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Abstract
As evident from classical results on random polynomials, it is difficult to derive the 
probability distribution of the number of real roots Nn(ℝ) of a random polynomial of 
degree n, and even if derived, the distribution is not of any standard form. In this 
article, we construct a class of random polynomials of degree 2(n + 1) such that the 
distribution of N2(n+1)(ℝ) belongs to the scale family of binomial distributions. For 
the constructed class of random polynomials, we further notice that as n → ∞ , the 
expected proportion of real roots E

(

N2(n+1)(ℝ)

2(n+1)

)

 need not converge to 0, in contrast to 
most of the existing literature on random polynomials which show E(Nn(ℝ)) = o(n) 
as n → ∞ that, in turn, implies that asymptotically the majority of the roots of the 
random polynomial are non-real. The second result of this article shows that in fact 
for any given p ∈ [0, 1] , the construction can be engineered in such a way that the 
random polynomial has light-tailed coefficients and E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as 
n → ∞ . Hence, for the class of random polynomials, that we have constructed in this 
article, asymptotically the number of real roots can be arbitrarily large. Compared to 
Kac polynomials, which consist of light-tailed random coefficients, the amount of 
research done for random polynomials whose coefficients are non-identical/
dependent/heavy-tailed, is relatively scarce. In the final part of the present article, 
we give the third and final result that concerns random polynomials with heavy-
tailed coefficients. We extend the second result to show that for any given p ∈ (0, 1] , 
we can construct non-Kac, random polynomials with heavy-tailed, stochastically 
dependent coefficients for which E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ . All these 
results are based on the assumption that all the coefficients of the constructed class 
of random polynomials are continuous random variables. We conclude the article 
with a discussion of how they would change if instead, we assume that the 
coefficients are general random variables and how far the results derived in this 
article can be extended to some higher degree random polynomials of the same 
structure.
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1  Introduction

Polynomials are one of the most simple mathematical functions. For a polynomial 
pn(x) =

∑i=n

i=0
aix

i of degree n defined over ℝ , � is called a root of pn(x) if pn(�) = 0 . 
Extensive research has been done to study the properties of different characteristics 
of polynomials. Examples of such characteristics include the roots themselves, the 
number of real roots, irreducibility, etc. When the coefficients Ai s are random vari-
ables, all the characteristics of a polynomial (e.g. the number of real roots) become 
random. Such polynomials denoted as Fn(x) = A0 + A1x +⋯ + Anx

n are called ran-
dom polynomials. They have applications in the theory of polynomials. Properties of 
random polynomials lead to the formulation of new hypotheses about polynomials, 
which are otherwise difficult to discover. This approach to understanding statistical 
properties to compute a deterministic real picture is a typical example of a probabil-
istic method. Apart from that, random polynomials have applications in mathemati-
cal physics. Wigner (1955, 1958) modeled heavy atom energies with eigenvalues 
of random matrix and a vast literature studying the behaviour of those eigenvalues 
emerged subsequently. Eigenvalues of random matrices are roots of random charac-
teristic polynomials and hence, the theory of random polynomials finds applications 
in their study too. Random polynomials are also used in the study of quantum sys-
tems. Multidimensional quantum systems are approximated by mathematical equa-
tions and in these approximations, one often needs to locate the roots of polyno-
mials of high degree whose coefficients are rapidly-varying erratic functions of the 
energy (Bogomolny et al. 1996). As a result, these coefficients may be considered 
as random variables, even in a small energy interval; therefore making the underly-
ing polynomial a random one. Sometimes, random polynomials arise as solutions 
of stochastic differential equations. Bharucha-Reid and Sambandham (2014) have 
discussed random Legendre polynomial which arises as a solution to a stochastic 
version of Legendre equation. Finally, random polynomials are also useful in com-
plexity theory, where they are utilized to calculate the average case complexity of 
numerical algorithms. Emiris et al. (2010) used properties of random polynomials, 
in order to calculate the average case complexity of the bisection method.

To contrast with trigonometric random polynomials, orthogonal random 
polynomials, and other classes of random functions, often random polynomials are 
also referred to as algebraic random polynomials. The simplest form an algebraic 
random polynomial can take is referred to as Kac polynomial.

Definition 1  (Kac Polynomial) Let n be a positive integer, c0,… , cn be deter-
ministic numbers, and A be a random variable (which we call the atom distribu-
tion) of mean zero and finite nonzero variance. Consider the random polynomial 
Fn(x) = c0A0 + c1A1x +⋯ + cnAnx

n , where A0,… ,An are jointly independent cop-
ies of A. It is referred to as Kac Polynomial if c0 = c1 = ⋯ = cn = 1.

In practice, one usually normalizes the atom distribution A to have unit variance. 
However, the normalization does not affect the zeroes of Fn . A detailed exposition of 
Kac Polynomials is available in the books (Bharucha-Reid and Sambandham 2014) 
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and (Farahmand 1998). Other choices of values for c0,… , cn lead to non-Kac poly-
nomials. Among them, Weyl polynomials and Elliptic Polynomials demand separate 
attention. These random polynomials are investigated along several different lines. 
The distribution of the roots on the complex plane is of significant interest to Math-
ematicians. Another line of work studies the no of real roots of the random poly-
nomials of degree n, which is denoted by Nn(ℝ) . As the polynomial is random, the 
number of real roots Nn(ℝ) is also random. A significant amount of literature exists 
on random polynomials which studied the asymptotic behaviour of the expected 
number of real roots E(Nn(ℝ)) (Bloch and Pólya 1932; Littlewood and Offord 1939, 
1943, 1938). Subsequently, Kac (1943) was able to derive an exact expression of 
E(Nn(ℝ)) for finite n albeit when all the coefficients of the random polynomial are 
Gaussians with mean zero. In a different line of work, Wang (1983) and Yamrom 
(1972) gave a more accurate asymptotic representation of E(Nn(ℝ)) that ultimately 
culminated with the work (Wilkins 1988) where the authors obtained an asymptotic 
series for E(Nn(ℝ)).

