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Abstract
The generalized Poisson–XLindley distribution (GPXLD), which is obtained by 
combining the generalized Poisson distribution and the XLindley distribution based 
on the Lagrangian probability distribution framework, is a new distribution that we 
introduce for modeling count datasets. In this study, we also explore some impor-
tant mathematical aspects of the GPXLD, such as median, mode, and non-central 
moment. It is shown that the moment of the GPXLD do not exist in some situations 
and have increasing, decreasing, bathtub and upside-down bathtub shaped hazard 
rates. For estimating its parameters, the maximum likelihood approach has been 
presented. A simulation study based on the inverse transformation method is used 
to evaluate how these estimators perform. In addition, a zero-inflated form of the 
GPXLD is defined for the case where the datasets contain an excessive amount of 
zeros. Applications of the GPXLD and zero-inflated GPXLD are described in a 
number of areas, and they are compared with some other existing distributions.

Keywords Generalized Poisson · XLindley · Lagrange expansion · Zero-inflated · 
Inverse transformation method

1 Introduction

Count models are used in many theoretical and practical disciplines, including engi-
neering, health, transportation, and insurance. Data science approaches have been 
used to describe pandemonium behaviour, crop harvesting, business data mining, 
e-commerce fraud, and other challenges (see Tien 2017). One of the most important 
uses of statistics is the representation of natural events or different real-world cir-
cumstances in a probability function that has a certain probability distribution that 

 * Mohanan Monisha 
 monishalayam444@gmail.com

1 Department of Statistics, University College, Thiruvananthapuram, Kerala 695 034, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41096-023-00160-x&domain=pdf
http://orcid.org/0000-0003-0533-8812


420 Journal of the Indian Society for Probability and Statistics (2023) 24:419–441

1 3

fits with those events. In order to express these incidents using a random variable 
(rv), we must be aware of them. A probability distribution function, which can be 
discrete, continuous, or mixed, can be used to represent any rv. We provide a mixed 
count model in this article that is based on the Lagrange expansion mentioned in 
Jenson (1902).

Poisson distribution is one often used model in the literature for counting data. 
However, because of its unique characteristics, this distribution is inappropri-
ate for the most of count data, especially when there are issues with overdisper-
sion or underdispersion. The most of count data deviate from the equidispersion of 
the Poisson distribution. As a result, it restricts the uses for this distribution (see 
Kusumawati and Wong 1987; Khan et  al. 2018). Mixed-Poisson distributions in 
modeling count datasets have been proposed by researchers as a potential remedy 
for this problem. For instance, Bhati et  al. (2017) created the Poisson-transmuted 
exponential distribution, a new mixed-Poisson distribution by combining the Pois-
son distribution with the transmuted exponential distribution. Poisson–Bilal dis-
tribution was first introduced by Altun (2020a). Altun et al. (2021) introduced the 
Poisson–Xgamma distribution (PXGD). Poisson-generalized Lindley distribution 
(PGLD) was first developed by Altun (2021). An detailed literature overview on 
mixed-Poisson distributions may be found in Karlis and Xekalaki (2005). Numer-
ous researchers have proposed using generalized distributions to deal with circum-
stances where many non-homogeneous occurrences and common distributions are 
unsuccessful in explaining the behavior of their problems. The ability to represent 
both homogeneous and heterogeneous populations, as well as the fact that they are 
significantly wider than their usual forms, are characteristics of generalized distri-
butions, see Consul and Jain (1973), Wagh and Kamalja (2017) and Bhattacharyya 
et al. (2021).

The generalized Poisson distribution (GPD) was created by Consul and Jain 
(1973) using the Lagrange expansion described in Jenson (1902). The GPD must 
be more suited to many forms of data with overdispersion or underdispersion than 
the classical Poisson distribution, which lacks dispersion flexibility. According to 
Consul and Jain (1973), the variance of the GPD is greater than, equal to, or less 
than the mean depending on the value of the parameter, whether it is positive, zero, 
or negative, respectively. Also, they showed that when parameter values increased, 
so did the variance and mean values, see Khan et al. (2018) and Wagh and Kamalja 
(2017). Several statistical applications prefer the GPD model, which generalizes the 
Poisson distribution. The characteristics of the GPD and the potential to represent 
data with overdispersion or underdispersion as well as the data with equidispersion 
make it a desirable distribution in distribution theory and a variety of applications, 
including branching processes, queuing theory, science, ecology, biology, and genet-
ics. Moreover, the GPD takes up the most space and is the most important concept 
in the theory of Lagrangian distributions.

The idea of this work is based on the mixture of the GPD and XLindley dis-
tribution (XLD) using Lagrangian expansion given in Jenson (1902). Chouia and 
Zeghdoudi (2021) developed the XLD by mixing the exponential and Lindley dis-
tributions. This work is motivated by the following: XLD is simple and easy to 
apply. However, in general it is applicable to try out simpler distributions than more 
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complicated ones; the XLD can be used quite effectively in analyzing many real life-
time data set: application to Ebola, Corona and Nipah virus and gives adequate fits 
too many datasets. For more details see Chouia and Zeghdoudi (2021).

