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Abstract
Pearson’s chi-squared statistic is one of the most common statistical tools used to 
assess the association between two or more categorical variables that have been 
cross-classified to form a contingency table. In many practical settings, multiple cat-
egorical variables are “paired-off” and analysed by identifying association structures 
between two variables only. However, there are less well-known tools that allow 
the analyst to explore the association structure of categorical variables that form a 
multi-way contingency table. This paper presents an ANOVA-like decomposition of 
the chi-squared statistic for four-way and five-way contingency tables and can be 
extended for the analysis of higher-way contingency tables. Furthermore, we pro-
pose an efficient algorithm for partitioning the statistic that leads to two-way and 
higher-way terms. The proposed algorithm reduces the complexity involved in the 
calculation of the terms of the partition and will be demonstrated by way of a simu-
lation and practical example.
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1  Introduction

There has been a great deal of attention given to the analysis of big data in the last 
few years (Tsai et al. 2015; Luo et al. 2016). For many areas of research—especially 
marketing, social, political, business and medical studies—much of their data is col-
lected from surveys and questionnaires that comprise of questions whose responses 
are categorical. Understanding the association between multiple categorical vari-
ables in such cases is a big challenge for data scientists (Loughin and Scherer 1998). 
Central to studying these associations is Pearson’s chi-squared statistic and tests 
of independence; both of which are appropriate for the analysis of symmetrically 
associated variables where all variables are treated as explanatory variables. For the 
study of three categorical variables (Kroonenberg 1989; Carlier and Kroonenberg 
1996) presented a decomposition of Pearson’s chi-squared statistic using Lancas-
ter’s (1951) additive decomposition. The advantage of this decomposition is that 
each term reflects a specific source of association which can be tested for statistical 
significance.

Beh and Davy (1998) presented the partition of Pearson’s chi-squared statistic 
using orthogonal polynomials for three-way contingency tables where all three vari-
ables consist of completely ordered categories. Their partition isolates location (or 
linear), dispersion (quadratic) and higher order components for each variable and 
determines the three-way association and each combination of two-way associations 
for the three variables. The case when only one or two variables are ordered is stud-
ied in Beh and Davy (1999).

While Pearson’s statistic considers a symmetric association structure between 
categorical variables, one may also examine the partition of a measure of asymmet-
ric association; where, for a two-way contingency table, one variable is treated as a 
predictor variable and the second is considered a response variable. In such cases, 
the Goodman–Kruskal tau index (Goodman and Kruskal 1954) may be used as an 
alternative to Pearson’s statistic. For ordinal two-way tables, D’Ambra et al. (2005) 
partitioned the Goodman–Kruskal tau index into components that reflect sources 
of association in terms of the location, dispersion and higher order moments for 
each variable. Three-way analogues of the Goodman–Kruskal tau index include the 
Gray–Williams statistic (Gray and Williams 1975), the delta index (Lombardo 1994, 
2011) and Marcotorchino’s index (Marcotorchino 1984). Lombardo et  al. (1996) 
presented the partition of Marcotorchino’s index that is an asymmetric analogue of 
Beh and Davy’s (1998, 1999) partition of Pearson’s chi-squared statistic and Lom-
bardo (2011) presented a similar partition for the delta index.

Loisel and Takane (2016) clarified the expositions proposed by Lancaster 
(1951) on an ANOVA-like partition of Pearson’s statistic proposed under various 
representative hypotheses about the expected frequencies and further extended it 
to more general situations. The approach of Loisel and Takane (2016) involves 
transforming the diagonal matrix of hypothesized joint probabilities of the cells 
and the vector of observed joint probabilities from two-way/multi-way tables into 
a vector such that its inner product is equivalent to Pearson’s chi-squared statis-
tic for that table. Thus, the method of partitioning the chi-squared statistic used 
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by Loisel and Takane (2016) involves the transformation, vectorisation and con-
struction of fully orthogonal matrices of appropriate dimension for each factor/
association term and the use of Kronecker products. The idea of the partition is 
based on expressing the chi-squared statistic as a quadratic form in idempotent 
matrix. This method is applicable to multi-way contingency tables but involves 
matrices of sizes almost as large as all possible combinations of categories of all 
variables in the multi-way table. They also compare the partition of Pearson’s 
statistic with analogous decompositions of the log likelihood ratio statistic asso-
ciated with log-linear analysis of a contingency table. Lombardo et  al. (2020) 
developed a general framework for ANOVA-like decompositions of Pearson’s 
statistic under the independence assumption. It also accommodates the cases of 
specification of theoretically driven probabilities as well as the cases in which 
the marginal probabilities are fixed or estimated from the data. Lombardo et al. 
(2021) used orthogonal polynomials and/or the singular vectors to partition the 
three-way symmetric and asymmetric measures of association and demonstrate 
this partition with examples.

Lombardo et  al. (2017) provided the chi2 × 3way package in R for partitioning 
three-way chi-squared statistic and Marcotorchino index, under two scenarios based 
on Kronecker product. Lombardo and Beh (2021) developed the CAvariants pack-
age in R which provides six variants of two-way correspondence analysis (CA). 
Lombardo et  al. (2022) developed the CA3variants package in R which performs 
four variants of three-way CA. Both the chi2 × 3way and CA3variants R-packages 
can only be used on three-way tables. This motivated us to develop an algorithm that 
will theoretically deal with the partitions for multi-way tables and easily implement 
in software.

The main aim of the present paper is to develop an algorithm that simpli-
fies the calculation of the terms from the partition of Pearson’s chi-squared statis-
tic for multi-way contingency tables. Furthermore, the implementation of the new 
algorithm for partitions involving software that use tensors makes it more efficient 
than the existing ones. A Matlab function ‘catanova()’ is developed which gives an 
ANOVA-like partition for a multi-way contingency table. Such partitions quantify 
two-way, three-way and higher-way terms of association of a multi-way contingency 
table where all the terms can be formally tested for statistical significance through 
this function. Thus, the generalisation of what the chi2 × 3way package does for 
three-way tables is incorporated into the algorithm described in this paper.

This paper is organised as follows. Section  2 briefly describes the partition of 
Pearson’s chi-squared statistic by Carlier and Kroonenberg (1996) for three-way 
contingency tables. In Sect. 3, we extend their partition to four-way, five-way and 
multi-way contingency tables. Section 4 proposes a fast and efficient method of par-
titioning Pearson’s statistic yielding association terms for multi-way contingency 
tables. Section 5 provides an overview of tensors and utilizes them for the develop-
ment of the proposed algorithm. Section 6 demonstrates the speed and applicabil-
ity of this algorithm through a practical and simulation study; the practical demon-
stration of the algorithm is undertaken by considering contingency tables that have 
been commonly analysed in the literature. We provide some concluding remarks in 
Sect. 7.
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2 � Partition of Pearson’s Chi‑Squared Statistic for a Three‑way 
Contingency Table

Carlier and Kroonenberg (1996) presented a decomposition of Pearson’s chi-
squared statistic for a three-way contingency table using Lancaster’s (1951) addi-
tive decomposition. Before we discuss the new algorithm (in Sect.  4), we first 
provide an overview of the partition of Pearson’s chi-squared statistic for a three-
way contingency table.