In stark contrast, there exist very few works that studied the distribution of 
the random variable Nn(ℝ) . Maslova (1975) proved that if coefficients satisfy the 
conditions P(Ai = 0) = 0,E(Ai) = 0 , and E(|Ai|

2+𝜖) < ∞ for some 𝜖 > 0 then Nn(ℝ) 
asymptotically follows some Gaussian distribution. To the best of our knowledge, 
there does not exist any article studying the exact distribution of Nn(ℝ) for finite n. In 
this article, we construct a class of random polynomials such that the distribution of 
Nn(ℝ) belongs to the scale family of binomial distributions. We observe that for the 
constructed class of random polynomials as n → ∞ , the expected proportion of real 
roots E(Nn(ℝ)

n
) need not converge to 0, in contrast to most of the existing literature on 

random polynomials which show E(Nn(ℝ)) = o(n) as n → ∞ that, in turn, implies 
that asymptotically the majority of the roots of the random polynomial are non-real. 
Curious by the observation then we investigate whether for any given p ∈ [0, 1] we 
can construct random polynomials for which E(Nn(ℝ)) ∼ np as n → ∞ . The second 
result of this article shows that indeed such a construction is possible albeit using 
light-tailed random coefficients.

Compared to Kac polynomials, the amount of research done for random 
polynomials whose coefficients are non-identical/dependent/heavy-tailed is 
relatively scarce. Recently, Matayoshi (2012) considered the case where the 
coefficients of a random polynomial are dependent but form a stationary sequence 
of N(0, 1) distributions and obtained that E(Nn(ℝ)) ∼

2

�
log n as n → ∞ . Nezakati 

and Farahmand (2010) considered the case where the sequence of coefficients is 
distributed according to a Gaussian process with stationary covariance function 
Cov(Ai,Aj) = 1 −

|i−j|

n
 and obtained that E(Nn(ℝ)) = O(

√

log n) for n → ∞ . 
Rezakhah and Shemehsavar (2005, 2008) studied random polynomials and Nn(ℝ) 
when the coefficients are generated by Brownian motion process and hence non-
stationary. Their work was further extended by Mukeru (2019), who considered 
coefficients generated by successive increments of the fractional Brownian motion 
process.

A different line of work explored random polynomials with heavy-tailed 
coefficients. While most of the existing works considered coefficients that are either 
Gaussians or follow some distributions (may not be the same though for every 



548	 Journal of the Indian Society for Probability and Statistics (2023) 24:545–564

1 3

coefficient) that have all order moments finite, Ibragimov and Maslova (1971a, 
1971b) relaxed this condition considerably to establish asymptotic behaviour of 
E(Nn(ℝ)) for iid coefficients which only have finite variance. Recently, Do et  al. 
(2018) derived the asymptotic behaviour of E(Nn(ℝ)) for Ai such that E|Ai|

2+� are 
uniformly bounded but possibly with non-identical distributions. The scope of the 
result (Do et  al. 2018) is much wider since it is derived for generalized random 
polynomials which are more general functions than random polynomials and can 
accommodate fractional degrees, unlike random polynomials whose degree can only 
be a positive integer. In the final part of the present article, we give the third and 
final result that concerns random polynomials with heavy-tailed coefficients. We 
extend the second result to show that for any given p ∈ (0, 1] , we can construct non-
Kac, random polynomials with heavy-tailed, stochastically dependent coefficients 
for which E(Nn(ℝ)) ∼ np as n → ∞.

All the results derived in this article are based on the assumption that all 
coefficients of the constructed class of random polynomials are continuous random 
variables. We conclude the article with a discussion of how they would change if 
instead, we assume that the coefficients are general random variables and how far 
the results derived in this article can be extended to some higher degree random 
polynomials of the same structure.

2 � Expected Number of Real Roots, Kac–Rice Formula and Beyond

Any discussion on random polynomials is incomplete without the Kac–Rice 
formula. It is, in particular used to count the expected number of real roots of a 
random polynomial whose all coefficients are Gaussians. It is built on the following 
result from real analysis which counts the number of real roots of a continuously 
differentiable function F(x). Let F(x) be continuous for a ⩽ x ⩽ b , continuously 
differentiable for a < x < b , and have a finite number of turning points (that is, only 
a finite number of points at which F�(x) vanishes in (a, b)). Then the number of real 
roots of F(x) in the interval (a, b) is denoted by N(a, b), and is given by the formula

In this formula, multiple roots are counted once, and if either a or b is a zero it 
is counted as 1

2
 . This formula is then applied to calculate the number of real roots 

Nn(a, b) in the interval (a, b) and E(Nn(a, b)) of a random polynomial of degree n 
whose all coefficients are Gaussians.

Definition 2  (Kac–Rice Formula) Kac–Rice formula gives an integral representation 
of E(Nn(a, b)) as follows

N(a, b) = (2�)−1 ∫
∞

−∞

d� ∫
b

a

cos [�F(x)]|
|

F�(x)|
|

dx.