Several disciplines, including agriculture, biology, ecology, engineering, epide-
miology, sociology, etc., frequently use count data with extra zeros. Examples of 
such data include the number of women over 80 who pass away each day (see Has-
selblad 1969), the number of fetal movements per second (Leroux and Puterman 
2011), the number of HIV-positive patients (Van den Broek 1995), and the number 
of ambulances call for illnesses brought on by the heat (Bassil et al. 2011), the num-
ber of health services visits during a follow-up time (Feng 2021). To explain count 
data with excess zeros, a number of zero-inflated models, such as the zero-inflated 
Poisson distribution (ZIPD), the zero-inflated negative binomial distribution, and 
many others, have been studied in the literature (see Wagh and Kamalja 2018). In 
several areas, zero-inflated models are becoming more and more common. We also 
develop the zero-inflated GPXLD and give it the name zero-inflated GPXLD (ZIG-
PXLD) in this article.

The following is how the rest of the article is sorted. The detailed description of 
the Lagrange expansion and XLD are covered in Sect. 2. The definition and some 
of its special cases are discussed in Sect.  3. Some mathematical properties, and 
other details are presented in Sect. 4. In Sect. 5, the maximum likelihood estimation 
technique is defined to estimate the unknown parameters of the new distribution. 
The performance of the GPXLD parameters for the maximum likelihood estima-
tion is also studied using simulation technique in the Sect. 6. A zero-inflated model 
with respect to the new distribution is discussed in Sect.  7. The applications and 
the empirical studies based on the new model concerning two real datasets are con-
ducted in Sect. 8. Then, Sect. 9 finishes with the decisive concluding words.

2  Some Preliminaries

In this section, we define the XLD and give some mathematical background on the 
generalized Lagrangian family.

2.1  Generalized Lagrangian Family (GLF)

Let g(z) and h(z) be two analytic function of z,  which are successively differentiable 
in [−1, 1] such that g(1) = h(1) = 1, and g(0) ≠ 0. Lagrange considered the inversion 
of the Lagrange transformation u =

z

g(z)
, and expressed it as a power series of u. Jen-

son (1902) defined the Lagrange expansion to be:

where Dr =
�r

�zr
 and h�(z) = �h(z)

�z
.

(1)h(u) = h(0) +

∞∑
x=1

ux

x!

{
Dx−1

[(
g(z)

)x
h�(z)

]}||||z=0,
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If every term in the series (1) is non-negative, the series turns into a probability 
generating function (pgf) in u and gives the pmf of the discrete GLF, which is as 
follows:

Using the Lagrange expansion described in (1), Consul and Shenton (1972) defined 
and studied the discrete GLF. For more references on the discrete GLF, see Consul 
and Famoye (2006).

Using Li et al. (2006), it is possible to obtain the Lagrangian probability model 
by relaxing the assumption that g(1) = h(1) = 1. With this relaxation, we create the 
novel discrete mixture distribution based on the pmf of the discrete GLF given in 
(2).

2.2  The XLindley Distribution

A rv T follows a XLD, denoted as X ∼ XLD(�), if its probability density function 
(pdf) is given by

Now, the cumulative density function (cdf) of the XLD is given as

with t > 0 and 𝜃 > 0.

The rth distributional moment (�r) associated with the XLD is given by

We have employed the gamma function defined by Γ(m) = ∫ ∞

0
tm−1e−tdt, with the 

relation Γ(m) = (m − 1)! for any positive integer m.
The graphical depiction of the pdf of the XLD is shown in the plots in Fig. 1. To 

learn more about the XLD, see Chouia and Zeghdoudi (2021).

3  The Generalized Poisson–XLindley Distribution

The following theorem from Li et al. (2008) is used with the Lagrangian probability 
model to generate the novel mixture of the XLD:

(2)P(X = x) =

⎧
⎪⎨⎪⎩

h(0) x = 0,�
Dx−1

��
g(z)

�x

h�(z)

������z=0
x!

x = 1, 2, 3…

(3)fT (t) =
𝜃2(2 + 𝜃 + t)e−𝜃t

(1 + 𝜃)2
, t > 0, 𝜃 > 0.

FT (t) = 1 −

(
1 +

�t

(1 + �)2

)
e−�t,

�r = E(Tr) =

(
�2 + 2� + r + 1

)
r!

(1 + �)2�r
, r = 1, 2, 3…
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Theorem 3.1 Let g(z) > 0 and h(z) > 0 (for all z > 0 ) be analytic functions such 

that g(0) ≠ 0, 
{
Dx−1

[
(g(z))xh�(z)

]}

z=0

≥ 0, and h(0) ≥ 0, where D =
�

�z
 is a deriva-

tive operator. If the series

converges uniformly on any closed and bounded interval, then a rv X has a unform 
mixture of Lagrangian probability model with the pmf

Proof Proof is given in Li et al. (2008) and hence omitted.   ◻

Theorem 3.2 Let g(t) and h(t) satisfy the conditions in Theorem 3.1 and let f(t) be 
a pdf for some continuous rv T,  then the pmf of X,  a continuous mixture of Lagran-
gian probability model, is given by

Proof Proof is given in Li et al. (2008) and hence omitted.   ◻

h(u) = h(0) +

∞∑
x=1

ux

x!

