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Abstract
Heterogeneity in populations or components is one of the most important issues in 
the reliability theory, and should be considered in the relevant analysis. The most 
effective tools for considering the heterogeneity in populations are mixture models. 
The paper investigates the properties of the �-mixture of cumulative distribution 
functions as a flexible model to consider the population heterogeneity. In particu-
lar, we study some ageing properties of the �-mixture. We show that if the baseline 
reversed hazard rate is decreasing in its parameter, then the likelihood ratio ordering 
increases the conditional probability density function. Also, we discuss the bending 
property of the �-mixture reversed hazard rate based on the conditional characteris-
tics. Finally, we propose some conditions for comparing two finite �-mixtures, with 
different mixing probabilities and different baseline distributions, in the sense of the 
reversed hazard rate order and usual stochastic order. Some numerical examples are 
provided to illustrate the theoretical findings.

Keywords Proportional reversed hazard · Additive reversed hazard · Mixture 
models · Bending property · Stochastic order

1 Introduction

One of the most common problems we face in the real world, especially in the sur-
vival analysis and the theory of reliability, is the existence of heterogeneity in pop-
ulations. For example, the lifetime of production components in an industrial fac-
tory may differ due to different raw materials, different work shifts, etc, leading to a 
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heterogeneous population (Finkelstein 2008). Therefore, to avoid possible errors in 
the relevant analysis, suitable tools such as mixture models are needed.

      Various aspects of mixture models have been investigated by many authors. 
For example, some closure and ageing properties of mixture models can be found in 
Barlow and Proschan (1981); Savits (1985); Lynch (1999); Block and Savits (1976); 
Badia et al. (2002) and Block et al. (2003), respectively.

   In demography and survival analysis, Vaupel et al. (1979) first used the frailty 
models (also, see Aalen (1992, 2005)). Finkelstein (2005), using the concept of pop-
ulation heterogeneity, explained the deceleration in mortality rates.

   Finkelstein (2002) studied the relationship between the mean waiting time and 
the reversed hazard rate (RH). Specifically, he proved that the RH ordering implies 
the mean waiting time ordering. Gupta and Wu (2001) introduced the propor-
tional reversed hazard rate (PRH) model, and studied some properties of its struc-
ture. Gupta and Gupta (2007) investigated the monotonicity of the RH for the PRH 
model. They, also, provided the Fisher information as well as the statistical infer-
ence for the model. Li and Li (2008) considered a mixture with the PRH model as 
the baseline model and investigated the properties of the model. In particular, they 
proved that the mixture random variable and the mixing random variable are posi-
tively likelihood dependent, and provided a lower bound for the cumulative distribu-
tion function (CDF) of the mixture.

   Li et al. (2010), motivated by Finkelstein (2005) and Finkelstein and Esaulova 
(2006), discussed the bending property for the mixture RH using the properties of 
the conditional random variable. Also, they investigated preservation of decreasing 
RH in the mixture model, and provided a lower bound for the cumulative distribu-
tion of the mixture. The bending property of the mixture hazard rate for the RH has 
been extended by Badia and Cha (2017).

     Navarro (2016) considered generalized mixture models (mixtures with nega-
tive weights) and provided some conditions for comparing two generalized mixtures 
in the sense of likelihood ratio (LR) order and the RH order with different mixing 
weights (see, also, Navarro and del Aguila 2017). Stochastic comparisons of two 
finite mixtures in the sense of the RH and the LR orders with different mixing pro-
portions and different baseline distributions were provided by Amini-Seresht and 
Zhang (2017). Panja et  al. (2022), compared two finite mixtures where the corre-
sponding baseline distributions follow from proportional reversed hazards, propor-
tional hazards, and proportional odds in the sense of usual stochastic order and the 
hazard rate order. Stochastic comparisons of general proportional mean past lifetime 
frailty model were studied by Hooti et al. (2022).

      Recently, Asadi et  al. (2019) suggested �-mixtures of survival functions 
(SFs) and Shojaee et al. (2021) provided some stochastic comparisons and some 
new reliability interpretations for �-mixtures of SFs based on the multiplicative-
additive hazard rate transform. For some generalizations of finite mixtures of SFs, 
we refer to Shojaee et al. (2022). �-mixtures of cumulative distribution functions 
(CDFs) proposed by Asadi et al. (2019), considered in this paper, were not stud-
ied so far. Moreover, no results exist on the ageing properties, stochastic com-
parisons, conditional characteristics, etc., of �-mixtures of CDFs in the litera-
ture. On the other hand, some meaningful interpretations exist for �-mixtures of 
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cumulative distribution functions (CDFs) (see Sect. 2). Therefore, in this paper, 
we consider �-mixtures of CDFs, and study some properties of this family.

   The organization of the paper is as follows. Section 2 introduces �-mixtures 
of cumulative distribution functions (CDFs), and provide some reliability inter-
pretations of the model. Section 3 studies some properties of the reversed hazard 
rate (RH) of �-mixtures of CDFs. Section 4 discusses on conditional characteris-
tics, and provides some results on the bending down (up) property of the RH for �
-mixtures based on the conditional characteristics. Section 5 provides some con-
ditions for comparing finite �-mixtures, with different mixing probabilities and 
different baseline distributions, in the sense of the RH order and usual stochastic 
order. Finally, Sect. 6 concludes the paper.

1.1  Notations and Definitions

Consider two random variables X and Y with the CDF’s F and G, the SF’s F̄ and 
Ḡ , the probability density functions (PDF’s) f and g, the RH functions r̃X(x) and 
r̃Y (x) , respectively.

Definition 1.1 We say that the random variable X or its distribution F is a decreas-
ing (increasing) RH (DRH (IRH)) if its reversed failure rate r̃X(x) is nonincreasing 
(nondecreasing) in x.

Definition 1.2 The random variable X is said to be smaller than the random variable 
Y in the sense of

• The usual stochastic order if F̄(x) ≤ Ḡ(x) for all x, and denoted by X ≤st Y  or 
F ≤st G.

• The RH order if G(x)/F(x) is increasing in x, for all x, or r̃X(x) ≤ r̃Y (x) for all x, 
and denoted by X ≤rh Y  or F ≤rh G.

• The LR order if g(x)/f(x) is increasing in x for all x in the support of X and Y, 
and denoted by X ≤lr Y  or F ≤lr G.