E(Nn(a, b)) = ∫
ℝn+1

Nn(a, b)d�(g) = ∫
b

a ∫
∞

−∞

|t|f (0, t;x)dt
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where g =
(

a0, a1,… , an
)

 is a point in ℝn+1, f (s, t;x) denotes the joint prob-
ability density of h(x,�) and h�(x,�) for x ∈ ℝ at h(x,�) = s , h�(x,�) = t where 
h(x,�), x ∈ ℝ is a real-valued function. Further simplification of Kac–Rice formula 
when all the coefficients are iid Gaussian leads to the following results (see Bharu-
cha-Reid and Sambandham 2014).

Case I Suppose that all the coefficients of the random polynomial Fn(x) are 
identically but not necessarily independent Gaussians with mean m(≠ 0) , variance 
1; and let the joint density function of the coefficients at the point 

(

a0, a1,… , an
)

 be

where M−1 is the moment matrix with 𝜌ij = 𝜌, 0 < 𝜌 < 1, i ≠ j . Then using the 
Kac–Rice formula one gets

where

Then one obtains the following:

Case II When all the coefficients of Fn(x) are identically but not necessarily 
independent Gaussians with mean m = 0 , variance 1; one gets

where M−1 is the moment matrix with 𝜌ij = 𝜌, 0 < 𝜌 < 1, i ≠ j . Then using the 
Kac–Rice formula, Bharucha-Reid and Sambandham (2014) proved that

|M|

1∕2(2�)−(n+1)∕2 exp
[

−
1

2
(a −m)�M(a −m)

]

Nn(�, �) = �−1 ∫
�

�

e−�1

{
(

AnCn − B2
n

)1∕2

An

e−�
2
1 +

(

�

2An

)1∕2

�1erf
(

�1
)

}

dx,

An(x) ≡ An = (1 − �)

n
�

k=0

x2k + �

�

n
�

k=0

xk

�2

,

Bn(x) ≡ Bn = (1 − �)

n
�

k=0

kx2k−1 + �

�

n
�

k=0

xk

��

n
�

k=0

kxk−1

�

Cn(x) ≡ Cn = (1 − �)

n
�

k=0

k2x2k−2 + �

�

n
�

k=0

kxk−1

�2

,

T1 =
m

An

�

n
�

k=0

xk

�2

, �1 =
�1

2
√

�1

, �1 =
AnCn − Bn

2An

,

�1 =
m

An

��

n
�

k=0

xk

�

Bn −

�

n
�

k=0

kxk−1

�

An

�

, erf
�

�1
�

=
2

√

� �
�1

0

e−t
2

dt.

E(Nn(ℝ)) ∼ (1∕�) log n, n → ∞

|M|

1∕2(2�)−(n+1)∕2 exp
[

−
1

2
a
�Ma

]
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where An,Bn,Cn are similar in values as stated in Case I. For large n

Subcase I If all the random coefficients are iid normal random variables with mean 
m(≠ 0) and variance one; that is the density function of each Ak is

then

Then one can obtain

Subcase II If all the random coefficients are iid standard normal random variables.
Then one gets

While all these results concern Gaussian random polynomials, some classical papers 
studied Fn(x) with coefficients that are iid uniformly distributed on (−1, 1) or iid dis-
crete random variables that take values +1 or −1 with probability 1

2
 (except the lead-

ing coefficient An which is 1, a.s.). Under those conditions one can show that for 
each n ⩾ 0 , for some n0 > 0,

and

where � and K are absolute constants.

3 � Main Results

In this section, we present the main results of this article. We construct a random 
polynomial as follows

Nn(�, �) =
1

� ∫
�

�

(

AnCn − B2
n

)1∕2

An

dx

E(Nn(ℝ)) ∼ (1∕�) log n, n → ∞.

(1∕
√

2�)e−(t−m)
2∕2

An =

n
∑

k=0

x2k,B =

n
∑

k=0

kx2k−1,C =

n
∑

k=0

k2x2k−2

E(Nn(ℝ)) ∼ (1∕�) log n, n → ∞

E(Nn(ℝ)) ∼ (2∕�) log n, n → ∞

P
(

Nn(ℝ) > 25(log n)2
)

⩽
12 log n

n

P

(

Nn(ℝ) <
𝛼 log n

(log log n)2

)

<
K

log n
,



551

1 3

Journal of the Indian Society for Probability and Statistics (2023) 24:545–564	

where 
{

A3n−2

}

n⩾1
=
{

A1,A4,A7,…
}

 is a sequence of iid continuous ran-
dom variables following common CDF F1 , 

{

A3n−1

}

n⩾1
=
{

A2,A5,A8,…
}

 is a 
sequence of iid continuous random variables following common CDF F2 , and 
{

A3n

}

n⩾1
=
{

A3,A6,A9,…
}

 is a sequence of iid continuous random variables fol-
lowing common CDF F3 . The CDFs F1,F2 , and F3 need not be the same. We fur-
ther assume that the three sequences of random coefficients are jointly independent. 
This particular form is considered mainly out of mathematical curiosity. However, 
note that, they are the characteristic polynomials associated with block diagonal and 
block triangular random matrices with 2 × 2 blocks and the associated real roots are 
the real eigenvalues of these block random matrices. Hence, studying these roots 
shed light on the behaviour of eigenvalues of certain random matrices. Owing to this 
special form of the coefficients we can bypass the Kac–Rice formula and a direct 
calculation yields a closed-form expression for E(N2(n+1)(ℝ)) . In fact, direct calcula-
tion leads to a nice expression for the distribution of the random variable N2(n+1)(ℝ).