{
Dx−1

[
(g(z))xh�(z)

]}||||z=0

(4)P(X = x) =

⎧
⎪⎨⎪⎩

∫ 1

0

�
h(0)

h(t)

�
dt, x = 0,

∫ 1

0

��
t

g(t)

�x

x!h(t)

�
Dx−1

�
(g(z))xh�(z)

������z=0
�
dt, x ≥ 1.

(5)P(X = x) =

⎧
⎪⎪⎨⎪⎪⎩

h(0) ∫ ∞

−∞

� f (t)

h(t)

�
dt, x = 0,

∫ ∞

−∞

�
f (t)

�
t

g(t)

�x

x!h(t)

�
Dx−1

�
(g(z))xh�(z)

������z=0
�
dt, x ≥ 1.
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Fig. 1  Various pdf shapes of the XLD for different parameter values
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Proposition 3.1 Assume that X follows the new mixture GPXLD with 𝜆 > 0, 
0 < 𝜌 < 1 and 𝜃 > 0, then the pmf of X is given by

This distribution is denoted as GPXLD(�, �, �), and one can note 
X ∼ GPXLD(�, �, �) to inform that X follows the GPXLD with parameters �, � and �.

Proof Let g(z) = e�z and h(z) = e�z, where 0 < 𝜌 < 1 and 𝜆 > 0. Under the transfor-
mation z = ue�z and using the Lagrange expansion given in (1), we have

substituting z = t, we get

which implies

when t = 1 the above formulation reduces to the GPD given in Consul and Jain 
(1973).

Therefore, by Theorem 3.1, we have a uniform mixture of GPD as:

where x = 0, 1, 2,… .

Clearly, g(t) and h(t) generate a Lagrangian probability model, which satisfies 
the conditions given in Theorem 3.1. More generally, assuming that the conditions 

(6)

p(x) =
�(� + �x)x−1�2

(1 + �)2(� + � + �x)x+2

{
(2 + �)(� + � + �x) + x + 1

}
, x = 0, 1, 2,…

e�z = 1 +

∞∑
x=1

ux

x!
Dx−1

[
(e�z)

x
� e�z

]||||z=0

= 1 +

∞∑
x=1

�ux

x!
Dx−1

[
e(�+�x)z

]||||z=0

= 1 +

∞∑
x=1

�

x!

(
z

g(z)

)x

(� + �x)x−1

= 1 +

∞∑
x=1

�

x!

(
z

e�z

)x

(� + �x)x−1,

e�t =

∞∑
x=0

�(te−�t)
x
(� + �x)x−1

x!
,

1 =

∞∑
x=0

�t(�t + �tx)x−1 e−�t−�tx

x!
,

P(X = x) = ∫
1

0

�t(�t + �tx)x−1 e−�t−�tx

x!
,

=
�

(� + �x)2

[
1 − e−(�+�x)

x∑
j=0

(� + �x)j

j!

]
,
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given in Theorem 3.1 hold, and by letting the variable t to be a continuous rv from 
the XLD with pdf,

By using Theorem 3.2, the pmf of the proposed new mixture model is obtained as 
follows:

Hence the proof.   ◻

Proposition 3.2 If � = 0, the GPD reduces to the Poisson distribution. On doing 
this, we obtain the Poisson mixture of XLD with parameters � and �.

Proof 

Hence the proof.   ◻

Figure  2 display the graphical representation of the pmf of the GPXLD for dif-
ferent parameter values of �, � and �.

The hrf of the GPXLD is obtained by substituting the pmf of the GPXLD in the 
following equation

f (t) =
𝜃2(2 + 𝜃 + t)e−𝜃t

(1 + 𝜃)2
, t > 0, 𝜃 > 0.

p(x) = ∫
∞

0

(
�2(2 + � + t)e−�t

(1 + �)2

)
txe−�t−�tx

x!
�(� + �x)x−1dt

=
�(� + �x)x−1�2

x!(1 + �)2

{
(2 + �)∫

∞

0

txe−(�+�+�x)tdt + ∫
∞

0

tx+1e−(�+�+�x)tdt

}

=
�(� + �x)x−1�2

x! (1 + �)2

{
(2 + �)Γ(x + 1)

(� + � + �x)x+1
+

Γ(x + 2)

(� + � + �x)x+2

}

=
�(� + �x)x−1�2

(1 + �)2(� + � + �x)x+2

{
(2 + �)(� + � + �x) + x + 1

}
.

p(x) = ∫
∞

0

�2(2 + � + t)e−�t

(1 + �)2
txe−�t�x

x!

=
�2�x

(1 + �)2x! ∫
∞

0

(2 + � + t)e−�ttxe−�tdt

=
�2�x

(1 + �)2x!

[
∫

∞

0

(2 + �)txe−(�+�)tdt + ∫
∞

0

tx+1e−(�+�)tdt

]

=
�x�2

(1 + �)2(� + �)x+2

[
(2 + �)(� + �) + x + 1

]
.