Also, the following lemma from Cuadras (2002) to get the main results is 
needed.

Lemma 1.3 Let Γ to be a random variable and f(x), g(x) be real functions. 

(a) If both f(x) and g(x) be increasing (decreasing), then 

(b) If g(x) be decreasing and f(x) be increasing, then 

E[f (Γ)g(Γ)] ≥ E[f (Γ)]E[g(Γ)].

E[f (Γ)g(Γ)] ≤ E[f (Γ)]E[g(Γ)].
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2  The ̨ ‑Mixture Model

2.1  Infinite ̨ ‑Mixture

Let the random variable X has the �-mixture distribution. We denote CDF, PDF, and 
RH of X by F

�
(x) , f

�
(x) and r̃

𝛼
(x) , respectively. Also, suppose that the mixing random 

variable Γ (as a covariate) has PDF and CDF, �(�) and Π(�) , respectively. Further, sup-
pose that F(x|�) , f (x|�) and r̃(x|𝛾) refer to the CDF, PDF and RH of the random vari-
able X|� , respectively. Consider the �-mixture model as below (Asadi et al. 2019):

where Fgm(x) = lim
�→0 F�

(x).
The corresponding PDF of the semi parametric �-mixture model (1) is as follows:

   Using (1) and (2), the RH of the model for � ≠ 0 is obtained as follows:

where

is the conditional PDF of Γ|X
�
≤ x , where X

�
 has the CDF F�(x|�) for 𝛼 > 0.

In the case � → 0 , we obtain

with the RH

(1)F
�
(x) =

⎧
⎪
⎨
⎪
⎩

�

�
∞

0

F�(x��)�(�)d�
� 1

�

, � ≠ 0,

Fgm(x), � = 0,

(2)f
�
(x) =

(

∫
∞

0

f (x|�)F�−1(x|�)�(�)d�
)(

∫
∞

0

F�(x|�)�(�)d�
) 1

�

−1

.

(3)r̃
𝛼
(x) =

f
𝛼
(x)

F
𝛼
(x)

=
∫ ∞

0
f (x|𝛾)F𝛼−1(x|𝛾)𝜋(𝛾)d𝛾
∫ ∞

0
F𝛼(x|𝛾)𝜋(𝛾)d𝛾

(4)= ∫
∞

0

r̃(x|𝛾)𝜋
𝛼
(𝛾|x)d𝛾 ,

(5)�
�
(�|x) = F�(x|�)�(�)

∫ ∞

0
F�(x|�)�(�)d�

,

Fgm(x) = lim
�→0

F
�
(x) = exp

(

∫
∞

0

logF(x|�)�(�)d�
)
,

(6)r̃gm(x) = ∫
∞

0

r̃(x|𝛾)𝜋(𝛾)d𝛾 .
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2.2  Finite ̨ ‑Mixture Model

The finite �-mixture of n sub-populations with distribution functions Fi , 
i = 1, 2, ..., n , is defined as

where Fgm(x) = lim
�→0 F�

(x) and pi ≥ 0 is the mixing proportion.
The corresponding PDF of (7) is as follows:

If r̃i(x) and r̃
𝛼
(x) be the RH of the i-th subpopulation and the finite �-mixture RH, 

respectively, then

where

The CDF and the RH for the case � → 0 in model (7) denoted by Fgm(x) and r̃gm(x) , 
respectively, and are as follows:

and

Clearly, the �-mixture model (7) includes the following models as a special case:

• For � = 1 , we have the usual arithmetic mixture distribution.
• For � → 0 , we arrive at the CDF of the mixture RH model (10).
• For � = −1 , we have the harmonic mixture (mean) of the baseline CDFs: 

• For � =
1

m
 and n = 2 , the �-mixture is the following binomial expansion mixture: 

(7)F
�
(x) =

� �∑n

i=1
piFi

�(x)
�1∕�

, � ≠ 0,

Fgm(x), � = 0,

(8)f
�
(x) =

[
n∑

i=1

pifi(x)Fi
�−1(x)

][
n∑

i=1

piFi
�(x)

] 1

�

−1

.

(9)r̃
𝛼
(x) =

f
𝛼
(x)

F
𝛼
(x)

=

n∑

i=1

r̃i(x)pi(x),

pi(x) =
piF

�

i
(x)

∑n

j=1
pjF

�

j
(x)

.

(10)Fgm(x) =

n∏

i=1

F
pi
i
(x),

r̃gm(x) =

n∑

i=1

pir̃i(x).

Fhm(x) =

( n∑

i=1

pi

Fi(x)

)−1

, x > 0.
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 where Bk,m is the binomial coefficient (Asadi et  al. 2019). In particular, for 
� =

1

2
 , we have: 

 which is a weighted mean of F1(x) , F2(x) and 
(
F1(x)F2(x)

) 1

2 . Thus, it is similar 
to the Heronian mean of the two CDFs. The Heronian mean is defined by equal 
weights given to the three terms in (11) (Bullen 2003).

Also, for example, for the infinite �-mixture of SFs, if we let the baseline distribu-
tion be an Exponential distribution and consider the Gamma mixing random vari-
able, we arrive at the generalized Pareto distribution (Asadi et al. 2019), which is a 
Pareto distribution with decreasing hazard rate for 𝛼 > 0 , Exponential distribution 
with constant hazard rate for � → 0 , and rescaled Beta distribution with increasing 
hazard rate for 𝛼 < 0 , respectively.

2.3  Reliability Interpretations (in the Term of Parallel System)

For different values of � , the reliability interpretations of the �-mixture is itemized 
as follows.

• The case 𝛼 > 0 . Motivated by Shojaee et al. (2021), we can give the following 
interpretation for the �-mixture model. Suppose that the proportion and the CDF 
of the i-th component (subpopulation) in a mixed population in laboratory con-
ditions are pi and Fi(x) , i = 1,… , n , respectively. Let the hard condition based 
on the PRH model acts on each component uniformly. Therefore, the i-th com-
ponent CDF will be F�

i
(x) , where 𝛼 > 0 . Then, the CDF of a randomly selected 

component in the hard conditions is 

 Now, if we shield the component from the hard conditions to keep it on the 
laboratory condition, then, the CDF of the selected component in the laboratory 
conditions will equal to 

 where F
�
(x) is the CDF of the �-mixture model.