3.1 � Exact Distribution of N
2(n+1)(ℝ)

Theorem 1  Let N2(n+1)(ℝ) be the no. of real roots of F2(n+1)(x) . Then

A consequence of the above result is that the expected number of real roots of 
F2(n+1)(x) is

and if p ∈ (0, 1) then as n → ∞ we get

where

Note that one may also count N2(n+1)(ℝ) excluding multiplicity of zeroes. In either 
case, the above-mentioned results remain unchanged.

Proof of Theorem  1  Let us consider the random quadratic function 
f (x) = A1 + A2x + A3x

2 where A1,A2 and A3 are continuous random variables with 
CDFs F1,F2 and F3 , respectively. Suppose N(ℝ) counts the number of real roots 
excluding multiplicity.

F2(n+1)(x) =
(

A1 + A2x + A3x
2
)(

A4 + A5x + A6x
2
)

⋯

(

A3n+1 + A3n+2x + A3n+3x
2
)

N2(n+1)(ℝ)

2
∼ Bin

(

n + 1,P
(

A2
2
− 4A1A3 > 0

))

.

E(N2(n+1)(ℝ)) = 2(n + 1)P
(

A2
2
− 4A1A3 > 0

)

,

N2(n+1)(ℝ) − 2(n + 1)p
√

n + 1

d
⟶N(0, 4pq)

p = P
(

A2
2
− 4A1A3 > 0

)

and q = 1 − p.
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or,

Now, since A1,A2,A3 are jointly independent continuous random vari-
ables, A2

2 − 4A1A3 is also a continuous random variable and hence, 
P
(

A2
2
− 4A1A3 = 0

)

= 0 . If we denote P
(

A2
2
− 4A1A3 > 0

)

 by p and set q = 1 − p

or,

Now consider

and note that

Let mk(ℝ) be the number of real roots of fk(n) . Since, N2(n+1)(ℝ) denotes the number 
of real roots of F2(n+1)(x)

where,

With that we end up showing that

Hence, N(ℝ) =

⎧

⎪

⎨

⎪

⎩

0, Δ < 0

1, Δ = 0

2, Δ > 0

where Δ is the discriminant

N(ℝ) =

⎧

⎪

⎨

⎪

⎩

0, A2
2
− 4A1A3 < 0

1, A2
2
− 4A1A3 = 0

2, A2
2
− 4A1A3 > 0

Then, N(ℝ) =

{

0, w.p. q

2, w.p. p

N(ℝ)

2
=

{

0, w.p. q

1, w.p. p

fk(x) = A3k+1 + A3r+2x + A3k+3x
2; k = 0, 1, 3,… n,

F2(n+1)(x) =

n
∏

k=0

fk(x).

∴N2(n+1)(ℝ) =

n
∑

k=0

mk(ℝ)

m0(ℝ)

2
,
m1(ℝ)

2
,
m2(ℝ)

2
,… ,

mn(ℝ)

2

iid
∼Ber(p).
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	�  ◻

Then by property of Binomial distribution, it follows that

or, equivalently

Simple application of De-Moivre–Laplace CLT implies that if p ∈ (0, 1) then

In simplified notation

or, equivalently

Note that, we have counted N(ℝ) excluding the multiplicity. However, even if we 
count N(ℝ) including the multiplicity we get

Now, since A1,A2 and A3 are jointly independent continuous random variables, 
A2

2 − 4A1A3 is also a continuous random variable. Hence, P
(

A2
2
− 4A1A3 = 0

)

= 0 
and so P

(

A2
2
− 4A1A3 ≥ 0

)

= P
(

A2
2
− 4A1A3 > 0

)

= p and q = 1 − p.

Consequently, all the results of Theorem 1 remains unchanged.

N2(n+1)(ℝ)

2
∼ Bin

(

n + 1,P
(

A2
2
− 4A1A3 > 0

))

.

E

(

N2(n+1)(ℝ)

2

)

= (n + 1)P
(

A2
2
− 4A1A3 > 0

)

E(N2(n+1)(ℝ)) = 2(n + 1)P
(

A2
2
− 4A1A3 > 0

)

.

N2(n+1)(ℝ) − 2(n + 1)P
(

A2
2
− 4A1A3 > 0

)

√

4(n + 1)P
(

A2
2
− 4A1A3 > 0

)(

1 − P
(

A2
2
− 4A1A3 > 0

))

d
−→N(0, 1).

N2(n+1)(ℝ) − 2(n + 1)p

2
√

(n + 1)pq

d
−→N(0, 1)

N2(n+1)(ℝ) − 2(n + 1)p
√

(n + 1)

d
−→N(0, 4pq) provided p ∈ (0, 1).

N(ℝ) =

{

0, A2
2
− 4A1A3 < 0

2, A2
2
− 4A1A3 ≥ 0

.

Hence, even including multiplicity N(ℝ) =

{

0, w.p. q

2, w.p. p
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3.2 � Proportion of Real Roots

For the constructed class of random polynomials as n → ∞ , the expected proportion 
of real roots E(N2(n+1)(ℝ)

2(n+1)
) need not converge to 0, in contrast to most of the existing 

literature on random polynomials which show E(Nn(ℝ)) = o(n) as n → ∞ that, in 
turn, implies that asymptotically the majority of the roots of the random polynomial 
are non-real. Curious by the observation then we investigate whether for any given 
p ∈ [0, 1] we can get CDFs F1,F2 and F3 such that for the constructed F2(n+1)(x) , 
E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ . The second result of this article searches for 
an answer to this question.