(7)h(x) = P(X = x�X ≥ x) =
p(x)∑∞

j=x
p(j)

.
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From (7), it is clear that determining the closed form expression of the hrf is more 
intricate, although, in order to determine the shape of the hrf, we sketch its graph. 
Figure 3 demonstrates the following facts about the shapes of the hrf of the GPXLD, 
indicating that the GPXLD has all of the typical shapes, such as decreasing, upside-
down bathtub and increasing shapes for varying parameter values.
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4  Mathematical Properties

In this section, different structural properties of the GPXLD have been evaluated. 
These include median, mode, non-central moment, etc.

4.1  Median

Let X be a rv following the GPMED. Then the median of X is defined by the 
smaller integer m in {0, 1, 2,…}. By the definition, m is the smallest integer in 
{0, 1, 2,…} such that P(X ≤ m) ≥ 1

2
,

which is equivalent to the desired result.

4.2  Mode

Let X be a rv following the GPXLD. Then, the mode of X,  denoted by xm, exists 
in {0, 1, 2,…}, and lies in the case:

We must find the integer x = xm for which f(x) has the greatest value. That is, 
we aim to solve f (x) ≥ f (x − 1) and f (x) ≥ f (x + 1). First, note that f(x) can also 
be written as:

where

Obviously, f (x) ≥ f (x − 1) implies that

Also, f (x) ≥ f (x + 1) implies that

By combining (9) and (10), we get (11).

(8)
m∑
x=0

{
(� + �x)x−1

(
(2 + �)(� + � + �x) + x + 1

)

(� + � + �x)x+2

}
≥ (1 + �)2

2 ��2
,

f (x) =
� �2

(1 + �)2
�(x),

�(x) =
(� + �x)x−1

{
(2 + �)(� + � + �x) + x + 1

}

(� + � + �x)x+2
.

(9)
�(x)

�(x − 1)
≥ 1.

(10)
�(x)

�(x + 1)
≥ 1.

(11)�(xm) ≥ �(xm − 1) and �(xm) ≥ �(xm + 1).
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4.3  rth Order Non‑central Moment

The rth non-central moment ��
r
= E(Xr) of the rv X from the pmf given in (5) is:

and

Then

 Jenson (1902) showed that the Lagrange expansion could be written as

Taking first derivative of (15) partially with respect to t,  we have

which implies that

On using (17) in (14), we get

Taking the second derivative of (17), we get

On multiplying both sides by f (t)t
[
h(t)g(t)D1

(
t

g(t)

)]−1
, we get

(12)��
r
= E(Xr) =

∞∑
x=0

xrp(x)

(13)E(Xr) =

∞∑
x=0

xr ∫
∞

0

f (t)
tx

x!(g(t))xh(t)

[
Dx−1(g(z))xh�(z)

]||||z=0dt.

(14)E(X) = ∫
∞

0

g(t)

h(t)

∞∑
x=0

x
tx

(g(t))xx!

[
Dx−1(g(z))xh�(z)

]||||z=0dt.

(15)h(t) = h(0) +

∞∑
x=1

(
t

g(t)

)x

x!

[
Dx−1(g(z))xh�(z)

]||||z=0.

(16)D1[h(t)] =

(
g(t)

t

)
D1

[
t

g(t)

] ∞∑
x=1

x
(

t

g(t)

)x

x!

[
Dx−1(g(z))xh�(z)

]||||z=0,

(17)
t D1(h(t))

g(t)D1

(
t

g(t)

) =

∞∑
x=1

x
(

t

g(t)

)x

x!

[
Dx−1(g(z))xh�(z)

]||||z=0.

E(X) = ∫
∞

0

f (t)
t D1(h(t))

h(t)g(t)D1

(
t

g(t)

)dt = ∫
∞

0

f (t)D1 log (h(t))

D1 log
(

t

g(t)

) dt.

D1

[
t D1(h(t))

g(t)D1

(
t

g(t)

)
]
=

∞∑
x=1

x2
(

t

g(t)

)x−1

x!

[
Dx−1(g(z))xh�(z)

]||||z=0.
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Therefore,

In the similar method, the r th order non-central moment of X is given by,

where W1(t) = D

{
log h(t)

[
D log

(
t

g(t)

)]−1}
,W2(t) = L(t)D

{
W1(t)

}
,

W1(t) = D

{
log h(t)

[
D log

(
t

g(t)

)]−1}
,W2(t) = L(t)D

{
W1(t)

}
,      … ,W

r
(t) =

L(t)D
(
W

r−1(t)
)
, where

It is important to observe that the integral part is incomplete gamma distribution and 
consequently the mean and variance of the GPXLD do not exist as in the case of 
quasi-negative binomial distribution, see Li et al. (2011).

4.4  Mean and Variance

Using (18), the mean ( �x ) of the GPXLD is derived as follows:

f (t)t

[
h(t)g(t)D1

(
t

g(t)

)]−1
D1

[
t D1(h(t))

g(t)D1

(
t

g(t)

)
]
=

∞∑
x=1

x2 f (t)
(

t

g(t)

)x

h(t)x!

[
Dx−1(g(z))xh�(z)

]||||z=0.