Let n individuals be classified by three categorical variables A1,A2 and A3 
with j1, j2 and j3 number of categories respectively. Let N =

(
ni1i2i3

)
 be the cor-

responding three-way contingency table where ni1i2i3 is the number of indi-
viduals classified into ith

k
 category of the kth variable, for ik = 1, 2,… , jk, 

and k = 1, 2, 3. The matrix of joint proportions is P =
1

n
N =

(
pi1i2i3

)
 so that 

0 ≤ pi1i2i3 < 1,∀(i1, i2, i3) and 
∑

i1,i2,i3
pi1i2i3 = 1 . The marginal proportion of vari-

able A1 is pi1.. =
∑

i2,i3
pi1i2i3 , i1 = 1, 2,… , j1 . Define an inner product of two three-

way arrays A = (ai1i2i3 ) and B = (bi1i2i3 ) , ℝ
j1×j2×j3 , as

By doing so, A and B are orthogonal if < A,B >= 0.
The total inertia of the contingency table, which is also referred as its Pear-

son’s mean squared contingency coefficient or, alternatively, phi-squared statistic, 
Φ2 , is based on the deviation of the observed joint proportions from the three-way 
independence model, and is defined as

We shall refer to Φ2 as simply the total inertia of the contingency table. Such 
terminology is especially common in CA (Greenacre 1984; Beh and Lombardo 
2014) and quantifies the symmetric association between categorical variables and 
is independent of the sample size. The total inertia, Φ2 , can be expressed as the 
weighted norm of the j1 × j2 × j3 array � whose 

(
i1, i2, i3

)th cell value is 
�i1i2i3 =

pi1 i2 i3

pi1..
p.i2.

p..i3

− 1 and is a measure of departure from complete independence 

of that cell such that

Thus, Φ2 is the weighted sum-of-squares of the deviations of the observed relative 
frequencies from their expected value under complete independence, where the weights 
are given by the product of the marginal proportions, pi1..p.i2.p..i3 . Consider the following 

⟨A,B⟩ = �
i1,i2,i3

pi1..p.i2.p..i3ai1i2i3bi1i2i3 .

Φ2 =
∑
i1,i2,i3

(
pi1i2i3 − pi1..p.i2.p..i3

)2
pi1..p.i2.p..i3

.

Φ2 =
∑
i1,i2,i3

pi1..p.i2.p..i3

(
pi1i2i3

pi1..p.i2.p..i3

− 1

)2

= �
2
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three-way arrays and their corresponding elements that are weighted sums of the mar-
ginal proportions:

where �... =
∑

i1,i2,i3
pi1..p.i2.p..i3�i1i2i3 , �i1.. =

∑
i2,i3

p.i2.p..i3�i1i2i3 , �i1i2. =
∑

i3
p..i3�i1i2i3 

and so on.
Observe that � is the summation of these eight arrays where all the arrays are 

orthogonal to each other with respect to the previously defined inner product on 
ℝ

j1×j2×j3 . Furthermore, since, �i1..
= �.i2.

= �..i3
= O,

In terms of relative frequencies, the components are,

where �pi1i2i3 = pi1i2.p..i3 + pi1.i3p.i2. + p.i2i3pi1.. − 2pi1..p.i2.p..i3.
The orthogonality of the arrays leads to an additive partition of the squared norm 

of � as,

Carlier and Kroonenberg (1996) expressed the above partition in terms of the 
inertia of each pair of categorical variables, and all three variables, so that

Note that this partition involves only the marginal (univariate) proportions of the 
three-variables A1,A2 and A3 and the joint proportions of each pair of variables. Thus, 
the orthogonal decomposition of Pearson’s chi-squared statistic �2

Total
= nΦ2 for N is,

Here �2

A1A2

 is Pearson’s chi-squared statistic of the two-way contingency table formed 
from the cross-classification of variables A1 and A2 and is a measure of deviation from 
complete independence of the observed cell frequencies. Similarly, �2

A1A3

 and �2

A2A3

 are 

�… =
(
�…

)
, � i1..

=
(
�i1.. − �…

)
,

� .i2.
=
(
�.i2. − �…

)
, � ..i3

=
(
�..i3 − �…

)
,

� i1i2.
=
(
�i1i2. − �i1..−�.i2. + �…

)
,� .i2i3

=
(
�.i2i3 − �.i2. − �..i3 + �...

)
,

� i1.i3
=
(
�i1.i3 − �i1..−�..i3 + �…

)
,

�
� i1i2i3

=
(
�i1i2i3 − �i1i2. − �i1.i3 − �.i2i3 + �i1.. + �.i2. + �..i3 − �...

)

� = � i1i2.
+� i1.i3

+� .i2i3
+

�
� i1i2i3

(

pi1i2i3 − pi1..p.i2.p..i3
pi1..p.i2.p..i3

)

=
pi1i2. − pi1..p.i2.

pi1..p.i2.
+

pi1.i3 − pi1..p..i3
pi1..p..i3

+
p.i2i3 − p.i2.p..i3

p.i2.p..i3
+

pi1i2i3 − �pi1i2i3
pi1..p.i2.p..i3

,

(1)∥ � ∥2=∥ �
i
1
i
2
.
∥2 + ∥ �

i
1
.i
3
∥2 + ∥ �

.i
2
i
3
∥2 + ∥

�
�

i
1
i
2
i
3
∥2 .

Φ2 =
∑
i1,i2

pi1..p.i2.

(
pi1i2. − pi1..p.i2.

pi1..p.i2.

)2

+
∑
i1,i3

pi1..p..i3

(
pi1.i3 − pi1..p..i3

pi1..p..i3

)2

+
∑
i2,i3

p.i2.p..i3

(
p.i2i3 − p.i2.p..i3

p.i2.p..i3

)2

+
∑
i1,i2,i3

pi1..p.i2.p..i3

(
pi1i2i3 − �pi1i2i3

pi1..p.i2.p..i3

)2

.

�2

Total
= �2

A1A2

+ �2

A1A3

+ �2

A2A3

+ �2

A1A2A3
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the two-variable chi-squared statistics of the tables formed by cross-classifying A1 and 
A3 , and  A2 and A3 , respectively. The term �2

A1A2A3

 is the Pearson’s chi-squared statistic 
that assesses the association between all three variables. Furthermore, the terms 
�2

A1A2

,�2

A1A3

,�2

A2A3

,�2

A1A2A3

 are asymptotically chi-squared with (
j1 − 1

)(
j2 − 1

)
,
(
j1 − 1

)(
j3 − 1

)
, (j2 − 1)(j3 − 1) and (j1 − 1)(j2 − 1)(j3 − 1) degrees 

of freedom respectively. Furthermore, Carlier & Kroonenberg (1996) proposed the 
quantification of the global measure of dependence into four measures of dependence: 
the three measures for each pair-wise dependence and one measure for the three-way 
interaction. The following section provides a description of the ANOVA-like partition of 
Pearson’s chi-squared statistic for multi-way tables.

3 � Partitioning Pearson’s Chi‑Squared Statistic for a Multi‑way Table

In this section, we provide an overview of the standard approach commonly used to par-
tition Pearson’s chi-squared statistic. We do so by extending the additive decomposition 
given by Lancaster (1951) and used by Carlier and Kroonenberg (1996) to four-way 
and five-way tables; we note that these authors confined their attention to the analysis of 
a three-way contingency table. We also discuss the challenges involved in the partition 
of Pearson’s chi-squared statistic for multiple (more than five) categorical variables.

3.1 � Partition for a Four‑Way Contingency Table

Let n individuals be cross classified according to four categorical variables, A1,A2,A3 
and A4 . Let jk be the number of categories of the kth variable, for k = 1, 2, 3, 4 and the 
joint frequencies be summarized into a four-way contingency table N = (ni1i2i3i4 ) that 
is of dimension j1 × j2 × j3 × j4. Let P =

(
pi1i2i3i4

)
 be the table of relative proportions 

such that P =
1

n
N . The total inertia Φ2 is based on the deviation of the observations 

from what is expected under complete (four-way) independence such that,

This statistic can be expressed as the weight squared norm of � in ℝj1×j2×j3×j4 where 
�i1i2i3i4 =

pi1 i2 i3 i4

pi1...
p.i2..

p..i3.
p…i4

− 1 and ‖�‖2 = ∑
i1,i2,i3,i4

pi1...p.i2..p..i3.p…i4

�
�i1i2i3i4

�2 ; this is 

apparent since this case is a four-way extension of the three-way partition described in 
Sect. 2. In this case, � can be expressed as the addition of eleven orthogonal arrays that 
consist of 4C2 = 6 two-way, 4C3 = 4 three-way and 4C1 = 1 four-way association terms. 
That is

Φ2 =
∑

i1,i2,i3,i4

(
pi1i2i3i4 − pi1...p.i2..p..i3.p…i4

)2
pi1...p.i2..p..i3.p…i4

.