Theorem 2  Given any p ∈ [0, 1] it is possible to construct CDFs F1,F2 , and F3 of 
continuous light-tailed random variables such that for the constructed F2(n+1)(x) , 
E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞.

Proof of Theorem 2  Let us fix p ∈ [0, 1].
Case I p = 0 . F1,F2 and F3 are CDFs associated with U[2,  3],  U[0,  1] and 

U[2, 3], respectively. Then see that P
(

A2
2
> 4A1A3

)

= 0 since 4A1A3 ≥ 16 w.p. 1 but 
A2
2
≤ 1 w.p. 1.
Case II p = 1 . F1,F2 and F3 are CDFs associated with U[0,  1],  U[3,  4] and 

U[0, 1], respectively. Then see that P
(

A2
2
> 4A1A3

)

= 1 since 4A1A3 ≤ 4 w.p. 1 but 
A2
2
≥ 9 w.p. 1.
Case III p ∈ (0, 1) . This is the most interesting case and we choose F1 and F3 

to be CDFs associated with U[0, 1] and U[0, 1], respectively. Then, we choose F2 
judiciously. Let us define F2 as follows

Firstly, it is easy to show that F2(x) is a CDF associated with a continuous random 
variable A2 with density as follows

Then,

F2(x) =

⎧

⎪

⎨

⎪

⎩

0; x ≤ 0
�

x

2

�

�

2
√

1−p
−2

�

; 0 < x < 2

1; x ≥ 2

.

f2(x) =

⎧

⎪

⎨

⎪

⎩

�

1
√

1−p
− 1

��

x

2

�

�

2
√

1−p
−3

�

; 0 < x < 2

0; otherwise

.
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Therefore, for any given p ∈ [0, 1] , we can choose CDFs F1,F2 and F3 associated 
with continuous light-tailed random variables such that for the constructed F2(n+1)(x) , 
E(N2(n+1)(ℝ)) = 2(n + 1)p and hence, E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ . 	�  ◻

3.3 � Heavy‑Tailed Random Polynomial

In this final part of the article, we investigate the distribution of Nn(ℝ) and the 
asymptotic behaviour of E(Nn(ℝ)) when Ai s are heavy-tailed random variables. 
First, we show that when Ai s are heavy-tailed random variables then the coefficients 
of Fn(x) are also heavy-tailed. However, note that by heavy-tailed random variables 
here we refer to those random variables for which the MGF does not exist in any 

P
�

A2

2
− 4A1A3 > 0

�

= 1 − P
�

A2

2
− 4A1A3 ≤ 0

�

= 1 − P
�

A2

2
≤ 4A1A3

�

= 1 − P
�

A2 ≤ 2
√

A1A3

�

= 1 − �
1

0
�

1

0

P(A2 ≤ 2
√

A1A3�A1 = a1,A3 = a3)da1da3

= 1 − �
1

0
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1

0
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√
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1
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neighbourhood of zero. There are alternative stronger definitions of heavy-tailed 
random variables.

Proposition 3  If x1, x2 ≥ 2 then x1x2 ≥ x1 + x2.

Proof of Proposition 3.

Proposition 4  If ∫ ∞

0
etxf (x)dx diverges to infinity, when f (⋅) is a p.d.f, then 

∫ ∞

k
etxf (x)dx also diverges infinity, where K ∈ ℝ

+.

Proof of Proposition 4.

Now,

∴ ∫ k

0
etxf (x)dx is bounded. Since, ∫ k

0
etxf (x) + ∫ ∞

k
etxf (x)dx diverges to infinity, we 

conclude that ∫ ∞

k
etxf (x)dx also diverges to infinity.

Proposition 5  If at least one of Y1, Y2,… , Yn is a heavy-tailed random variable, then 
∏n

i=1
Yi and 

∑n

i=1
Yi are also heavy-tailed.

Proof of Proposition 5. First, we show that Y1Y2 is heavy-tailed ran-
dom variable. Note that, E

(

etY1Y2
)

= ∫ ∞

0
∫ ∞

0
ety1y2 fY1

(

y1
)

fY2

(

y2
)

dy1dy2 
⩾ ∫ ∞

2
∫ ∞

2
ety1y2 fY1

(

y1
)

fY2

(

y2
)

dy1dy2

x1 ⩾ 2 ⟹ x1 − 1 ⩾ 1 ⇒

1

x1 − 1
⩽ 1

⟹ x2 ⩾ 2 = 1 + 1 ⩾ 1 +
1

x1 − 1
=

x1

x1 − 1

⟹ x2 ⩾
x1

x1 − 1

⟹ x1x2 − x2 ⩾ x1 ⟹ x1x2 ⩾ x1 + x2.

∫
∞

0

etxf (x)dx = ∫
k

0

etxf (x)dx + ∫
∞

k

etxf (x)dx

0 ≤ �
k

0

etxf (x)dx ≤ �
k

0

etkf (x)dx

= etk �
k

0

f (x)dx

≤ etk �
∞

0

f (x)dx

≤ etk
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⩾ ∫ ∞

2
∫ ∞

2
et(y1+y2)fY1

(

y1
)

fY2

(

y2
)

dy1dy2 
=
{∫ ∞

2
ety ⋅ fY1

(

y1
)

dy1
}{∫ ∞

2
ety2 fY2

(

y2
)

dy2
}

By putting k = 2 in Proposition 4, we have: ∫ ∞

2
etyi fYi

(

yi
)

dyi diverges to infinity for 
at least one of i = 1, 2.