E(X2) =

∞∑
x=0

x2p(x)

=

∞∑
x=0

x2 ∫
∞

0

f (t)(
t

g(t)
)x

h(t)x!

[
Dx−1

{
(g(z))xf �(z)

}]||||z=0dt

= ∫
∞

0

∞∑
x=0

x2f (t)
(

t

g(t)

)x

h(t)x!

[
Dx−1

{
(g(z))xf �(z)

}]||||z=0dt

= ∫
∞

0

f (t)t

h(t)g(t)D
(

t

g(t)

) D

[
tD h(t)

D
(

t

g(t)

)
g(t)

]
dt

= ∫
∞

0

f (t)

h(t)D log
(

t

g(t)

)D
[

D log h(t)

D log
(

t

g(t)

)
]
dt.

(18)E(Xr) = ∫
∞

0

f (t)Wr(t)dt = E(X)Wr(T),

L(t) =

[
D log

(
t

g(t)

)]−1
.
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Analogously, using (18) the variance (�2
x
) can derived as follows:

It is important to point out that, unlike in the case of a quasi-negative binomial 
distribution, the integral part of the GPXLD is an incomplete gamma distribution, 
which means that the mean and variance do not exist, see Li et al. (2011).

5  Estimation

Here, we employ the method of maximum likelihood (ML) to estimate the GPXLD’s 
unknown parameters.

Let X1,X2,… ,Xn be n independently and identically distributed (iid) from the 
GPXLD(�, �, �) (consequently, using the pmf from (6)), and x1, x2,… , xn be n observa-
tions. Following that, the appropriate likelihood function is provided by

The log-likelihood function is given by

The ML estimate (MLE) of the parameter vector Θ = (�, �, �), say Θ̂ = (�̂�, �̂�, �̂�), is 

obtained by the solutions of the likelihood equations �Ln

��
= 0, �Ln

��
= 0, and �Ln

��
= 0 

�x = E(X) = ∫
∞

0

f (t)D1 log (h(t))

D1 log
(

t

g(t)

) dt

=
��2

(1 + �)2 ∫
∞

0

(2 + � + t)t2(1 − �t)−1e−�tdt

=
��2

(1 + �)2

{
(2 + �)∫

∞

0

t2(1 − �t)−1e−�tdt + ∫
∞

0

t3(1 − �t)−1e−�tdt

}
.

�2
x
= ∫

∞

0

f (t)

h(t)D log
(

t

g(t)

)D
[

D log h(t)

D log
(

t

g(t)

)
]
dt − �2

x

=
��2

(1 + �)2 ∫
∞

0

(2 + � + t)e−(�+�)t(1 − �t)−1D

(
1 − �t

t

)−1

dt − �2
x

=
��2

(1 + �)2 ∫
∞

0

(2 + � + t)t e−(�+�)t(1 − �t)−3dt − �2
x
.

L =

�n�2n
∏n

i=1

�
� + �xi

�xi−1 ∏n

i=1

�
(2 + �)

�
� + � + �xi

�
+ xi + 1

�

(1 + �)2n
∏n

i=1

�
� + � + �xi

�xi+2 .

(19)

Ln = n log � + 2n log � +

n∑
i=1

(
xi − 1

)
log(� + �xi) − 2n log(1 + �)

+

n∑
i=1

log

{
(2 + �)

(
� + � + �xi

)
+ xi + 1

}
−

n∑
i=1

(
xi + 2

)
log

(
� + � + �xi

)
.
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with respect to �, � and �. With these notations, �̂�, �̂� and �̂� are also called MLEs of �, 
� and �, respectively.

and

The likelihood equations have analytical solutions that cannot be found. Despite 
so, when employing the L-BFGS-B technique, the MLEs can still be determined 
numerically by maximizing the log-likelihood function offered in (19) using the best 
approach available in the R programming language.

6  Simulation Study

We do a brief simulation exercise in this part to assess how well the estimates 
derived using the ML estimation approach perform in random samples. Here, we 
simulate a GPXLD random sample using the inverse transformation method (see 
Ross 2013). The inverse transform algorithm used to create the GPXLD rv is as 
follows:

Step 1: Generate a random number from uniform U(0, 1) distribution.
Step 2: i = 0, p =

�2[(2+�)(�+�)+1]

(1+�)2(�+�)2
, F = p.

Step 3: If U < F, set X = i, and stop.

Step 4: p = p ×
(�+�(i+1))i(�+�+�i)i+2

(�+�+�(i+1))i+3(�+�i)i−1
×

((2+�)(�+�(i+1)+�)+i+2)

((2+�)(�+�i+�)+i+1)
, F = F + p, i = i + 1.

Step 5: Go to Step 3.

where p is the probability that X = i, and F is the probability that X is less than or 
equal to i.

The iteration process is repeated for N = 1000 times. The specification of the 
parameter values is as follows: 

 (i) � = 0.98, � = 0.51 and � = 0.01.

 (ii) � = 0.70, � = 0.16, � = 0.28.

 (iii) � = 0.14, � = 0.24, � = 0.75.