� =�
i1i2..

+�
i1.i3.

+�
i1..i4

+� .i2i3.
+� .i2.i4

+� ..i3i4

+
�
�

i1i2i3
. +

�
�

i1i2.i4
+

�
� .i2i3i4

+
�
�

i1.i3i4
+

�
�

i1i2i3i4
,
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where

Thus, the additive partition of the squared norm of the four-way array � can be 
expressed as

This partition can be alternatively, but equivalently, expressed in terms of the 
table’s inertia such that,

πi
1
i
2
..
=
pi

1
i
2
..
− pi

1
…p

.i
2
..

pi
1
…p

.i
2
..

, πi
1
.i
3
.
=

pi
1
.i
3
.
− pi

1
…p

..i
3
.

pi
1
…p

..i
3
.

, πi
1
..i

4
=

pi
1
..i

4
− pi

1
…p

...i
4

pi
1
…p

...i
4

,

π
.i
2
i
3
.
=
p
.i
2
i
3
.
− p

.i
2
..
p
..i

3
.

p
.i
2
..
p
..i

3
.

, π
.i
2
.i
4
=

p
.i
2
.i
4
− p

.i
2
..
p
...i

4

p
.i
2
..
p
...i

4

, π
..i

3
i
4
=

p
..i

3
i
4
− p

..i
3
.
p
...i

4

p
..i

3
.
p
...i

4

,

��i
1
i
2
i
3
.
=
pi

1
i
2
i
3
.
−

�
pi

1
i
2
i
3
.

pi
1
…p

.i
2
..
p
..i

3
.

, ��i
1
i
2
.i
4
=

pi
1
i
2
.i
4
− �pi

1
i
2
.i
4

pi
1
…p

.i
2
..
p
...i

4

, ��.i
2
i
3
i
4
=

p
.i
2
i
3
i
4
− �p.i

2
i
3
i
4

p
.i
2
..
p
..i

3
.
p
...i

4

,

��i
1
.i
3
i
4
=
pi

1
.i
3
i
4
−

�
pi

1
.i
3
i
4

pi
1
…p

..i
3
.
p
...i

4

, ��i
1
i
2
i
3
i
4
=

pi
1
i
2
i
3
i
4
− �pi

1
i
2
i
3
i
4

pi
1
…p

.i
2
..
p
..i

3
.
p
...i

4

,

�pi
1
i
2
i
3
.
= pi

1
i
2
..
p
..i

3
.
+ pi

1
.i
3
.
p
.i
2
..
+ p

.i
2
i
3
.
pi

1
...
− 2pi

1
...
p
.i
2
..
p
..i

3
.
,

�pi
1
i
2
.i
4
= pi

1
i
2
..
p…i

4
+ pi

1
..i

4
p
.i
2
..
+ p

.i
2
.i
4
pi

1
… − 2pi

1
…p

.i
2
..
p…i

4
,

�p.i
2
i
3
i
4
= p

.i
2
i
3
.
p
...i

4
+ p

.i
2
.i
4
p
..i

3
.
+ p

..i
3
i
4
p
.i
2
..
− 2p

.i
2
..
p
..i

3
.
p
...i

4
,

�pi
1
.i
3
i
4
= pi

1
.i
3
.
p
...i

4
+ pi

1
..i

4
p
..i

3
.
+ p

..i
3
i
4
pi

1
...
− 2pi

1
...
p
..i

3
.
p
...i

4
,

(2)
�pi1i2i3i4 = pi1i2..p..i3.p…i4

+ pi1.i3.p.i2..p…i4
+ pi1..i4p.i2..p..i3. + p.i2i3.pi1…p…i4

+ p.i2.i4pi1…p..i3. + p..i3i4pi1…p.i2.. + pi1i2i3.p…i4
+ pi1i2.i4p..i3. + p.i2i3i4pi1…

+ pi1.i3i4p.i2.. + 9pi1…p.i2..p..i3.p…i4

∥ � ∥2 =∥ �
i
1
i
2
..
∥2 +∥ �

i
1
.i
3
.
∥2 +∥ �

i
1
..i

4
∥2 +∥ �

.i
2
i
3
.
∥2 +∥ �

.i
2
.i
4
∥2 +

∥ �
..i

3
i
4
∥2 + ∥

�
�

i
1
i
2
i
3
. ∥2 + ∥

�
�

i
1
i
2
.i
4
∥2 + ∥

�
�

.i
2
i
3
i
4
∥2 + ∥

�
�

i
1
.i
3
i
4
∥2 + ∥

�
�

i
1
i
2
i
3
i
4
∥2

Φ2 =
∑
i1,i2

pi1...p.i2..

(
pi1i2.. − pi1...p.i2..

pi1...p.i2..

)2

+
∑
i1,i3

pi1...p..i3.

(
pi1.i3. − pi1...p..i3.

pi1...p..i3.

)2

+
∑
i2,i3

p.i2..p..i3.

(
p.i2i3. − p.i2..p..i3.

p.i2..p..i3.

)2

+
∑
i1,i2,i3

pi1...p.i2..p..i3.

(
pi1i2i3. − �

pi1i2i3.

pi1...p.i2..p..i3.

)2

+
∑
i1,i2,i4

pi1...p.i2..p…i4

(
pi1i2.i4 − �

pi1i2.i4

pi1...p.i2..p…i4

)2

+
∑
i2,i3,i4

p.i2..p..i3.p…i4

(
p.i2i3i4 − �

p.i2i3i4

p.i2..p..i3.p…i4

)2

+
∑
i1,i3,i4

pi1...p..i3.p…i4

(
pi1.i3i4 − �

pi1.i3i4

pi1...p..i3.p…i4

)2

+
∑

i1,i2,i3,i4

pi1...p.i2..p..i3.p…i4

(
pi1i2i3i4 − �

pi1i2i3i4

pi1…p.i2..p..i3.p…i4

)2

.
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Thus, the orthogonal partition of �2

Total
= nΦ2 for the four-way contingency table 

N is

In general, the �2

Ai1
Ai2

…Aij

 (j ≥ 2) term of the chi-squared partition quantifies the 
association between Ai1

 , Ai2
 , … and Aij

 with 
(
i1 − 1

)(
i2 − 1

)
…(ij − 1) degrees of 

freedom and can be used to test the statistical significance of the association between 
these variables. �2

Ai1
Ai2

…Aij

 is the aggregate of deviation of Ai1
 , Ai2

 , … and Aij
 from 

what is expected under complete independence. In fact, this association term 
involves information about the overall association in terms of the linear, quadratic 
and higher order components for each of the variables Ai1

 , Ai2
 , … and Aij

 when these 
variables have ordered categories. Beh and Davy (1999) shows that the terms from 
the partition of the chi-squared statistic with df larger than 1 can be further parti-
tioned into linear, quadratic and higher order components using orthogonal polyno-
mials. While Beh and Davy (1999) describe the link between this chi-squared parti-
tion and the ordinal log-linear model for multi-way tables, the ui1i2…ij

 term in such a 
model for a multi-way table reflects the linear × linear ×⋯ × linear association 
term between the ordered categorical variables Ai1

 , Ai2
 , … and Aij

 and it can be 
obtained by further partitioning �2

Ai1
Ai2

…Aij

 using orthogonal polynomials.