⟹
{∫ ∞

2
ety ⋅ fY1

(

y1
)

dy1
}{∫ ∞

2
ety2 fY2

(

y2
)

dy2
}

 diverges to infinity ⇒ E
(

etY1Y2
)

 is 
not finite, where t > 0.

⟹ Y1Y2 is also a heavy-tailed random variable. By repeated application of the 
previous result then we can show that if at least one of Y1, Y2,… , Yn is a heavy-tailed 
random variable, then 

∏n

i=1
Yi is also heavy-tailed.

Now, we show that if at least one of Y1, Y2,… , Yn is a heavy-tailed random variable 
then 

∑n

i=1
Yi is also heavy-tailed. Note that, E

(

etYi
)

 diverges to infinity, ∀t > 0 , for at 
least one of i = 1(1)n . Now, P

(

etYi ⩾ 0
)

= 1 ⟹ P
(

et(Y1+Y2+…+Yn) ⩾ etYi
)

= 1,∀i = 1(1)n 

⟹ E
(

et(Y1+Y2+⋯+Yn)
)

⩾ E
(

etYi
)

∀i = 1(1)n . Hence, E
(

et(y1+⋯+yn)
)

 also diverges to 
infinity, which in turn, implies Y1 + Y2 +⋯ + Yn is also a heavy-tailed random 
variable.

Now, since each coefficient in the expanded polynomial is formed by the adding 
products of Ai , we conclude that they are heavy-tailed if all the Ai s are heavy-tailed. 
Note that, Theorem  1 does not specify whether F1,F2 , and F3 are CDFs associated 
with continuous light-tailed or heavy-tailed random variables, and hence the result 
is directly applicable to the heavy-tailed coefficients, too. So, if we take the Ai to be 
heavy-tailed continuous random variables then also N2(n+1)(ℝ)

2
 will follow a binomial 

distribution. However, now for any given p ∈ [0, 1] , finding F1,F2 , and F3 which 
are CDFs associated with continuous heavy-tailed random variables such that the 
E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ may be tricky. In what follows, we show that for 
any given p ∈ (0, 1] we can choose continuous heavy-tailed distributions F1,F2 , and F3 
such that E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ . We further show that for no choice of 
F1,F2 , and F3 we can extend this result to p = 0 case.

Theorem 6  For any given p ∈ (0, 1] , it is possible to design continuous heavy-tailed 
distributions F1,F2 , and F3 such that E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as n → ∞ . Further-
more, it is not possible to choose continuous heavy-tailed distributions F1,F2 and F3 
such that E(N2(n+1)(ℝ)) = o(n) as n → ∞.

Proof of Theorem 6  Let us fix p ∈ (0, 1].
Case I p = 1 . F1,F2 , and F3 are CDFs associated with Pareto(1, 1),Pareto(1, 1) , 

and −Pareto(1, 1) , respectively. Then see that P
(

A2
2
> 4A1A3

)

= 1 since 4A1A3 < 0 
w.p. 1 but A2

2
≥ 0 w.p. 1.

Case II p ∈ (0, 1) . In this more interesting case we choose both of F1 and F3 to be 
CDF of Pareto(�1, �) and F2 to be CDF of Pareto(2�, �) where 𝛼, 𝛼1 > 0 and 𝛽 > 0 
are to be selected later. Let us denote the pdf associated with F1 and F3 by f1 and f3 . 
Then,
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Now, we calculate E( 1

A�
1

) . See that
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Hence, P
(

A2
2
− 4A1A3 > 0

)

=
𝛽2𝛼

4𝛼
E(

1

A𝛼
1

)E(
1

A𝛼
3

) =
𝛼2
1

(𝛼+𝛼1)
24𝛼

 . We set �1 = 1 to get 

P
(

A2
2
− 4A1A3 > 0

)

=
1

(𝛼+1)24𝛼
 . Since the function g(x) = 1

(x+1)24x
 is continuous and 

strictly monotonically decreasing on ℝ+ and as limx→0+ g(x) = 1 and limx→∞ g(x) = 0 
so for any p ∈ (0, 1) there exists a unique x0 such that g(x0) = p , and then we set 
� = x0 . That leads to P

(

A2
2
− 4A1A3 > 0

)

= p.
Therefore, for any given p ∈ (0, 1] , we can choose CDFs F1,F2 , and F3 associ-

ated with continuous heavy-tailed random variables such that for the constructed 
F2(n+1)(x) , E(N2(n+1)(ℝ)) = 2(n + 1)p and hence E(N2(n+1)(ℝ)) ∼ 2(n + 1)p as 
n → ∞ . Now we show that it is not possible to choose continuous heavy-tailed dis-
tributions F1,F2 , and F3 such that E(N2(n+1)(ℝ)) = o(n) as n → ∞ . We would prove 
it by contradiction. Suppose there are such continuous heavy-tailed distributions 
F1,F2 , and F3 . Recall that A1 ∼ F1 and A2 ∼ F2 are independent random variables. 
One can get a < b and b > 0 such that P(a ≤ 4A1A3 ≤ b) > 0 . So,

which implies that F2 has bounded support thereby contradicting the assumption F2 
is a heavy-tailed distribution. 	�  ◻
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0 = p = P
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2
> 4A1A3

)