�Ln

��
=

n

�
+

n∑
i=1

(
xi − 1

)
(
� + �xi

) +

n∑
i=1

(2 + �){
(2 + �)(� + � + �xi) + xi + 1

} −

n∑
i=1

(
xi + 2

)
(
� + �xi

) = 0

�Ln

��
=

n∑
i=1

xi(xi − 1)(
� + �xi

) +

n∑
i=1

xi{
(2 + �)

(
� + � + �xi

)
+ xi + 1

} −

n∑
i=1

xi(xi + 2)

(� + � + �xi)
= 0

�Ln

��
=

2n

log �
+

n∑
i=1

2(1 + �) + � + �xi{
(2 + �)(� + � + �xi) + xi + 1

} −
2n

(1 + �)
−

n∑
i=1

(xi + 2)

� + � + �xi
= 0.
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Thus, we computed the average of the mean square error (MSE), and average 
absolute bias using the MLEs.

The average absolute bias of the simulated estimates equals 1

1000

∑1000

i=1
�d̂i − d� 

and the average MSE of the simulated estimates equals 1

1000

∑1000

i=1
(d̂i − d)2, in which 

i is the number of iterations, d ∈ {�, �, �} and d̂ is the estimate of d.
Table 1 provides a summary of the study for the samples of sizes 50, 125, 500, 

and 1000. As the sample size increases, it can be seen that the MSE in both cases of 
the parameter sets is in decreasing order, and the MLEs of the parameters go closer 
to their original parameter values, indicating the consistency property of the MLEs.

7  Zero‑Inflated GPXLD

Long or heavy tail properties and an excessive amount of zeros are frequent charac-
teristics of overdispersed count data. The negative binomial distribution (NBD) or 
GPD are often used distributions to fit data with long or heavy tails. These distribu-
tions, however, might not be able to accurately fit the proportion of zeros in the case 
of an excessive number of zeros. As a result of clustering, the situation with exces-
sive zeros frequently occurs (see Johnson et  al. 2005). In this article, we present 
the definition and some important properties of the zero-inflated version of the new 
proposed model GPXLD, known as zero-inflated generalized Poisson XLindley dis-
tribution (ZIGPXLD).

Definition 7.1 Let � be a rv degenerate at the point zero and let X follows 
GPXLD(�, �, �). Assume that � and X are statistically independent. Then a discrete 
rv Y is said to follow the zero inflated GPXLD or in short the ZIGPXLD if its pmf 
has the following form.

in which � ∈ [0, 1], 𝜆 > 0, 0 < 𝜌 < 1 and 𝜃 > 0.

Clearly, when � = 0, the ZIGPXLD reduces to the GPXLD(�, �, �) with pmf 
given in (20). Next, we present certain properties of the ZIGPXLD through the fol-
lowing results.

(20)

f (y) = �P(� = y) + (1 − �)P(X = y)

=

⎧⎪⎨⎪⎩

� + (1 − �)

�
�

(1+�)(�+�)

�2�
(2 + �)(� + �) + 1

�
, y = 0

(1 − �)
�(�+�y)y−1�2

(1+�)2(�+�+�y)y+2

�
(2 + �)(� + � + �y) + y + 1

�
, y = 1, 2, 3…
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Table 1  Simulation results for three parameters �, � and �

Parameter set Sample size Parameters Estimates Average 
absolute bias

Average MSE

� = 0.98, � = 0.51, � = 0.01 n = 50 � 0.9964 0.3135 0.0910
� 0.5876 0.4323 0.0579
� 0.0225 0.5125 0.3267

n = 250 � 0.9791 0.2291 0.0532
� 0.4866 0.0733 0.0080
� 0.0192 0.4707 0.2223

n = 500 � 0.9689 0.2189 0.0484
� 0.4941 0.0658 0.0056
� 0.0095 0.4804 0.2309

n = 1000 � 0.9706 0.2206 0.0491
� 0.4961 0.0638 0.0048
� 0.0134 0.4765 0.2274

� = 0.70, � = 0.16, � = 0.28 n = 50 � 0.7518 0.0418 0.0646
� 0.1544 0.0055 0.0065
� 0.3831 0.1868 0.1644

n = 250 � 0.7424 0.0324 0.0313
� 0.1562 0.0037 0.0005
� 0.3610 0.0910 0.1591

n = 500 � 0.7189 0.0089 0.0271
� 0.1563 0.0036 0.0004
� 0.3180 0.0480 0.0379

n = 1000 � 0.7092 0.0007 0.0171
� 0.1567 0.0032 0.0002
� 0.2859 0.0159 0.0119

� = 0.14, � = 0.24, � = 0.75 n = 50 � 0.3785 0.2285 0.1459
� 0.2131 0.0368 0.0121
� 0.2527 0.5272 0.4627

n = 250 � 0.3209 0.1709 0.0867
� 0.2412 0.0087 0.0009
� 0.2426 0.5073 04052

n = 500 � 0.2484 0.0984 0.0388
� 0.2437 0.0062 0.0006
� 0.4050 0.3449 0.3550

n = 1000 � 0.1202 0.0402 0.0052
� 0.2481 0.0018 0.0005
� 0.7489 0.0189 0.0694
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By definition, the pgf of the ZIGPXLD with pmf given in (20) is

The corresponding mean and variance of the ZIGPXLD is as follows:

and

The likelihood function of the ZIGPXLD based on n observations, say (x1, x2,… , xn) 
is:

The log-likelihood function of the equation given in (21) can be expressed as 
follows:

The estimates of the parameters in the non-linear equation given in (22) can be 
obtained by numerical optimization using “optim” or “nlm” functions in the R soft-
ware, see R Core Team (2021).

