A

n∑
i=1

(
�X
∗

i

Ti

)
�̇m(g(Xi

T�0), �0, yi)

−

n∑
i=1

(
�X
∗

i

Ti

)
C0

i

[
(�X

∗

i
T,Ti

T)

(
�(−1) − �

(−1)

0

� − �0

)
+ Ri

]
,

��
(−1)

= �
(−1)

0
+

(
n∑
i=1

�X
∗

i
C0

i
�X
∗

i
T

)−1 n∑
i=1

�X
∗

i
�̇m(g(Xi

T�0), �0, yi).

‖‖‖‖‖
1

n

n∑
i=1

X̃
∗

i
C0

i
X̃

∗

i
T −�
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n(�̃
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− �
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0
)

d
⟶N(0,�−1

1
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‖
n�
i=1

X̃
∗

i
C0

i
Ri‖ = op(

√
n) and ‖

n�
i=1

TiC
0
i
Ri‖ = op(n),

‖U2(�, �̂) − U2(�̃, �̂)‖ = op(
√
n).
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Furthermore, note that

and U1(�,�) is a linear function of � up to a op(
√
n) term. Consequently,

As a result, we have

since the eigenvalues of ÃÃT are bounded and bounded away from zero with prob-
ability approaching 1. Then we can conclude that ‖�̂(−1)

− �̃
(−1)

0
‖ = op(1∕

√
n) holds. 

� □
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