= P
(

A2
2
> 4A1A3 ∣ a ≤ 4A1A3 ≤ b

)

P(a ≤ 4A1A3 ≤ b)

+ P
(

A2
2
> 4A1A3 ∣ (4A1A3 < a) ∪ (4A1A3 > b)

)

P((4A1A3 < a) ∪ (4A1A3 > b))

⟹ P
(

A2
2
> 4A1A3 ∣ a ≤ 4A1A3 ≤ b

)

= 0

⟹ P
(

A2
2
> b ∣ a ≤ 4A1A3 ≤ b

) ≤ P
(

A2
2
> 4A1A3 ∣ a ≤ 4A1A3 ≤ b

)

= 0

⟹ P
(

A2
2
> b ∣ a ≤ 4A1A3 ≤ b

)

= 0

⟹ P
(

A2
2
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)

= 0 Since A1,A2,A3 are independent.
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(

A2
2
≤ b
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= 1
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3.4 � Simulation Studies

The theoretical findings obtained in the previous subsections are supplemented 
via simulation studies. We study the distribution of N2(n+1)(ℝ) for three differ-
ent sample sizes. We plot the relative frequency histogram of N10(ℝ),N50(ℝ) and 
N200(ℝ) . These quantities denote the number of real roots of random polynomials 
of degree 10, 50 and 200, respectively. We consider different probability distribu-
tions for the coefficients A0,… ,An , to carry out the simulation studies. First, we 
consider the case when F1,F2 , and F3 are N(0, 1) (Fig. 1).

Then we consider the two cases when F1,F2 , and F3 are LN(0, 1), and F1,F2 , 
and F3 are C(0, 1). Note that, LN(0, 1) does not admit finite MGF, and hence, as 
per our definition of a heavy-tailed random variable, LN(0,  1) is a heavy-tailed 
distribution. On the other hand, standard Cauchy distribution, denoted by C(0, 1), 
does not admit finite mean as well as finite MGF and hence, qualifies as a heavy-
tailed distribution in a much stronger sense (Figs. 2 and 3).

Although, the theorems of the previous subsections are based on the assump-
tion that F1,F2 , and F3 are continuous distributions; it is curious to see how the 

(a) Distribution of N10(R) (b) Distribution of N50(R) (c) Distribution of N200(R)

Fig. 1   Distribution of N10(ℝ),N50(ℝ) and N200(ℝ) , when F1,F2 , and F3 are N(0, 1)

(a) Distribution of N10(R) (b) Distribution of N50(R) (c) Distribution of N200(R)

Fig. 2   Distribution of N10(ℝ),N50(ℝ) and N200(ℝ) , when F1,F2 , and F3 are LN(0, 1)
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distribution of N2(n+1)(ℝ) is modified, if instead, we assume that the coefficients 
are discrete random variables (Figs. 4 and 5).

As n becomes larger, the distribution N2(n+1)(ℝ) can be approximated by normal 
distribution more accurately. Hence, unlike the distribution N10(ℝ) and N50(ℝ) , 
which are skewed, the distribution of N200(ℝ) is symmetric and bell-shaped. For 

(a) Distribution of N10(R) (b) Distribution of N50(R) (c) Distribution of N200(R)

Fig. 3   Distribution of N10(ℝ),N50(ℝ) and N200(ℝ) , when F1,F2 , and F3 are C(0, 1)

(a) Distribution of N10(R) (b) Distribution of N50(R) (c) Distribution of N200(R)

Fig. 4   Distribution of N10(ℝ),N50(ℝ) and N200(ℝ) , when F1,F2 , and F3 are Ber( 1
2
)

(a) Distribution of N10(R) (b) Distribution of N50(R) (c) Distribution of N200(R)

Fig. 5   Distribution of N10(ℝ),N50(ℝ) and N200(ℝ) , when F1,F2 , and F3 are Poi(1)
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each simulation study, 10,000 samples are generated to compute the respective 
histogram.

3.5 � Discussion and Concluding Remarks

The results derived in this article are based on the assumption that the coefficients 
are continuous random variables. It is curious to see how are they modified if instead, 
we assume that the coefficients are general random variables. The exact distribution 
of N2(n+1)(ℝ)

2
 remains unchanged if roots are counted including the multiplicity. 

However, if roots are counted excluding multiplicity, in that case, N2(n+1)(ℝ) follows 
a distribution that is the (n + 1)-fold convolution of a 3-point discrete distribution 
supported on {0, 1, 2} of which Bernoulli is a special case.

Another question that arises naturally is whether the results derived 
in this article can be extended to some higher degree random polynomi-
als of the same structure. A theorem similar to Theorem  1 can be stated for 
F3(n+1)(x) =

(

A1 + A2x + A3x
2 + A4x

3
)

⋯

(

A4n+1 + A4n+2x + A4n+3x
2 + A4n+4x

3
)

 and 
one can show that N3(n+1) (ℝ)−(n+1)

2
∼ Bin

(

n + 1,P
(

4(A2
3 − 3A2A4)3 − (2A3

3 − 9A2A3A4 + 27A1A2
4)

2 > 0
)) . 

However, in that case, the binomial success probability is of nontrivial form, render-
ing an extension of Theorems 2 and 6 difficult. Beyond the third-degree polynomial, 
the scaled and centered value of the number of real roots is no longer binomially 
distributed. When k is even, the distribution of Nk(n+1)(ℝ)

2
 is (n + 1)-fold convolution 

of a k
2
-point discrete distribution supported on {0, 1, 2,… ,

k

2
} , and when k is odd, the 

distribution of Nk(n+1)(ℝ)−(n+1)

2
 is (n + 1)-fold convolution of a k−1

2
-point discrete distri-

bution supported on {0, 1, 2,… ,
k−1

2
} . Needless to mention for the above-mentined 

cases an extension of Theorems 2 and 6 seems infeasible.