Ψ(t) =

∞∑
y=0

ty f (y)

= � + (1 − �)

(
�

(1 + �)(� + �)

)2{
(2 + �)(� + �) + 1

}

+ (1 − �)

∞∑
y=1

�(� + �y)y−1�2

(1 + �)2(� + � + �y)y+2

{
(2 + �)(� + � + �y) + y + 1

}
.

Mean = (1 − �)

∞∑
y=1

�(� + �y)y−1�2

(1 + �)2(� + � + �y)y+2

{
(2 + �)(� + � + �y) + y + 1

}

Variance = (1 − �)

∞∑
y=1

y
2

�(� + �y)y−1�2

(1 + �)2(� + � + �y)y+2

{
(2 + �)(� + � + �y) + y + 1

}

−

(
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)2

.

(21)

L(�, �, �, �) =

n∏
i=1

{[
� + (1 − �)

(
�

(1 + �)(� + �)

)2{
(2 + �)(� + �) + 1

}]

+ (1 − �)
�
(
� + �xi

)xi−1�2
(1 + �)2

(
� + � + �xi
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{
(2 + �)

(
� + � + �xi

)
+ xi + 1
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(22)

L =

n∑
i=1

log
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� + (1 − �)

(
�

(1 + �)(� + �)

)2{
(2 + �)(� + �) + 1

}]

+ (1 − �)
�
(
� + �xi

)xi−1�2
(1 + �)2

(
� + � + �xi

)xi+2
{
(2 + �)

(
� + � + �xi

)
+ xi + 1
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8  Applications in Real Life Study

The goal of this section is to show how important the GPXLD and the ZIGPXLD 
are empirically.

8.1  Presentation

To show the usage of the proposed model, we utilize two real life data applications 
in this paper: the first is the number of suicides data set given in Kadhum and Abdu-
lah (2021), which is used to compare the data modeling ability of the GPXLD over 
some competitive distributions, and the second is the COVID-19 pandemic data set 
given in El-morshedy et al. (2021), which is used to compare the data modeling abil-
ity of the ZIGPXLD over the ZIPD.

We consider the negative log-likelihood (− log L), �2, the criteria like Akaike 
information criterion (AIC), Bayesian information criterion (BIC) and corrected 
Akaike information criterion (AICc). The better distribution corresponds to the 
lesser �2, AIC, BIC and AICc values.

AIC = 2k − 2 log L, BIC = k log n − 2 log L and AICc = AIC +
2k(k+1)

n−k−1
,

where k is the number of parameters in the statistical model, n is the sample size 
and log L is the maximized value of the log-likelihood function under the considered 
model.

Also, a graphical technique based on the total time on test (TTT) is used to deter-
mine the hrf of the datasets. If the empirical TTT plot is convex, concave, convex 
then concave, and concave then convex, then the form of associated hrf is decreas-
ing, increasing, bathtub shape, upside-down bathtub shape, respectively (see Aarset 
1987). We use the RStudio software for numerical evaluations of these datasets.

8.2  Number of Suicides Data Set

The first real data set is the number of accident suicides in the city of Baghdad 
between 2017–2020 period as accident data are rare and random events (see Kad-
hum and Abdulah 2021). Table 2 shows the descriptive measures of this data, which 
include sample size n,  minimum (min), first quartile (Q1), median (Md),  third quar-
tile (Q3), maximum (max),   and interquartile range (IQR). The empirical index of 
dispersion (ID) of the data is equal to 0.9958. As a result, our model employed to 
describe the current data set is capable of dealing with underdispersion. To demon-
strate the GPXLD’s potential benefit, the following distributions are considered for 
comparison.

• The new Poisson weighted exponential distribution (NPWED) proposed by 
Altun (2020b), and defined by the following pmf: 

 with 𝜃 > 0 and 𝛼 > 0.

p1(x) = �(1 + �)(1 + � + ��)−x−1, x = 0, 1, 2… ,
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• The PXGD proposed by Bilal et al. (2020), and defined by the following pmf: 

 with 𝜃 > 0.

• The NBD proposed by Consul and Famoye (2006), and defined by the following 
pmf: 

 with 𝜆 > 0 and 0 < 𝜌 < 1.

• The discrete Lindley distribution (DLD) given in Bilal et al. (2020), and defined 
by the following pmf: 

p2(x) =
�2

2(1 + �)x+4

{
2(1 + �)2 + �(x + 1)(x + 2)

}
, x = 0, 1, 2… ,

p3(x) =
�

� + x

(
� + x

x

)
�x(1 − �)�, x = 0, 1, 2… ,

p4(x) =
�x

1 + �

{
�(1 − 2�) + (1 − �)(1 − �x)

}
x, x = 0, 1, 2… ,

Fig. 4  Total time on test (TTT) 
plot for the suicides data set
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Table 2  Descriptive statistics 
for the number of suicides data 
set

Statistic n min Q1 Md Q3 max IQR

Values 48 0 1 2 4 6 3
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 with 𝜆 > 0 and 0 < 𝜌 < 1.