• The case that � is a positive integer. Two different methods for constructing an 
m-component parallel system from n different types of components has been 
proposed by Cha (2011). 

F 1

m

(x) =

m∑

k=0

Bk,mp
m−k(1 − p)kF1(x)

1−
k

m F2(x)
k

m ,

(11)F 1

2

(x) = p2F1(x) + (1 − p2F2(x) + 2p(1 − p)
(
F1(x)F2(x)

) 1

2 ,

Fh(x, �) =

n∑

i=1

piF
�

i
(x).

F
�
(x) =

( n∑

i=1

piF
�

i
(x)

) 1

�

,
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1. Mixing at the system level. In this method, a component is chosen ran-
domly from n different types of components, and the system is built from the 
selected component. Thus, the m-component parallel system has the following 
CDF: 

where F1(x) denote the CDF of the �-mixture model with � = m.
2. Mixing at the component level. In this method, the components of the paral-

lel system are selected one by one from the mixed population of components. 
Thus, the m-component parallel system has the following CDF: 

 where F1(x) denote the CDF of the finite �-mixture with � = 1.
   The monotone decreasing property of �-mixtures (Asadi et al. 2019) yields 

F2 ≥st F1 . This means to construct a m-component parallel system, it is better 
we have ‘mixing at the component level’rather than ‘mixing at the system level’. 
Hazra et al. (2017) have generalized these two models as follows. 

  3. The components are grouped as d groups and the first l1 compo-
nents are randomly selected from one of the sub-populations; then we draw 
l2 components similarly and continue in the same way until m components 
are selected after d steps. The CDF of the constructed parallel system is: 

 where 
∑d

j=1
lj = m , for 1 ≤ d ≤ m and Flj

(x) is the CDF of the finite �-mix-
ture with � = lj.

• The finite �-mixture can be considered as F
�
(x) = Q(F1,… ,Fn) , where Q 

is a generalized distorted distribution in which the distortion function is: 
Q(u1,… , un) =

�∑n

i=1
piu

�

i

�1∕� (Navarro and del Aguila 2017).
• As it was already mentioned in Asadi et al. (2019), �-mixtures as a unified model 

combine two popular models: mixture models and proportional reversed haz-
ard (PRH) models. They are actually PRH models with baseline models that are 
mixtures of PRH models with different baselines and a common PRH parameter 
�.

• The case � → 0 . Fgm(x) =
∏n

i=1
F
pi
i

 can be considered as a generalized propor-
tional reversed hazard rate (GPRH) model (Navarro 2016). Also, it is easy to see 
that Fgm(x) is the CDF of a n-components parallel system, where the CDF of the 
i-th component is the PRH model with the PRH parameter pi and the baseline 
CDF Fi(x) , i = 1,… , n . For more applications of Fgm(x) , we refer to Shojaee and 
Babanezhad (2023).

F
m
1
(x) =

n∑

i=1

piF
m
i
(x),

F
m
2
(x) =

(
n∑

i=1

piFi(x)

)m

,

F3(x) =

d∏

j=1

(
n∑

i=1

piF
lj

i
(x)

)
=

d∏

j=1

F
lj

lj
(x),



606 Journal of the Indian Society for Probability and Statistics (2023) 24:599–621

1 3

3  Properties of the the ̨ ‑Mixture Reversed Hazard Rate

   Let us consider a 2-component finite �-mixture with CDF’s F1(x) and F2(x) and 
RH’s r̃1(x) and r̃2(x) , respectively. In this case

where the time varying probability is

Based on the time varying probability, we can show that:

In particular, if F1 ≤rh F2 , then

Now, we can give the following result (without proof).

Theorem  3.1 Let the components of a finite �-mixture be ordered based on 
the RH ordering. That means, there exist a r̃min(x) = min{r̃1(x),… , r̃n(x)} 
whose RH dominated by the RH’s of all other components, and there exist a 
r̃max(x) = max{r̃1(x),… , r̃n(x)} whose RH dominates the RH’s of all other compo-
nents. Then

where Fmin and Fmax are the CDF’s of r̃min(x) and r̃max(x) , respectively.

The following theorem states that the RH of �-mixture increases in �.

Theorem 3.2 Suppose that the baseline RH’s of the components ( ̃ri(x), i = 1,… , n ) 
of a finite �-mixture are ordered either decreasingly or increasingly, then the �-mix-
ture RH is increasing in � ∈ (−∞,+∞).

Proof The proof of the theorem is similar (with a slight difference) to the proof of 
Theorem 3.3 of Asadi et al. (2019) and it is omitted here.   ◻

Corollary 3.3 Let the baseline RHs of the components ( ̃ri(x), i = 1,… , n ) of a finite �
-mixture are ordered either decreasingly or increasingly, then

(12)
r̃
𝛼
(x) =

[
r̃1(x)

pF1
𝛼(x)

pF1
𝛼(x) + (1 − p)F2

𝛼(x)
+ r̃2(x)

(1 − p)F2
𝛼(x)

pF1
𝛼(x) + (1 − p)F2

𝛼(x)

]

=
[
r̃1(x)p𝛼(x) + r̃2(x)(1 − p

𝛼
(x))

]
,

p
�
(x) =

pF1
�(x)

pF1
�(x) + (1 − p)F2

�(x)
,

min{r̃1(x), r̃2(x)} ≤ r̃
𝛼
(x) ≤ max{r̃1(x), r̃2(x)}.

r̃1(x) ≤ r̃
𝛼
(x) ≤ r̃2(x).

Fmin ≤rh F�
≤rh Fmax,

Fhm(x) ≤rh Fgm(x) ≤rh Fam(x).
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Also, the closure property of the 2-component finite �-mixture can be studied 
directly. One can derivative from (12) with respect to x as follows:

Hence, as r̃�
i
(x) ≤ 0 , i = 1, 2 , r̃�

𝛼
(x) ≤ 0 for 𝛼 > 0 . That means the finite �-mixture 

has DRH for 𝛼 > 0 , if it’s components have DRH. Similarly, the finite �-mixture has 
IRH for 𝛼 < 0 , if it’s components have IRH (as r̃�

i
(x) ≥ 0 for i = 1, 2 , then r̃�

𝛼
(x) ≥ 0 

for 𝛼 < 0).