3.2 � Partition for a Five‑Way Contingency Table

Consider a five-way contingency table formed by cross-classifying the five cat-
egorical variables, A1,A2,A3,A4 and A5 . By following the same process described 
in Sect. 3.1, Pearson’s chi-squared statistic for such a table can be partitioned in 26 
terms as follows:

Each term of this partition can be used to test the statistical significance of the 
association between each pair, triplet and quartet of variables as well as all five 
ordinal variables. Observe that, of these 26 terms, 5C2 = 10 terms correspond to 
two-way association, 5C3 = 10 terms correspond to three-way association, 5C4 = 5 
terms correspond to the four-way association structures and one ( 5C5 ) term reflects 
the association between all five variables. The formulae for each of these terms are 

(3)
�2

Total
=�2

A1A2

+ �2

A1A3

+ �2

A1A4

+ �2

A2A3

+ �2

A2A4

+ �2

A3A4

+ �2

A1A2A3

+ �2

A1A2A4

+ �2

A2A3A4

+ �2

A1A3A4

+ �2

A1A2A3A4

(4)

�2

Total
=�2

A1A2

+ �2

A1A3

+ �2

A1A4

+ �2

A1A5

+ �2

A2A3

+ �2

A2A4

+ �2

A2A5

+ �2

A3A4

+ �2

A3A5

+ �2

A4A5

+ �2

A1A2A3

+ �2

A1A2A4

+ �2

A1A2A5

+ �2

A1A3A4

+ �2

A1A3A5

+ �2

A1A4A5

+ �2

A2A3A4

+ �2

A2A3A5

+ �2

A2A4A5

+ �2

A3A4A5

+ �2

A1A2A3A4

+ �2

A1A2A3A5

+ �2

A1A2A4A5

+ �2

A1A3A4A5

+ �2

A2A3A4A5

+ �2

A1A2A3A4A5

.
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given in the Appendix with a purpose of showing the complexity involved in the 
higher order terms.

The number of terms, and their calculation, dramatically increases as the number 
of variables cross-classified to form a contingency table increases; for k(> 2) cat-
egorical variables, the partition of Pearson’s chi-squared statistic will consist of

terms. Therefore, for a six-way contingency table, the partition of its chi-squared 
statistic will consist of 26 − (6 + 1) = 57 terms. In the next section, we present the 
general steps required to obtain the terms of the partition of the chi-squared statistic 
for a multi-way contingency table consisting of multiple (more than five) variables.

3.3 � Partition for a Multi‑way Contingency Table

Consider a sample of n individuals that is cross-classified according k categori-
cal variables, A1 , A2 , … and Ak where the rth variable consists of jr categories, for 
r = 1, 2,… , k . Consider the following notations:

•	 S = {1, 2,… , k}

•	 i
k
= (i1i2 … ik) , where i1, i2,… , ik ∈ S , is referred to as a k-tuple.

•	 Sr =
{
i
r
= i1i2 … ir

||i1 < i2 < …< ir , ir ∈ S
}
 is a set of strictly increasing r

-tuples r = 2, 3,…,k ( Sr contains kCr tuples).
•	 Ai

r
= Ai1

Ai2
…Air

 is referred to as an r-variable association term, i
r
∈ Sr.

•	 ni
k
 defines the number of individuals corresponding to ith

k
 category of variables 

{
Ai1

,Ai2
,… ,Aik

}
.

•	 pik =
nik
n

 denotes the relative frequency of the ith
k

 category of the set of variables 
{
Ai1

,Ai2
,… ,Aik

}

•	 pr
ir
=
∑

is∶s∈S−{r}
pi is the observed marginal relative frequency of the ith

r
 category 

of Ar , for ir = 1, 2,… , jr , and r = 1, 2,… , k.
•	 pr1r2ir1 ir2

=
∑

is:s∈S−{r1,r2}pik  is the observed joint relative frequency of the two variables 
Ar1

 and Ar2
 for ir1 = 1, 2,… , jr1 and ir2 = 1, 2,… , jr2 . (This notation can be 

extended to represent observed joint relative frequency of more than two varia-
bles)

Now, the k-way array � = (�i
k
) with �i

k
=

pik
−
∏k

r=1
pr
ir∏k

r=1
pr
ir

  can be partitioned into 

weighted orthogonal components such that

k∑
l=2

(
k

l

)
= 2k − (k + 1)
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where �i
2

= (�i
2

) , 
�
�i

3

= (��i
3

) , …, 
�
�i

k
= (��i

k
) , �ir1 ir2 =

(
p
r1r2
ir1

ir2
−p

r1
ir1

p
r2
ir2

p
r1
ir1

p
r2
ir2

)
 , for 

(ir1 ir2) ∈ S2 , ��ir1 ir2 ir3 =
(

p
r1r2r3
ir1

ir2
ir3

−�p
r1r2r3
ir1

ir2
ir3

p
r1
ir1

p
r2
ir2

p
r3
ir3

)
 for (ir1 ir2 ir3) ∈ S3 and so on.

In general,

The weighted norm of �i
2

 is the inertia corresponding to the two-way association 
terms of Ai

2

, i
2
∈ S2 while the weighted norm of 

�
�i

3

 is the inertia corresponding to 
three-way association terms of Ai

3

, i
3
∈ S3 . We refer to the above method as the tra-

ditional method. We demonstrate the complexity in this method through the step-
wise algorithm for partitioning the chi-squared statistic for four-way table. This will 
also help to make the notations more familiar.

Let N = (ni1i2i3i4 ) and pi1i2i3i4 = ni1i2i3i4∕n  be a j1 × j2 × j3 × j4 contingency table 
and array of relative frequencies, respectively. Here S = {1, 2, 3, 4} and S2, S3, S4 
represent the set of tuples corresponding to two-way, three-way and four-way asso-
ciation terms respectively:

•	 S2 =
{
i1i2, i1i3, i1i4, i2i3, i2i4, i3i4

}
 corresponds to {

A1A2,A1A3,A1A4,A2A3,A2A4,A3A4

}
•	 S3 =

{
i1i2i3, i1i2i4, i1i3i4, i2i3i4

}
 corresponds to {

A1A2A3,A1A2A4,A1A3A4,A2A3A4

}
•	 S4 =

{
i
4
= i1i2i3i4

}
 corresponds to 

{
A1A2A3A4

}

The marginal relative frequencies for A1,A2,A3 and A4 are,

The marginal relative frequencies for all pairs of variables are,

The marginal relative frequencies for all triplets of variables are

(5)� =
∑
i
2
∈S2

� i
2

+
∑
i
3
∈S3

�
� i

3

+⋯ +
∑

i
k−1

∈Sk−1

�
� i

k−1

+
�
� i

k

��i
j
=

⎛
⎜⎜⎝

p
r
j

i
j

− �p
r
j

i
j∏j

u=1
p
ru
iru

⎞
⎟⎟⎠
, i

j
=
�
ir1 ir2 … irj

�
∈ Sj, j = 3, 4,… , k

p1
i1
= pi1…, i1 = 1, 2,… , j1 p2

i2
= p.i2.., i2 = 1, 2,… , j2

p3
i3
= p..i3., i3 = 1, 2,… , j3 p4

i4
= p…i4

, i4 = 1, 2,… , j4.

p12
i1i2

= pi1i2.., i1 = 1, 2,… , j1, i2 = 1, 2,… , j2,

p13
i1i3

= pi1.i3., i1 = 1, 2,… , j1, i3 = 1, 2,… , j3,

⋯

p34
i3i4

= p..i3i4 , i3 = 1, 2,… , j3, i4 = 1, 2,… , j4,
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The steps to obtain the partition of Pearson’s chi-squared statistic using tradi-
tional method are:

(i)	 Calculate the j1 × j2 × j3 × j4 array � = (�i
4

) where �i
4

=
pi4

p1
i1
p2
i2
p3
i3
p4
i4

− 1.

	 (ii)	 Calculate the 4-way arrays �i
2

 for i
2
∈ S2 as follows:

 

	 (iii)	 Calculate the 4-way arrays 
�
�i

3

 for i
3
∈ S3 as follows:

 

	 (iv)	 Calculate the 4-way array 
�
�i

4

 for i
4
∈ S4 as follows:

p123
i1i2i3

= pi1i2i3., i1 = 1, 2,… , j1, i2 = 1, 2,… , j2, i3 = 1, 2,… , j3,

p124
i1i2i4

= pi1i2.i4 , i1 = 1, 2,… , j1, i2 = 1, 2,… , j2, i4 = 1, 2,… , j4,

⋯

p234
i2i3i4

= p.i2i3i4 , i2 = 1, 2,… , j2, i3 = 1, 2,… , j3, i4 = 1, 2,… , j4,

(
� i1i2

)
i
4

=
p12
i1i2

p1
i1
p2
i2

− 1,
(
� i1i3

)
i
4

=
p13
i1i3

p1
i1
p3
i3

− 1,…

(
� i3i4

)
i
4

=
p34
i3i4

p3
i3
p4
i4

− 1, ir = 1, 2,… , jr, r = 1, 2,… , 4.