Acknowledgements  We thank the anonymous reviewer for his/her valuable suggestions, which lead to a 
much improved version of the previously submitted draft. All the simulation studies are done and all the 
associated graphs are plotted using the statistical software R (version R 4.2.3) (R Core Team 2022).

Funding  No funding was used for carrying out this research.

Declarations 

 Conflict of interest  The authors declare that they have no conflict of interest.

References

Bharucha-Reid AT, Sambandham M (2014) Random polynomials: probability and mathematical statis-
tics: a series of monographs and textbooks. Academic Press, London

Bloch A, Pólya G (1932) On the roots of certain algebraic equations. Proc Lond Math Soc 2(1):102–114
Bogomolny E, Bohigas O, Leboeuf P (1996) Quantum chaotic dynamics and random polynomials. J Stat 

Phys 85:639–679
Do Y, Nguyen O, Vu V (2018) Roots of random polynomials with coefficients of polynomial growth. 

Ann Probab 46(5):2407–2494



563

1 3

Journal of the Indian Society for Probability and Statistics (2023) 24:545–564	

Emiris IZ, Galligo A, Tsigaridas EP (2010) Random polynomials and expected complexity of bisection 
methods for real solving. In: Proceedings of the 2010 international symposium on symbolic and 
algebraic computation, pp 235–242

Farahmand K (1998) Topics in random polynomials, vol 393. CRC Press, Boca Raton
Ibragimov IA, Maslova NB (1971a) On the expected number of real zeros of random polynomials I. 

Coefficients with zero means. Theory Probab Appl 16(2):228–248
Ibragimov IA, Maslova NB (1971b) On the expected number of real zeros of random polynomials. II. 

Coefficients with non-zero means. Theory Probab Appl 16(3):485–493
Kac M (1943) On the average number of real roots of a random algebraic equation. Bull Am Math Soc 

49(4):314–320
Littlewood J, Offord A (1938) On the number of real roots of a random algebraic equation. J Lond Math 

Soc 1(4):288–295
Littlewood JE, Offord AC (1939) On the number of real roots of a random algebraic equation. II. In: 

Mathematical proceedings of the Cambridge philosophical society, vol 35. Cambridge University 
Press, Cambridge, pp 133–148

Littlewood JE, Offord AC (1943) On the number of real roots of a random algebraic equation (III). Rec 
Math [Mat Sbornik] NS 12(3):277–286

Maslova NB (1975) On the distribution of the number of real roots of random polynomials. Theory 
Probab Appl 19(3):461–473

Matayoshi J (2012) The real zeros of a random algebraic polynomial with dependent coefficients. Rocky 
Mt J Math 1015–1034

Mukeru S (2019) Average number of real zeros of random algebraic polynomials defined by the incre-
ments of fractional Brownian motion. J Theor Probab 32(3):1502–1524

Nezakati A, Farahmand K (2010) Real zeros of algebraic polynomials with dependent random coeffi-
cients. Stoch Anal Appl 28(3):558–564

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statis-
tical Computing, Vienna, Austria. R Foundation for Statistical Computing. https://​www.R-​proje​ct.​
org/

Rezakhah S, Shemehsavar S (2005) On the average number of level crossings of certain gaussian random 
polynomials. Nonlinear Anal Theory Methods Appl 63(5–7):555–567

Rezakhah S, Shemehsavar S (2008) Expected number of slope crossings of certain gaussian random poly-
nomials. Stoch Anal Appl 26(2):232–242

Wang YJ (1983) Bounds on the average number of real roots of a random algebraic equation. Chin Ann 
Math Ser A 4(5):601–605

Wigner E (1955) Characteristic vectors of bordered matrices with infinite dimensions. Ann Math 
62:548–564

Wigner EP (1958) On the distribution of the roots of certain symmetric matrices. Ann Math 
67(2):325–327

Wilkins JE (1988) An asymptotic expansion for the expected number of real zeros of a random polyno-
mial. Proc Am Math Soc 103(4):1249–1258

Yamrom B (1972) On the average number of real zeros of random polynomials. In: Doklady Akademii 
Nauk, vol 206. Russian Academy of Sciences, pp 1059–1060

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://www.R-project.org/
https://www.R-project.org/


564	 Journal of the Indian Society for Probability and Statistics (2023) 24:545–564

1 3

Authors and Affiliations

Samya Praharaj1 · Suman Guha2 

 *	 Suman Guha 
	 suman.stat@presiuniv.ac.in

	 Samya Praharaj 
	 samyapraharaj@gmail.com

1	 Indian Statistical Institute, New Delhi 110016, Delhi, India
2	 Presidency University, Kolkata 700073, West Bengal, India

http://orcid.org/0000-0003-1139-8491

	An Interesting Class of Non-Kac Random Polynomials
	Abstract
	1 Introduction
	2 Expected Number of Real Roots, Kac–Rice Formula and Beyond
	3 Main Results
	3.1 Exact Distribution of 
	3.2 Proportion of Real Roots
	3.3 Heavy-Tailed Random Polynomial
	3.4 Simulation Studies
	3.5 Discussion and Concluding Remarks

	Acknowledgements 
	References