4  Some Results Based on Conditional Characteristics

In this section, we present some results based on conditional characteristics. We also 
discuss the bending properties of the RH based on the properties of the conditional 
random variable. We extend the bending properties of the RH for ordinary mixtures 
to �-mixtures. These properties are about comparing the RH of the �-mixture with 
its specific case when � = 0 , see Badia and Cha (2017) for example.

The following theorem states that the conditional PDF, �
�
(�|x) , can be ordered in 

the LR ordering.

Theorem 4.1 

(a) Assume that the baseline RH, r̃(x|𝛾) , is increasing (decreasing) in � for all x ≥ 0 . 
Then the conditional PDF, �

�
(�|x),is increasing (decreasing) in x ≥ 0 in the LR 

ordering for 𝛼 > 0.
(b) Suppose that the baseline RH, r̃(x|𝛾) , be increasing (decreasing) in � for all 

x ≥ 0 . Then the conditional PDF, �
�
(�|x) , is decreasing (increasing) in x ≥ 0 

in the LR ordering for 𝛼 < 0.

Proof We give proof only for part (a) because the proof for part (b) is completely 
similar. By considering the representation F(x|𝛾) = exp

(
− ∫ +∞

x
r̃(u|𝛾)du

)
 , and 

using relation (5) for all x2 ≥ x1 ≥ 0 , we get

r̃�
𝛼
(x) = r̃�

1
(x)p

𝛼
(x) + p�

𝛼
(x)r̃1(x) + r̃�

2
(x)(1 − p

𝛼
(x)) − p�

𝛼
(x)r̃2(x)

= r̃�
1
(x)p

𝛼
(x) + r̃�

2
(x)(1 − p

𝛼
(x)) + p�

𝛼
(x)(r̃1(x) − r̃2(x))

= r̃�
1
(x)p

𝛼
(x) + r̃�

2
(x)(1 − p

𝛼
(x)) − 𝛼p

𝛼
(x)(1 − p

𝛼
(x))(r̃1(x) − r̃2(x))

2.

𝜋
𝛼
(𝛾|x2)

𝜋
𝛼
(𝛾|x1)

=
F𝛼(x2|𝛾)𝜋(𝛾)

∫ +∞

0
F𝛼(x2|𝛾)𝜋(𝛾)d𝛾

×
∫ +∞

0
F𝛼(x1|𝛾)𝜋(𝛾)d𝛾

F𝛼(x1|𝛾)𝜋(𝛾)

=
exp

(
− 𝛼 ∫ +∞

x2
r̃(u|𝛾)du

)

exp
(
− 𝛼 ∫ +∞

x1
r̃(u|𝛾)du

) ×
∫ +∞

0
F𝛼(x1|𝛾)𝜋(𝛾)d𝛾

∫ +∞

0
F𝛼(x2|𝛾)𝜋(𝛾)d𝛾

= exp
(
𝛼 �

x2

x1

r̃(u|𝛾)du
)
×
∫ +∞

0
F𝛼(x1|𝛾)𝜋(𝛾)d𝛾

∫ +∞

0
F𝛼(x2|𝛾)𝜋(𝛾)d𝛾

.
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From assumption r̃(x|𝛾) is increasing (decreasing) in � for all x ≥ 0 , the first part of 
last equality is increasing (decreasing) in � for all x2 ≥ x1 ≥ 0 .   ◻

The result of Theorem 4.1 states that the family of conditional mixing random vari-
ables is increasing (decreasing) in the sense of likelihood ratio for 𝛼 > 0 ( 𝛼 < 0 ). It 
means that with the increase of time, the value of the density of the conditional mixing 
random variable will decrease.

The next corollary is obtained directly from Theorem 4.1.

Corollary 4.2 

(a) if r̃(x|𝛾) be increasing (decreasing) in � for all x ≥ 0 , then, the conditional CDF, 
Π

�
(�|x) , is decreasing (increasing) in x for any � ≥ 0 for 𝛼 > 0.

(b) if r̃(x|𝛾) be increasing (decreasing) in � for all x ≥ 0 , then, the conditional CDF, 
Π

�
(�|x) , is increasing (decreasing) in x for any � ≥ 0 for 𝛼 < 0.

Proof The result follows from Theorem 4.1, because the LR order implies usual sto-
chastic order.   ◻

Corollary 4.3 

(a) Suppose that the baseline RH belongs to the PRH model, r̃(x|𝛾) = 𝛾 r̃(x) . Then, 
the conditional PDF, �

�
(�|x) , is increasing (decreasing) in x ≥ 0 in the LR 

ordering for 𝛼 > 0 ( 𝛼 < 0).
(b) Let the baseline RH belongs to the PRH model, r̃(x|𝛾) = 𝛾 r̃(x) . Then, the con-

ditional CDF, Π
�
(�|x) , is decreasing (increasing) in x for any � ≥ 0 for 𝛼 > 0 

( 𝛼 < 0).

Corollary 4.4 

(a) Suppose that the baseline RH belongs to the additive reversed hazard rate (ARH), 
r̃(x|𝛾) = r̃(x) + 𝛾 . Then the conditional PDF, �

�
(�|x) , is increasing (decreasing) 

in x ≥ 0 in the LR ordering for 𝛼 > 0 ( 𝛼 < 0).
(b) Let the baseline RH belongs to the ARH model, r̃(x|𝛾) = r̃(x) + 𝛾 . Then, the con-

ditional CDF, Π
�
(�|x) , is decreasing (increasing) in x for any � ≥ 0 for 𝛼 > 0 

( 𝛼 < 0).

Before we start the discussion of the bending property of the model for the 
RH, we need the following definition.

Definition 4.5 The weak bending down (up) property of the RH function, r̃
𝛼
(x) , 

holds if

In addition to this inequality, if we have

r̃
𝛼
(x) ≤ (≥)r̃gm(x), ∀x > 0.
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then the strong bending down (up) property of the RH r̃
𝛼
(x) holds.