(
�
� i1i2i3

)
i
4

=
p123
i1 i2 i3

−
�
p123
i1 i2 i3

p1
i1
p2
i2
p3
i3

,
(
�
� i1i2i4

)
i
4

=
p124
i1 i2 i4

−�p
124

i1 i2 i4

p1
i1
p2
i2
p4
i4

,

⋯(
�
� i2i3i4

)
i
4

=
p234
i2 i3 i4

−
�
p234
i2 i3 i4

p2
i2
p3
i3
p4
i4

, ir = 1, 2,… , jr, r = 1, 2,… , 4.

where �p
123

i1i2i3
=p12

i1i2
p3
i3
+ p13

i1i3
p2
i2
+ p23

i2i3
p1
i1
− 2p1

i1
p2
i2
p3
i3
,

�p
124

i1i2i4
=p12

i1i2
p4
i4
+ p14

i1i4
p2
i2
+ p24

i2i4
p1
i1
− 2p1

i1
p2
i2
p4
i4
,

�p
234

i2i3i4
=p23

i2i3
p4
i4
+ p24

i2i4
p3
i3
+ p34

i3i4
p2
i2
− 2p2

i2
p3
i3
p4
i4
,

�p
134

i1i3i4
=p13

i1i3
p4
i4
+ p14

i1i4
p3
i3
+ p34

i3i4
p1
i1
− 2p1

i1
p3
i3
p4
i4
.
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	(xxii)	 Calculate the chi-squared partition as follows:

 

	�  □
Observe that the term pr1r2r3

ir1
ir2

ir3
 in ��ir1 ir2 ir3 is simply a marginal of relative fre-

quencies while �p
r1r2r3
ir1

ir2
ir3

 is a function of all univariate and bivariate marginals. In 

general, the term �p
r
j

i
r

= �p
r1r2…rj

ir1
ir2

…irj
 in  ��i

j
= ��ir1 ir2…irj

 is based on the sum-of-prod-

ucts of j univariate, jC2 bivariate up to jCj−1 (j − 1)-variate marginal proportions. 
The explicit form of �p

r
j

i
r

 for j ≥ 6 will be far more complex; this is apparent by 
just observing the case where j = 4, 5 . A natural question then arises – if one is 
not able to formulate an expression for �p

r
j

i
r

 for j ≥ 6 then how can one quantify 
the terms and implement the calculation of the partition using software? Another 
issue is the rapidly increasing number of association terms as the number of 

(
�
� i1i2i3i4

)
i
4

=
pi

4

− �p
1234

i1i2i3i4

p1
i1
p2
i2
p3
i3
p4
i4

,

where �p
1234

i1i2i3i4
=p12

i1i2
p3
i3
p4
i4
+ p13

i1i3
p2
i2
p4
i4
+ p14

i1i4
p2
i2
p3
i3
+ p23

i2i3
p1
i1
p4
i4

+ p24
i2i4

p1
i1
p3
i3
+ p34

i3i4
p1
i1
p2
i2
+ p123

i1i2i3
p4
i4
+ p124

i1i2i4
p3
i3

+ p234
i2i3i4

p1
i1
+ p134

i1i3i4
p2
i2
+ 9p1

i1
p2
i2
p3
i3
p4
i4
.

�2

Total
= n‖�‖2 = n

�
i
4

p1
i1
p2
i2
p3
i3
p4
i4
�

2

i
4

,

�2

A1A2

= n
���� i1i2

���
2

= n
�
i
4

p1
i1
p2
i2

�
� i1i2

�2
i
4

,

�2

A1A3

= n
���� i1i3

���
2

= n
�
i
4

p1
i1
p3
i3

�
� i1i3

�2
i
4

,…

�2

A3A4

= n
���� i3i4

���
2

= n
�
i
4

p3
i3
p4
i4

�
� i3i4

�2
i
4

,

�2

A1A2A3

= n
����� i1i2i3

���
2

= n
�
i
4

p1
i1
p2
i2
p3
i3

�
�
�

i1i2i3

�2
i
4

,

⋯

�2

A1A3A4

= n
����� i1i3i4

���
2

= n
�
i
4

p1
i1
p3
i3
p4
i4

�
�
�

i1i3i4

�2
i
4

and �2

A1A2A3A4

= n
����� i1i2i3i4

���
2

= n
�
i
4

p1
i1
p2
i2
p3
i3
p4
i4

�
�
�

i1i2i3i4

�2
i
4

.
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categorical variables increases. The partitioning of Pearson’s chi-squared statistic 
for a multi-way table is theoretically and computationally challenging by the 
method described above. Section 4 will present a new algorithm for dealing with 
this complexity.

4 � A New Algorithm for Partitioning Pearson Chi‑squared Statistic

In this section, we present a new and efficient method of partitioning Pearson’s chi-
squared statistic for multi-way tables which overcomes the theoretical complexities 
and simplifies the computational difficulties described in Sect.  3. The proposed 
method gives all components of the partition without the need to evaluate the terms 
of �p

r
j

i
r

 for j ≥ 3 . We describe this method for a four-way table and demonstrate how 
it can be extended to multi-way tables formed from the cross-classification of at 
least five categorical variables. We present the terms of the partition in the form of 
categorical ANOVA and show that they can be used for testing the significance of 
association.

4.1 � An Algorithm for a Four‑Way Contingency Table

Evaluating the terms of the partition of Pearson’s chi-squared statistic for a four-
way contingency table involves calculating all 3-way and 4-way association terms 
of�pi1i2i3 ., �pi1i2.i4 , �p.i2i3i4 , �pi1.i3i4 , �pi1i2i3i4 . These terms are functions of the marginal 
relative frequencies of all univariate, bivariate and trivariate subsets of categori-
cal variables. The calculation of the relative marginal proportions for a given set of 
variables is a feasible task. However, the calculation of the �p′s is computationally 
intractable nor is there a mathematical link between �pi1i2i3 ., �pi1i2.i4 , �p.i2i3i4 , �pi1.i3i4 
and�pi1i2i3i4 . We now present an algorithm that will provide an easy and fast means of 
calculating these terms, thereby providing a more efficient way of partitioning Pear-
son’s chi-squared statistic.

Calculate the total inertia �2

Total
 for a four-way contingency table as

Calculate the inertia values corresponding to all of the two-way association terms 
�2

A1A2

,�2

A1A3

,�2

A1A4

, �2

A2A3

,�2

A2A4

 and �2

A3A4

 of the partition using

�2

T ,A1A2A3A4

= n
�

i1,i2,i3,i4

�
pi1i2i3i4 −

∏4

j=1
p
j

ij

�2

∏4

j=1
p
j

ij

.

�2

Ar1
Ar2

= n
∑
ir1

,ir2

(
p
r1r2
ir1

ir2
− p

r1
ir1
p
r2
ir2

)2

p
r1
ir1
p
r2
ir2

,
(
r1, r2

)
∈ S2;
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•	 Rather than calculating �pi1i2i3., �pi1i2.i4,�p.i2i3i4 and �pi1.i3i4 when computing  

�2

A1A2A3

,�2

A1A2A4

,�2

A2A3A4

 and �2

A1A3A4

 , calculate the total inertia values �2

T ,A1A2A3

 , 

�2

T ,A2A3A4

 , �2

T ,A1A3A4

 and �2

T ,A1A2A4

 corresponding to all of the three-way association 

terms where �2

T ,A1A2A3

= n
∑

i1,i2,i3

�
pi1 i2 i3.

−p1
i1
p2
i2
p3
i3

�2

p1
i1
p2
i2
p3
i3

 , 

�2

T ,A2A3A4

= n
∑

i2,i3,i4

�
p.i2 i3 i4

−p2
i2
p3
i3
p4
i4

�2

p2
i2
p3
i3
p4
i4

 and so on.

•	 Now calculate the inertia values corresponding to all the three-way association 
terms using

•	 Calculate the total inertia corresponding to the four-way association term as,

This algorithm avoids the complexity in the evaluation of the chi-squared partition. 
We now present the structure of the algorithm for a multi-way contingency table.

4.2 � An Algorithm for a Multi‑way Contingency Table

Suppose we now consider a k-way contingency table formed from the cross-classi-
fication of the categorical variablesA1,A2, ...,Ak . An ANOVA-like partition of the 
chi-squared statistic for such a table is given as follows:

	 (i)	 Calculate Pearson’s chi-squared statistic �2

T
= nΦ2 where Φ2 =

∑
i
k

�
pik

−
∏k

j=1
p
j

ij

�2

∏k

j=1
p
j

ij

.
	 (ii)	 Calculate the chi-squared statistic, �2

Ar1
Ar2

 corresponding to all the kC2 two-way 
contingency tables by considering each pair of variables, such 

that�2

Ar1
Ar2

= n
∑

ir1
,ir2

�
p
r1r2
ir1

ir2
−p

r1
ir1

p
r2
ir2

�2

p
r1
ir1

p
r2
ir2

 , 
(
r1, r2

)
∈ S2.

�2

A1A2A3

=�2

T ,A1A2A3

− �2

A1A2

− �2

A1A3

− �2

A2A3

,

�2

A2A3A4

=�2

T ,A2A3A4

− �2

A2A3

− �2

A2A4

− �2

A3A4

,

�2

A1A3A4

=�2

T ,A1A3A4

− �2

A1A3

− �2

A1A4

− �2

A3A4

,

�2

A1A2A4

=�2

T ,A1A2A4

− �2

A1A2

− �2

A1A4

− �2

A2A4

.

�2

A1A2A3A4

=�2

T ,A1A2A3A4

−
(
�2

A1A2A3

+ �2

A1A2A4

+ �2

A2A3A4

+ �2

A1A3A4

)

−
(
�2

A1A2

+ �2

A1A3

+ �2

A1A4

+ �2

A2A3

+ �2

A2A4

+ �2

A3A4

)
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	 (iii)	 Calculate Pearson’s total chi-squared statistic corresponding to a set of kCr 

variables, 
{
Ai1

,Ai2
,… ,Air

}
 such that �2

T ,Ai1
Ai2

…Air

= n
∑

i
r

�
pir

−
∏r

j=1
p
j

ij

�2

∏r

j=1
p
j

ij

 for 

i
r
∈ Sr, r = 3, 4,… , k − 1.

	 (iv)	 Calculate the contribution of j-way association term Ai1
Ai2

…Aij
 in the parti-

tion of Pearson’s chi-squared statistic is given by,

Thus, to calculate the contribution of any of the association terms from the parti-
tion of Pearson’s chi-squared statistic, we need to calculate all two-way and higher-
way association terms. This task is much simpler than calculating all components of 
� separately through ��i

j
 and �p

r
j

i
j

 for i
j
∈ Sj for j = 3, 4,… , k.

4.3 � Categorical ANOVA for a Multi‑way Table

Consider a k-way contingency table consisting of ordered variables. The partition of 
Pearson’s chi-squared statistic can be presented in the form of categorical ANOVA 
where the statistical significance of each association term can be tested using a chi-
squared test of independence with degrees of freedom dependent on the term under 
consideration. Table 1 gives the general ANOVA table for the analysis of associa-
tion for k categorical variables.

The practical implementation of the proposed algorithm can be further simpli-
fied using matrix-based software packages such as Matlab and Mathematica. Fur-
thermore, the evaluation of the univariate and all multivariate association terms 
can be determined using tensors, which are akin to a multi-dimensional array. 
As we shall see, a n-mode product of a tensor with a matrix can be evaluated to 
obtain the �-arrays and their norms. The tensor product simplifies the implemen-
tation of the partitioning algorithm described earlier in this section. In Sect. 5, we 
shall briefly introduce tensors and tensor products and briefly describe how they 
can be used to obtain the partition of Pearson’s chi-squared statistic for a multi-
way contingency table.

5 � Tensor‑Matrix Product and the Partition for a Multi‑way Table

A tensor decompostion has been widely used in analysis of multi-way data; 
see, for example Kolda and Bader (2009) and the references mentioned therein. 
Lathauwer et  al. (2000) investigated the problem of generalising the singular 
value decomposition (SVD) of matrices to higher-order tensors. They do this by 
defining scalar product of tensors, Frobenius-norm of a tensor and tensor product 

�2

Ai1
Ai2

…Aij

= �2

T ,Ai1
Ai2

…Aij

−

j−1∑
r=2

∑
i
r
∈Sr

�2

Ai1
Ai2

…Air

, j = 3, 4,… , k − 1.
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with a matrix. The n-mode product of N-way tensor with a matrix is defined as 
follows.

Definition.  The n-mode product of tensor A = (ai1i2…in…iN
) ∈ ℂ

I1×I2×⋯×In×⋯×IN (i.e. 

a tensor of dimension I1 × I2 ×⋯ × In ×⋯ × IN ) by a matrix B = (bjin) ∈ ℂ
J×In 

is denoted by A×nB , and is an I1 ×⋯ × In−1 × J × In+1 ×⋯ × IN-tensor 

C = (ci1i2…in−1jin+1…iN
)  such that

This n-mode product has two interesting properties that are pertinent to the devel-
opment of our algorithm:

(a) Given a tensor A ∈ ℝ
I1×I2×⋯×IN and the matrices B ∈ ℝ

Jn×In and C ∈ ℝ
Jm×Im

,(n ≠ m)

(b) Given a tensor A ∈ ℝ
I1×I2×⋯×IN and matrices B ∈ ℝ

Jn×In and C ∈ ℝ
Kn×Jn,

We discuss the tensor, the n-mode product of a tensor with a matrix and demon-
strate how they can be used to evaluate all of the association terms of the partition of 
Pearson’s chi-squared statistic through � and �i

j
 , i

j
∈ Sj, j = 2, 3,… , k − 1 . The 

ci1i2…in−1jin+1…iN
=

In∑
in=1

ai1i2…in…iN
bjin .

(
A ×n B

)
×m C =

(
A ×m C

)
×n B = A ×n B ×m C.

(
A×nB

)
×nC = A×n(CB)

Table 1   Categorical ANOVA for k variables

Order of association Association term �2 value Degrees of freedom

Two-way A
1
A
2

A
1
A
3

⋮

A
1
Ak

A
2
A
3

⋮

A
2
Ak

⋮

Ak−1Ak

�2

A
1
A
2

�2

A
1
A
3

⋮

�2

A
1
Ak

�2

A
2
A
3

⋮

�2

A
2
Ak

⋮

�2

Ak−1Ak

(
j
1
− 1

)(
j
2
− 1

)
(j
1
− 1)(j

3
− 1)

⋮(
j
1
− 1

)(
jk − 1

)
(
j
2
− 1

)(
j
3
− 1

)
⋮(
j
2
− 1

)(
jk − 1

)
⋮(
jk−1 − 1

)(
jk − 1

)

Three-way A
1
A
2
A
3

⋮

Ak−2Ak−1Ak

�2

A
1
A
2
A
3

⋮

�2

Ak−2Ak−1Ak

∏3

k=1

�
jr − 1

�
⋮∏k

r=k−2
(jr − 1)

⋮ ⋮ ⋮

k-way A
1
A
2
…Ak �2

A
1
A
2
…Ak

∏k

r=1

�
jr − 1

�
Total �2

T

∏k

r=1
jr −

∑k

r=1

�
jr − 1

�
− 1
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(unweighted) norm of A is 
‖‖ =

(

∑

i1,i2,…,ik
a2i1 i2…in…ik

)1∕2 while, for a j1 × j2 ×⋯ × jk 
tensor A , we define its weighted norm as

where  p1
i1
, p2

i2
,… , pk

ik
 are the expected values of the joint cell proportions under 

independence between the variables Ai1
,Ai2

,… ,Aik
.