Theorem 4.6 Suppose that the baseline RH, r̃(x|𝛾) is monotone in � for all x ≥ 0 . 
Then, the weak bending down (up) property for the �-mixture RH function holds. 
That means r̃

𝛼
(x) ≤ (≥)r̃gm(x) for all x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

Proof We give proof only for 𝛼 > 0 , because the proof for 𝛼 < 0 is similar. Let r̃(x|𝛾) 
is increasing (decreasing) in � , thus F(x|�) is decreasing (increasing) in � . Since 
𝛼 > 0 , F�(x|�) is decreasing (increasing) in � . On the other hand, from (4) we can 
rewritten the reversed hazard rate of �-mixture as follows:

Thus, the result follows from Lemma 1.3 (b) with choosing f (𝛾) = r̃(x|𝛾) and 
g(�) = F�(x|�) .   ◻

The following two corollaries are obtained directly form Theorem 4.6.

Corollary 4.7 Suppose that the baseline RH belongs to the PRH model, 
r̃(x|𝛾) = 𝛾 r̃(x) . Then, the weak bending down (up) property for the �-mixture RH 
function holds. That means r̃

𝛼
(x) ≤ (≥)r̃gm(x) for all x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

Corollary 4.8 Suppose that the baseline RH belongs to the ARH model, 
r̃(x|𝛾) = r̃(x) + 𝛾 . Then, the weak bending down (up) property for the �-mixture RH 
function holds. That means r̃

𝛼
(x) ≤ (≥)r̃gm(x) for all x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

Remark 4.9 From Theorem 4.6, one can extract the following lower (upper) bound 
for �-mixture. For 𝛼 > 0 ( 𝛼 < 0)

The following theorem concerns the strong bending property of the RH of �
-mixtures.

Theorem  4.10 Let the baseline RH, r̃(x|𝛾) , is increasing in � for all x ≥ 0 and 
𝜕

𝜕𝛾

r̃(x|𝛾) is decreasing in x for all � ≥ 0 . Then, the strong bending down (up) prop-
erty for �-mixture RH holds. That means r̃gm(x) − r̃

𝛼
(x) is decreasing (increasing) in 

x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

Proof We give proof only for 𝛼 > 0 because the proof for 𝛼 < 0 is similar. By inte-
grating by part, it is easy to see that

(13)r̃gm(x) − r̃
𝛼
(x) ↑ (↓) in x > 0,

(14)r̃
𝛼
(x) =

E[r̃(x|𝛾)F𝛼(x|𝛾)]
E[F𝛼(x|𝛾)]

.

F
𝛼
(x) ≥ (≤) exp ( − �

∞

x

r̃gm(t)dt
)
.
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From Theorem  4.6, we have r̃gm(x) ≥ r̃
𝛼
(x) , and by Corollary 4.2 (a) 

Π(�) − Π
�
(�|x) ≤ 0 and from assumption 𝜕

𝜕𝛾

r̃(x|𝛾) is decreasing in x, thus Δr̃(x) is 
decreasing in x for 𝛼 > 0 . This completes the proof.   ◻

Corollary 4.11 Suppose that the baseline RH belongs to the PRH model, 
r̃(x|𝛾) = 𝛾 r̃(x) . In addition, suppose that r̃(x) is decreasing in x. Then, the strong 
bending down (up) property for �-mixture RH holds. That means r̃gm(x) − r̃

𝛼
(x) is 

decreasing (increasing) in x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

Corollary 4.12 Suppose that the baseline RH belongs to the ARH, r̃(x|𝛾) = r̃(x) + 𝛾 . 
Further, assume that r̃(x) is decreasing in x. Then, the strong bending down (up) 
property for �-mixture RH holds. That means r̃gm(x) − r̃

𝛼
(x) is decreasing (increas-

ing) in x ≥ 0 for 𝛼 > 0 ( 𝛼 < 0).

The following example is considered as an application of Theorem  4.6 and 
Theorem 4.10 together with Remark 4.9.

Example 4.13 Assume that the random variable X|� has the following CDF:

The corresponding PDF of X|� can be obtained as:

Hence, the RH of X|� is

Clearly, r̃(x|𝛾) is a decreasing function of � , because

Thus, based on Theorem  4.6, for any mixing random variable Γ with support in 
� ∈ [0,∞) , the weak bending down (up) property holds for the �-mixture RH for 

Δr̃(x) = r̃gm(x) − r̃
𝛼
(x) = �

∞

0

r̃(x|𝛾)
[
𝜋(𝛾) − 𝜋

𝛼
(𝛾|x)

]
d𝛾

= �
∞

0

−
𝜕

𝜕𝛾

r̃(x|𝛾)
[
Π(𝛾) − Π

𝛼
(𝛾|x)

]
d𝛾 ≥ 0, ∀x ≥ 0

F(x|𝛾) = x2 + 2x𝛾

1 + 2𝛾
, 0 ≤ x ≤ 1, 𝛾 > 0.

f (x|�) = 2

1 + 2�
(x + �).

r̃(x|𝛾) = 2

x2 + 2𝛾x
(x + 𝛾).

𝜕

𝜕𝛾

r̃(x|𝛾) =
2
(
x2 + 2𝛾x

)
− 4x

(
x + 𝛾

)

(
x2 + 2𝛾x

)2

= −
2x2

(
x2 + 2𝛾x

)2 ≤ 0.
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𝛼 > 0 ( 𝛼 < 0 ). Assume that the mixing random variable Γ be uniform (0, 1). There-
fore, we have

and

Fig. 1 shows the plot of r̃gm(x) and r̃
𝛼
(x) for different values of � . As can be seen 

from Fig. 1 a (b), the weak bending down (up) property holds for the �-mixture RH 
for 𝛼 > 0 ( 𝛼 < 0).

The conditions of Theorem 4.10, also, are established. Figure 2 a (b) shows the 
strong bending down (up) property for the �-mixture RH for 𝛼 > 0 ( 𝛼 < 0 ). That 
means r̃gm(x) − r̃

𝛼
(x) is decreasing (increasing) function of x for 𝛼 > 0 ( 𝛼 < 0 ). 

Finally, from Remark 4.9, a lower bound for the CDF of the �-mixture is shown in 
Fig. 3.

     At the end of this section, we present some conditions for comparing two �
-mixtures in the RH ordering and the usual stochastic ordering. The following theo-
rems generalize Theorems 1.A.6 and 1.B.52 of Shaked and Shanthikumar (2007) to 
the �-mixture models.

The following theorem states that if the baseline distribution and the mixing ran-
dom variable are ordered in the sense of the usual stochastic order, then the corre-
sponding �-mixtures are also ordered in the sense of the usual stochastic order.

Theorem 4.14 Assume that {F(x|�), � ∈ [0,∞)} be a family of CDF’s. Consider two 
random variables Γ1 and Γ2 , with supports in [0,∞) , with distribution functions Π1 
and Π2 , respectively. Let the CDF of Xi , i = 1, 2 , is given by

If X|� ≤st X|� ′ whenever � ≤ �
′ and if Γ1 ≤st Γ2 , then X1 ≤st X2.

Proof To proof the theorem, we must consider the following different cases for �.

• Let 𝛼 > 0 . From assumption X|� ≤st X|� ′ , F(x|�) is decreasing in � . Hence, 
since 𝛼 > 0 , F�(x|�) is decreasing in � . Now, from assumption Γ1 ≤st Γ2 one 
can see that 

r̃gm(x) = ∫
1

0

2

x2 + 2𝛾x
(x + 𝛾) d𝛾 ,

r̃
𝛼
(x) = �

1

0

2(x + 𝛾)

x2 + 2𝛾x

(
x2+2𝛾x

12𝛾

)
𝛼

∫ 1

0

(
x2+2𝛾x

12𝛾

)
𝛼

d𝛾
d𝛾 .

F
�,i(x) =

(

∫
∞

0

F�(x|�)dΠi(�)

) 1

�

.
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 Now, by raising both sides of the inequality to the power 1

�

 , we have 
F
�,1(x) ≥ F

�,2(x) . This means that X1 ≤st X2.
• Now, suppose that � → 0 . We have, 

�
∞

0

F�(x|�)dΠ1(�) ≥ �
∞

0

F�(x|�)dΠ2(�).

(a) (b)

Fig. 1  The plots of r̃
𝛼
(x) and r̃

gm
(x) in Example 4.13: For 𝛼 > 0 (left) and 𝛼 < 0 (right)

(a) (b)

Fig. 2  The plots of r̃
gm
(x) − r̃

𝛼
(x) in Example 4.13: For 𝛼 > 0 (left) and 𝛼 < 0 (right)
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 Again, since X|� ≤st X|� ′ , F(x|�) is decreasing in � , then log(F(x|�)) is decreas-
ing in � . Thus, by assumption Γ1 ≤st Γ2 , we have 

 Consequently, X1 ≤st X2 follows from 

• Finally, let 𝛼 < 0 . By assumption X|� ≤st X|� ′ , F(x|�) is decreasing in � , and 
since 𝛼 < 0 , F�(x|�) is increasing in � . Now, assumption Γ1 ≤st Γ2 , yields 

 Since 𝛼 < 0 , by raising both sides of the inequality to the power 1
�

 , we arrive at 
the result. Hence, X1 ≤st X2 holds for all values of � , and proof is completed.

  ◻

Fgm,i(x) = exp

(

∫
∞

0

log(F(x|�))dΠi(�)

)
.

�
∞

0

log(F(x|�))dΠ1(�) ≥ �
∞

0

log(F(x|�))dΠ2(�).

Fgm,1(x) = exp

(

�
∞

0

log(F(x|�))dΠ1(�)

)
≥ exp

(

�
∞

0

log(F(x|�))dΠ2(�)

)
= Fgm,2(x).

�
∞

0

F�(x|�)dΠ1(�) ≤ �
∞

0

F�(x|�)dΠ2(�).

Fig. 3  Lower bound for the CDF of the �-mixture in Example 4.13
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Theorem 4.15 Assume that {F(x|�), � ∈ [0,∞)} be a family of CDFs. Consider two 
random variables Γ1 and Γ2 , with supports in [0,∞) , with distribution functions Π1 
and Π2 , respectively. Let the CDF of Xi , i = 1, 2 , is given by

If X|� ≤rh X|� ′ whenever � ≤ �
′ and if Γ1 ≤rh Γ2 , then X1 ≤rh X2.

Proof The proof of the theorem, we refer to the proof of Theorem 4.4 of Shojaee 
et al. (2021).

The above theorem states that if the baseline distribution and the mixing random 
variable are ordered in the sense of the RH order, then the corresponding �-mixtures 
are also ordered in the sense of the RH order.   ◻

5  Ordering Results for Finite ̨ ‑Mixtures

This section is compared two finite �-mixtures in the some popular cases.

5.1  Usual Stochastic Order

The next theorem compares two finite �-mixture with same baseline distribution 
functions and different mixing probabilities in the sense of usual stochastic order 
which is extension of some result of Navarro and del Aguila (2017) to the case of �
-mixture.

Theorem 5.1 Let F
�
(x, p) and F

�
(x, q) be two finite �-mixtures with mixing probabil-

ities p = (p1, ..., pn) and q = (q1, ..., qn) , respectively. Suppose that

Then,

if and only if p ≥st q.

Proof We will give proof only for the “only if” part of the theorem because the “if” 
part of the theorem follows from Theorem 4.14. To proof the theorem, three differ-
ent cases for � is considered.

• Let 𝛼 > 0 . From F
�
(x, p) ≤st F�

(x, q) , we get 

F
�,i(x) =

(

∫
∞

0

F�(x|�)dΠi(�)

) 1

�

.

F1 ≥st F2 ≥st ... ≥st Fn.

F
�
(x, p) ≤st F�

(x, q)
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 and for 𝛼 > 0 , we have 

 The assumption F1 ≥st F2 ≥st ... ≥st Fn yields F1 ≤ F2 ≤ ... ≤ Fn . Now, 
by choosing F1 = F2 = ... = Fk = 0 and Fk+1 = ... = Fn = 1 , we have 
∑n

i=k+1
pi ≥ ∑n

i=k+1
qi or 

∑k

i=1
pi ≤ ∑k

i=1
qi . This means that, p ≥st q.

• The proof for the case � → 0 is given in Theorem 4.1 of Shojaee and Baban-
ezhad (2023).

• Suppose now that 𝛼 < 0 . From F
�
(x, p) ≤st F�

(x, q) , it is easy to see that 

 and hence since 𝛼 < 0 , we get 

 By assumption F1 ≥st F2 ≥st ... ≥st Fn with choosing F1 = F2 = ... = Fk = Fk 
and Fk+1 = ... = Fn = 1 , we have 

 Then, 

 Now, since 𝛼 < 0 and 0 ≤ Fk ≤ 1 , then (F̄𝛼

k
− 1) ≥ 0 . Consequently, ∑k

i=1
qi ≥ ∑k

i=1
pi , that means, p ≥st q.