For k ordered categorical variables, N , P and P̂ =
(

∏k
j=1 p

j
ij

) can all be expressed as 
a j1 × j2 ×⋯ × jk dimensional tensor while Dr = diag(pr

1
, pr

2
,… , pr

jr
) is a jr × jr 

diagonal matrix for the rth variable Ar.
To obtain an additive partition of Pearson’s chi-squared statistic, we provide a 

simple method to obtain � and �i
_j

 , for i
j
∈ Sj, j = 2, 3,… , k − 1 when they can be 

considered as tensors. The weighted norm of each �i
_j

 gives the total inertia corre-

sponding to the association Ai
j
 which can be further used to obtain inertia corre-

sponding to the association between the variables Ai1
,Ai2

,… ,Aij
 . The algorithm can 

be expressed in the form of tensors, and its properties, as follows:
i) Calculate � =

(
P − P̂

)
×1D

−1
1
×2D

−1
2
×3 …×kD

−1
k

 . Then the total inertia of the 
contingency table can be expressed as the weighted norm.

ii) At this step we determine the two-way, three-way, ..., (j − 1)-way association 
terms from the partition. Therefore, set j = k − 1 . Then a set Sj consists of  kCj tuples 
andAi1

Ai2
…Aij

 , i
j
∈ Sj is the corresponding association term. 

LetSk − Sj =
{

i1′, i2′,… , ik−j′
|

|

|

i′ ∈ SkbutnotinSj} . For each of thei
j
∈ Sj , determine the j-dimen-

sional tensor Ni
j
= N×i�∈Sk−Sj

E1ji�
 (tensor of cell frequencies), Pi

j
 (tensor of relative 

cell frequencies) and P̂ij
 (tensor of expected relative frequencies under complete 

independence) where Emn is m × n matrix with all elements 1. Then

iii) From step ii), calculate �2

T ,Ai1
Ai2

…Aij

= ‖Πi
j
‖2
w
= ‖Πi

j
×i∈i

j
D

1∕2

i
‖2

iv) Repeat the steps (ii) and (iii) for j = 2, 3,… , k − 2 and set �2

T ,Ai1
Ai2

= �2

Ai1
Ai2

 
for i1i2 ∈ S2.

v) Now that each two-way, three-way, ..., (j − 1)-way association term is calcu-
lated using the above steps, the j-way association term,Ai1

Ai2
…Aij

 , from the parti-
tion of Pearson’s chi-squared statistic can be calculated by

‖A‖w =

� �
i1,i2,…,ik

�
a2
i1i2…in…ik

�
p1
i1
p2
i2
… pk

ik

� 1

2

Φ2 = ‖�‖2
w
=
���� ×k

r=1
D1∕2

r

���
2

.

Πi
j
=
(
Pi

j
− P̂i

j

)
×i∈i

j
D−1

i
.
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The next section demonstrates the applicability of this algorithm.

6 � Numerical Results

In this section, we present a practical demonstration of the partition of Pearson’s chi-
squared statistic for a four-way table and perform tests on the statistical significance 
of each of the association terms. Matlab code (not given here) is used to execute the 
tensor based algorithm described in Sect. 5. We also develop Matlab code for the 
analysis of a four-way and five-way table using the traditional method of partition-
ing discussed in Sect. 3. Furthermore, we compare the execution time (in seconds) 
of the traditional method and the new algorithm through empirical and simulated 
multi-way contingency tables.

6.1 � PISA Study

Consider the data summarised in Table 2. It was obtained from the 2003 PISA (Pro-
gramme for International Student Assessment) study of a student’s gender (A) , their 
country of origin (B) and their response to two survey questions (C,D) . The two 
survey questions are as follows.

Q1. “I am just not good at math” and
Q2.“In math class the teacher continues teaching until the students understand.”
This data was also analysed by Azen and Walker (2011) and consists of the fol-

lowing categorical variables:

Variable label Variable No. of 
categories

Categories of the variable

A Gender 2 Female, male
B Country 3 Australia, France, United States
C Response to Q1 4 Strongly agree, agree, disagree, strongly disagree
D Response to Q2 4 Every lesson, most lessons, some lessons, hardly/never

Consider the four-way contingency table of Table  2 which is of dimension 
2 × 3 × 4 × 4 . We assume that all the categorical variables are ordered variables.

Pearson’s chi-squared statistic of this table is 1918.2484 and, with 86 degrees of 
freedom, has an extremely small p-value (< 0.0001). This suggests that there exists 
an association between at least two of the four variables, although it does not reveal 

�2

Ai1
Ai2

…Aij

= �2

T ,Ai1
Ai2

…Aij

−

j−1∑
r=2

∑
i
r
∈Sr

�2

Ai1
Ai2

…Air

, j = 3, 4,… ., k − 1
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which bivariate, trivariate or four-way association terms are dominant or statistically 
significant. To examine further the structure of this association, we partition Pear-
son’s statistic in accordance with (3).

Table 2   Four-way contingency table of student responses from the PISA study

Gender Country Self-efficacy 
for Q1

No. of students whose response to Q2 is Total

Every lesson Most lessons Some les-
sons

Hardly/never

Female Australia Strongly 
agree

208 211 223 116 758

Agree 462 579 418 135 1594
Disagree 1165 1139 552 150 3006
Strongly 

Disagree
350 209 86 40 685

France Strongly 
agree

110 128 137 84 459

Agree 142 160 136 71 509
Disagree 283 296 217 83 879
Strongly 

Disagree
130 88 86 28 332

United States Strongly 
agree

123 108 108 64 403

Agree 210 213 171 58 652
Disagree 464 396 198 63 1121
Strongly 

disagree
228 133 72 18 451

Male Australia Strongly 
agree

91 136 103 77 407

Agree 282 495 331 106 1214
Disagree 963 1446 694 203 3306
Strongly 

Disagree
524 391 197 53 1165

France Strongly 
Agree

60 69 62 56 247

Agree 95 139 102 51 387
Disagree 233 327 216 102 878
Strongly 

Disagree
153 138 89 38 418

United States Strongly 
Agree

83 66 80 47 276

Agree 155 177 150 57 539
Disagree 409 474 241 68 1192
Strongly 

Disagree
272 186 104 33 595
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As we discussed in Sect. 5, we use the n-mode products to obtain all Π-arrays 
and calculate their weighted norms and do so using Matlab. The 11 terms of (3) are 
evaluated using the traditional method described in Sect. 3 and the new algorithm 
described in Sect. 4. Both approaches yield the same terms of the partition (which 
are summarised in Table 3), however the new algorithm performed the calculations 
in 0.0320 s while the traditional method took twice as long − 0.0631 s—such time-
scales may be small, and on the surface insignificant, but it does highlight improve-
ments in the efficiency of the partition of Pearson’s statistic when compared with the 
procedure in Sect. 3.

Table  3 also summarises the percentage contribution each term makes to the 
chi-squared statistic, the degrees of freedom (DF) of the term and its p-value. It 
shows that, for the variables associated with Table 2, all pair-wise association terms 
from the partition of its chi-squared statistic are statistically significant, the largest 
of which is the term CD which describes the association between the responses to 
Question 1 and Question 2. Such an association contributes to nearly half (42.43%) 
of the association structure in the contingency table. In fact, the participants’ 
response to Question 2 is not significantly associated with their gender or country of 
origin (term ABD) while the only statistically significant trivariate association term 
is between the gender of those who participated and their response to Question 1 and 
Question 2 (term ACD). Gaining more insight into how gender and the responses to 
the questions are associated can be further investigated using CA and, more gen-
erally, multi-way data analysis (Greenacre 1984; Lebart et  al. 1984; Kroonenberg 
2008; Beh and Lombardo 2014).

6.2 � Computational Speed

We now turn our attention to assessing the computational speed of the new algo-
rithm when compared to the approach outlined in Sect. 3 and the approach by Loi-
sel and Takane (2016). This is achieved through the analysis of real and simulated 

Table 3   Categorical ANOVA 
for contingency table of student 
responses from the PISA study

Association term X2 value % of X2 value DF p value

AB 13.0503 0.68 2 0.0015
AC 413.1086 21.54 3 < 0.0001
AD 60.0572 3.13 3 < 0.0001
BC 290.3186 15.13 6 < 0.0001
BD 202.8416 10.57 6 < 0.0001
CD 813.8252 42.43 9 < 0.0001
ABC 16.2139 0.85 6 0.0127
ABD 9.4708 0.49 6 0.1488
ACD 48.5608 2.53 9 < 0.0001
BCD 34.5523 1.80 18 0.0108
ABCD 16.2491 0.85 18 0.5752
Total 1918.2484 100 86 < 0.0001



141

1 3

Journal of the Indian Society for Probability and Statistics (2024) 25:121–149	

contingency tables (or high-dimensional arrays for the purposes of using tensors as 
described in Sect. 5) that are simulated from a discrete uniform distribution on the 
interval [7, 100] . Such a range is chosen to ensure that each of the expected cell fre-
quencies of the randomly generated contingency table exceeds 5 thereby satisfying 
Cochran’s rules (Cochran 1952, 1954). These tables were randomly generated using 
the unidrnd() function in Matlab. For the sake of brevity, we do not summarise 
the ANOVA output of these partitions (we consider the example in Sect. 6.1 as pro-
viding the empirical evidence on their numerical equivalence) but instead record the 
execution time it takes for the partition to take place using the two approaches. The 
execution times are given in Table 4 for five real data sets (that are either three-way, 
four-way and five-way) ranging in dimension from 3 × 3 × 3 to 3 × 5 × 2 × 2 × 2 . 
We also summarise in Table 4 the execution times of seven randomly generated con-
tingency tables consisting of the cross-classification of five, six and seven categori-
cal variables.

Table  4 shows that the new algorithm described in Sect.  5 provides a quicker 
execution time of the partition of Pearson’s chi-squared statistic than the traditional 
method of partition and that by Loisel and Takane (2016). This is apparent when 
comparing the execution times for the larger contingency tables, including the four-
way table of Azen and Walker (2011), the five-way table given in Jarausch and 
Arminger (1989) and the randomly simulated five-way contingency tables. As the 
execution times for method described by Loisel and Takane (2016) are longer when 
compared with the new algorithm and traditional method, we present a comparison 
of a new algorithm with that of the traditional one. In these cases, the new algorithm 
at least halves the execution time needed for the partition to be performed. The new 
algorithm was also able to partition the Pearson chi-squared statistic for a six-way 
and seven-way contingency table; albeit, the calculation time took a little longer for 
these large tables than it did to partition a three-, four- or five-way contingency table.

The reason behind the longer execution times taken by Loisel and Takane (2016) 
method lies in the methodology used in the partition. Every chi-squared term 
is expressed as a quadratic form in an idempotent matrix of size which is prod-
uct of categories of all variables (i.e. all possible combinations of categories of 
all variables). For example, in the case of the simulated contingency table of size 
10 × 5 × 5 × 5 × 5 , every chi-squared statistic corresponding to the two-way, three-
way, four-way and five-way association terms (in all 26 such terms) is calculated as 
a quadratic form in a 6250 sized matrix. It may be due to this reason that the pro-
gram runs out of memory. The methodology given by Loisel and Takane (2016) has 
a strong theoretical basis but software implementation proves to be very challenging 
in this case. This problem can be seen to be overcome using the new algorithm pre-
sented in this paper.

For the traditional method of partition, calculating the association terms in a six-
way, seven-way, or “higher”-way contingency tables are very complex and are not 
generalisable. As a result, there is no software available to perform a generic par-
tition of Pearson’s chi-squared statistic for multi-way contingency tables. Instead, 
the analyst is required to develop separate code for the analysis of a three-, four- 
and “higher”-way contingency table. It is for this reason that no execution time 
is included in Table  4 for the randomly generated six-way and seven-way tables. 
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However, the new algorithm overcomes this problem; the new algorithm calculates 
the higher-order terms of the partition of the chi-squared statistic using lower-order 
(eg two-, or three-, way) association terms.

7 � Discussion

This paper develops an algorithm for partitioning Pearson’s chi-squared statistic for 
four-way and five-way contingency tables and extends to the multi-way case. The 
traditional approach to partitioning Pearson’s chi-squared, or equivalently Φ2 , statis-
tic for multi-way tables is computationally complex and has rarely been performed 
in practice or implemented into current statistical packages. This paper has proposed 
a new method of partition using tensors that provide the analyst with a means of 
calculating multi-way sources of association based on the prior calculation of two-, 
three-, and other “lower”-order association terms. Furthermore, the ANOVA-like 
partition can be presented in the form of categorical ANOVA which allows for one 
to test the statistical significance of each term of the partition. Our demonstration 
of the new algorithm shows that using tensors and tensor products allows one to 
simply, and quickly, partition Pearson’s statistic. We do acknowledge though that the 
execution times between the two approaches is in the order of a fraction of a second 
and therefore may appear, on the surface, insignificant (we alluded to this point in 
Sect. 6.1). However, we must keep in mind that, in practice, a study generally will 
consist of more than four or five variables and in the commercial and industrial sec-
tors data is collected on 100 s and even 1000 s of categorical variables. This is cer-
tainly true for the analysis of questionnaires and surveys where responders are asked 
to “tick a box”. For example, the 2016 Australian Census consisted of 51 questions, 
most of which may be treated as categorical variables. Simultaneously exploring the 
association between all, or even a subset, of such a large number of categorical vari-
ables is almost never performed due, for example, to the computational complexi-
ties in doing so. The computational efficiency of the algorithm outlined in Sect. 4 
is apparent since the execution time of the partition can be generally at least halved 
when compared with the traditional method of partition described in Sect. 3. While 
such efficiencies gained appear small, our demonstrations here suggest that better 
efficiencies can be gained for the analysis of truly large number of variables.

Further developments of this algorithm can be extended beyond the case of 
studying symmetric association between categorical variables. That is, rather than 
just partitioning Pearson’s chi-squared statistic for multi-way contingency tables, 
this algorithm can be extended to situations where a partition of multi-way ver-
sion of asymmetric association is required. These may include the partitions of 
the delta index (Lombardo 2011), the Marcotorchino index (Marcotorchino 1984) 
and the Gray–Williams index (Gray & Williams 1975) which have been confined 
to the analysis of asymmetric association among only three categorical variables. 
Other areas of further investigation include utilising the algorithm in the context of 
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modelling categorical variables using association models, correspondence models 
and log linear models. We shall leave the development of the algorithm to these 
cases for future consideration.

Appendix

Consider a classification of n individuals based on five categorical variables 
A1,A2,A3,A4 and A5 . Let jk be the number of categories of the kth variable, for 
k = 1, 2,… , 5 and the joint frequencies be summarised into a five-way contingency 
table N = (ni1i2i3i4i5 ) of dimension j1 × j2 × j3 × j4 × j5 . Let P =

(
pi1i2i3i4i5

)
 be the 

table of relative proportions such that P = 1
n
N.

The total inertia Φ2 based on the deviations from the five-way complete inde-
pendence model is

The total inertia Φ2 can be expressed as a squared norm of � = (�i1i2i3i4i5 ) in 
ℝ

j1×j2×j3×j4×j5 where

And ‖�‖2 = ∑
i1,i2,i3,i4,i5

pi1….p.i2...p..i3..p…i4.
p….i5

�
�i1i2i3i4i5

�2.
Now, � can be expressed as the addition of twenty-six orthogonal arrays that consist 

of 5C2 = 10 two-way, 5C3 = 10 three-way, 5C4 = 5 four-way and 5C5 = 1 five-way associa-
tion terms. That is
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where

πi1i2... =
pi1i2... − pi1.…p.i2...

pi1….p.i2…
, πi1.i3.. =

pi1..i3.. − pi1.…p..i3..
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Thus, an additive partition of the squared norm of a five-way array Π can be 
expressed as

This partition can be equivalently expressed in terms of table’s inertia such 
that
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Thus, the orthogonal partition of nΦ2 = �2

Total
 for the five-way contingency table 

N is therefore
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