  ◻

The following theorem compares two finite �-mixtures with different baseline 
CDF’s and different mixing probabilities in the sense of usual stochastic order.

Theorem 5.2 Let F
�
(x, p) and F

�
(x, q) be two finite �-mixtures with mixing probabil-

ities p = (p1, ..., pn) and q = (q1, ..., qn) , respectively. Suppose that 

[
n∑

i=1

piFi
�

] 1

�

≥
[

n∑

i=1

qiFi
�

] 1

�

,

[
n∑

i=1

piFi
�

]
≥
[

n∑

i=1

qiFi
�

]
.

[
n∑

i=1

piFi
�

] 1

�

≥
[

n∑

i=1

qiFi
�

] 1

�

,

[
n∑

i=1

qiFi
�

]
≥
[

n∑

i=1

piFi
�

]
.

[
k∑

i=1

qiF
�

k
+

n∑

i=k+1

qi

]
≥
[

k∑

i=1

piF
�

k
+

n∑

i=k+1

pi

]

[
k∑

i=1

qi(F
�

k
− 1)

]
≥
[

k∑

i=1

pi(F
�

k
− 1)

]
.
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 (i) F1 ≥st F2 ≥st ...≥stFn,
 (ii) p ≥st q,
 (iii) Fi ≤st Gi for all i ∈ {1, ..., n}.

Then, we get:

Proof We will prove the theorem for three different cases of � . To proof the theo-
rem, first, we will prove that F

�
(x, p) ≤st G�

(x, p).

• Suppose that 𝛼 > 0 . By assumption Fi ≤st Gi for i = 1, ..., n , we get 
Fi(x) ≥ Gi(x) for any x, and hence, F�

i
≥ G�

i
 for i = 1, ..., n . Thus, 

 By raising the both side of inequality to power 1
�

 , we obtain 

 This means that, for 𝛼 > 0 , F
�
(x, p) ≤st G�

(x, p).
• Assume now that 𝛼 < 0 . The assumption Fi ≤st Gi yields F�

i
≤ G�

i
 , i = 1, ..., n . 

Thus, 

 and then, we have 

 This means that, for 𝛼 < 0 , F
�
(x, p) ≤st G�

(x, p).
• The proof for the case � → 0 is given in Theorem  4.2 of Shojaee and Baban-

ezhad (2023). Thus, Fgm(x, p) ≤st Ggm(x, p).

Consequently, for all values of � , we have

Theorem 5.1 together with conditions (i) and (ii) yields: F
�
(x, p) ≤st F�

(x, q) . From 
relation (15), we get F

�
(x, q) ≤st G�

(x, q) , and hence F
�
(x, p) ≤st G�

(x, q) . This is 
completing the proof.   ◻

F
�
(x, p) ≤st G�

(x, q).

n∑

i=1

piF
�

i
≥

n∑

i=1

piG
�

i
.

[
n∑

i=1

piF
�

i

] 1

�

≥
[

n∑

i=1

piG
�

i

] 1

�

.

n∑

i=1

piF
�

i
≤

n∑

i=1

piG
�

i
,

[
n∑

i=1

piF
�

i

] 1

�

≥
[

n∑

i=1

piG
�

i

] 1

�

.

(15)F
�
(x, p) ≤st G�

(x, p).
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The following example as an application of Theorem 5.2 compares two parallel 
systems.

Example 5.3 Suppose that a system designer needs a highly reliable parallel system 
to build a device. He knows the first population is a mixture of three 4-components 
parallel systems with equal mixing probabilities p = (p1, p2, p3) = (

1

3
,
1

3
,
1

3
) , in such 

a way that the components of each parallel system have an exponential distribu-
tion with CDF Fi(x) = 1 − e−�ix , for x ∈ [0,+∞) , where (�1, �2, �3) = (0.3, 0.6, 0.9) , 
while the second population is a mixture of three 4-components parallel systems 
with unequal mixing probabilities q = (q1, q2, q3) = (0.45, 0.45, 0.1) , in such a way 
that the components of each parallel system have an exponential distribution with 
CDF Gi(x) = 1 − e−�ix , for x ∈ [0,+∞) , where (�1, �2, �3) = (0.2, 0.5, 0.8) . Denote 
by F4(x, p) and G4(x, q) , the CDF of 3-component finite �-mixture with mixing 
probabilities p = (p1, p2, p3) and q = (q1, q2, q3) , respectively. The CDF of ran-
domly selection of the parallel systems from the first and the second population are 
F4
4
(x, p) and G4

4
(x, q) , respectively. It is easy to see that all condition of Theorem 5.2 

are satisfied. Thus, F4(x, p) ≤st G4(x, q) . Consequently, F̄4
4
(x, p) ≤ Ḡ4

4
(x, q) for all 

x ∈ [0,+∞) . Therefore, it is better for the system designer to choose his parallel 
system from the second population.

5.2  The RH Order

The following theorem compares two finite �-mixture models with same baseline 
distribution functions and different mixing probabilities in the sense of RH order, 
which extends Proposition 2.5 of Navarro (2016) on ordinary mixture to the �-mix-
ture of CDF’s.

Theorem 5.4 Let F
�
(x, p) and F

�
(x, q) be two finite �-mixtures with mixing probabil-

ities p = (p1, ..., pn) and q = (q1, ..., qn) , respectively. Suppose that

Then for � ≠ 0,

if piqj ≤ pjqi for all 1 ≤ i ≤ j ≤ n.

Proof We will show that F�
(x,q)

F
�
(x,p)

 is increasing in x. We have to show that H(x) is 
increasing in x, where

where

F1 ≥rh F2 ≥rh ... ≥rh Fn.

F
�
(x, p) ≤rh F�

(x, q)

H(x) =
F
�
(x, q)

F
�
(x, p)

≡ [B(x)]1∕� ,
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By differentiating H(x) with respect to x, we have

where

Thus, after some algebra calculations, we get

where r̃i(x) is the RH of Fi(x) , i = 1,… , n . From condition Fi ≥rh Fj for i ≤ j , we 
have r̃i(x) − r̃j(x) ≥ 0 for i ≤ j . By assumption piqj ≤ pjqi , we get pjqi − piqj ≥ 0 . 
Hence, H�(x) ≥ 0 , and F

�
(x, p) ≤rh F�

(x, q) for � ≠ 0 .   ◻

The following theorem compares two finite �-mixtures with different baseline 
distribution functions and different mixing probabilities in the sense of RH order.

Theorem 5.5 Let F
�
(x, p) and F

�
(x, q) be two finite �-mixtures with mixing probabil-

ities p = (p1, ..., pn) and q = (q1, ..., qn) , respectively. Let 

 (i) G1 ≥rh ... ≥rh Gn or F1 ≥rh ... ≥rh Fn;
 (ii) Gi(x)

Fi(x)
 is decreasing (increasing) in i ∈ {1, 2, ..., n};

 (iii) Fi ≤rh Gi , i = 1, 2,… , n;
 (iv) piqj ≤ pjqi for all 1 ≤ i ≤ j ≤ n.

Then for 𝛼 > 0 (𝛼 < 0),

Proof We give proof only for 𝛼 > 0 . The proof for 𝛼 < 0 can be considered in a 
similar way. Without loss of generality, it was assumed that G1 ≥rh ... ≥rh Gn . From 
(9), the RH of F

�
(x, p) can be written as

B(x) =

�∑n

i=1
qiFi

�(x)
∑n

i=1
piFi

�(x)

�
.

H�(x) =
1

�

B�(x)[B(x)]
1

�

−1
,

B�(x)
sign
= �

{
n∑

i=1

qifi(x)Fi
�−1(x)

n∑

j=1

pjFj
�(x) −

n∑

i=1

pifi(x)Fi
�−1(x)

n∑

j=1

qjFj
�(x)

}

=�

{
n∑

i=1

n∑

j=1

(pjqi − piqj)fi(x)Fi
�−1(x)Fj

�(x)

}

H�(x)
sign
=

{
n−1∑

i=1

n∑

j=i+1

(pjqi − piqj)
(
r̃i(x) − r̃j(x)

)
Fi

𝛼(x)Fj
𝛼(x)

}
.

F
�
(x, p) ≤rh G�

(x, q).
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where r̃Fi
(x) is the RH of Fi(x) , i = 1,… , n , and pi(x) =

piF
�

i
(x)

∑n

j=1
pjF

�

j
(x)

 , i = 1,… , n . Sim-

ilarly, the RH of G
�
(x, q) is

where r̃Gi
(x) is the RH of Gi(x) , i = 1,… , n , and qi(x) =

qiG
�

i
(x)

∑n

j=1
qjG

�

j
(x)

 , i = 1, ..., n . To 

proof the theorem, we must to show that 𝜙(x) = r̃
𝛼,G(x) − r̃

𝛼,F(x) is non-negative for 
all x ≥ 0 . Note that, from condition (iii) the following inequality holds

Thus, we must to to show that �(x) is non-negative for all x ≥ 0 . On the other hand, 
�(x) can be rewritten as

where W and V are discrete random variables with PDF’s qi(x) and pi(x),i = 1, ..., n , 
respectively, and 𝜓(i) = r̃Fi

(.) , i = 1, ..., n . To show that (16) is non-negative, it is 
enough to show that W ≤st V  and �(i) is decreasing in i. From condition (i), we can 
see that rF1

(x) ≥ ... ≥ rFn
(x) for all x ≥ 0 . Therefore, �(i) is decreasing in i. Also, we 

have

Thus, from condition (ii), we can see that pi(x)
qi(x)

 is decreasing in i ∈ {1, ..., n} . That 
means: W ≤lr V  . Hence, W ≤st V  . Thus, �(x) is non-negative and for 𝛼 > 0,

From Theorem 5.4, we have: G
�
(x, p) ≤rh G�

(x, q) , and hence by relation (17), we 
conclude that F

�
(x, p) ≤rh G�

(x, q) for 𝛼 > 0 . The case F1 ≥rh ⋯ ≥rh Fn , can be 
prove in similar way.   ◻

Remark 5.6 Theorem  5.5 extends a result of Amini-Seresht and Zhang (2017) in 
ordinary mixture ( � = 1 ) to the �-mixture family.

r̃
𝛼,F(x) =

n∑

i=1

r̃Fi
(x)pi(x),

r̃
𝛼,G(x) =

n∑

i=1

r̃Gi
(x)qi(x)

𝜙(x) =

n∑

i=1

r̃Gi
(x)qi(x) −

n∑

i=1

r̃Fi
(x)pi(x)

≥
n∑

i=1

r̃Fi
(x)qi(x) −

n∑

i=1

r̃Fi
(x)pi(x) ≡ 𝜉(x).

(16)�(x) = E[�(W)] − E[�(V)],

qi(x)

pi(x)
∝ (

Gi(x)

Fi(x)
)�; i ∈ {1, ..., n}.

(17)F
�
(x, p) ≤rh G�

(x, p).
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Remark 5.7 In Theorem 5.5, it was assumed that � ≠ 0 . A similar result for the geo-
metric mixture model Fgm(x) in (7) have been obtained by Shojaee and Babanezhad 
(2023), under different conditions from Theorem 5.5.

6  Conclusions

�-mixtures of cumulative distribution functions (CDFs) are useful tools for mod-
eling heterogeneity in real-life populations by incorporating the effect of hard condi-
tions (in terms of the proportional reversed hazard (PRH) model).

     In this paper, we investigated the reversed hazard rate (RH) of �-mixtures. In 
particular, we showed that if the components of a finite �-mixture have decreas-
ing or increasing baseline RHs, then �-mixtures have increasing RHs in � for all 
� ∈ (−∞,+∞) . We stated that �

�
(�|x) is the conditional probability density function 

(PDF) and can be ordered by the likelihood ratio (LR) ordering. Specifically, we 
proved that if the baseline RHs are increasing (decreasing) in � for all x ≥ 0 , then 
�
�
(�|x) increases (decreases) in x ≥ 0 according to the LR order for 𝛼 > 0 . We also 

proved a similar result for 𝛼 < 0 . We obtained some results on the bending proper-
ties of the RH for �-mixtures.

   Finally, we provided sufficient conditions for comparing finite �-mixtures with 
different mixing probabilities and different baseline distributions according to the 
RH order and the usual stochastic order.
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