• The PGLD proposed by Altun (2021), and defined by the following pmf: 

 with 𝜃 > 0 and 𝛼 > 0.

In addition, Fig. 4 shows an empirical TTT plot of the data and it reveals an increas-
ing hrf.

According to Table  3, the GPXLD’s �2, AIC, BIC and AICc values are lower 
than those of the other distributions under consideration. Therefore, the proposed 
model is the best choice for modeling the provided data set.

8.3  COVID‑19 Pandemic Data Set

Second, we make use of the dataset of daily new cases of COVID-19 disease-related 
death in Armenia. The data are available at https:// www. world omete rs. info/ coron 
avirus/ count ry/ armen ia/ accessed on the 10 September 2020 and are also studied 
by El-morshedy et  al. (2021). They contain the daily new COVID cases between 
15 February 2020 and 4 October 2020. Likewise, this data indicates overdispersion 
problem with ID 4.4822. As a result, our model employed to describe the current 
data set is capable of dealing with overdispersion. Table  4 shows the descriptive 
measures of this data, which include n,  min, Q1, Md, Q3, max, and IQR. It illustrates 
that the best fit is the ZIGPXLD, followed by the ZIPD.

p5(x) =
1

(� + 1)x+2

{
�2 +

��(� + 1)1−�Γ(x + �)

Γ(�)Γ(x + 1)

}
, x = 0, 1, 2… ,

Table 3  MLEs, AIC, BIC and AICc values for the suicides data set

X OF NPWED PXGD NBD DLD PGLD GPXLD

0 5 9.7606 9.4350 9.7616 9.7589 9.7400 10.4824
1 9 6.9885 7.3405 6.9888 6.9881 7.6451 8.7524
2 12 5.0037 5.5993 5.0035 5.0040 5.7304 6.5016
3 6 3.5826 4.1418 3.5822 3.5832 4.1532 4.5294
4 11 22.6643 21.4832 22.6636 22.6656 20.7311 17.7339
5 4 – – – – – –
6 1 – – – – – –
Total 48 48 48 48 48 48 48

 MLE � = 0.3476 � = 0.8336 � = 0.9999 � = 1.5742 × 10−09 � = 2.1888 � = 2.9513 × 10−03

� = 0.1409 � = 0.2840 � = 0.6711 � = 7.1607 × 10−01 � = 7.0496 × 10−11

� = 2.3414 × 10−03

− logL 100.8446 98.06316 100.8446 100.8446 97.4957 94.44762
�2 34.7571 29.1979 34.7580 34.7556 27.5807 20.81129
AIC 205.6892 198.1263 205.6891 205.6892 198.9914 194.8952
BIC 209.4316 201.9975 209.4315 209.4316 202.7338 200.5089
AICc 205.9558 198.3132 205.6892 205.9558 199.2580 194.4406

https://www.worldometers.info/coronavirus/country/armenia/
https://www.worldometers.info/coronavirus/country/armenia/
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In addition, Fig.  5 shows an empirical TTT plot of the data and it reveals an 
decreasing hrf.

According to Table 5, the ZIGPXLD’s AIC, BIC and AICc values are lower than 
those of the other distributions under consideration. Therefore, the proposed zero-
inflated model is the best choice for modeling the provided data set.

9  Conclusion

In this work, the mixed count model is proposed, known as GPXLD. We show 
that its special case is the Poisson mixture of the XLD. In particular, we derive 
some mathematical properties of the GPXLD. The estimation procedure for 
parameters is also implemented by the maximum likelihood method. Also, we 
proposed zero-inflated version of the GPXLD, known as ZIGPXLD. The two 
proposed distributions are applied to two real datasets and it is compared with 
some important competitive distributions. The comparison results of the minus 

Fig. 5  Total time on test (TTT) 
plot for the COVID-19 pan-
demic datasets
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Table 4  Descriptive statistics 
for the suicides data set

Statistic n min Q1 Md Q3 max IQR

Values 233 0 1 3 7 16 6
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log-likelihood, AIC, BIC and AICc values for distributions show that the best 
fit model is the GPXLD and ZIGPXLD. In conclusion, the GPXLD is a flexible 
model that can be an alternative way to model count data with too many zeros. If 
the INAR(1) process of the GPXLD and a bivariate version of the GPXLD are 
created, the direction of this research may change. This work requires consider-
able revisions and examinations, which we will leave to additional research.

Author Contributions Both the authors, M. Monisha and D. S. Shibu, contributed equally to this work.

Funding Research work is supported by Govt. of Kerala.

Table 5  MLEs, AIC, BIC and AICc values for the COVID-19 datasets

X OF ZIPD ZIGPXLD

0 56 55.9904 55.8608
1 31 4.0034 19.3091
2 22 11.0043 19.3137
3 25 20.1652 18.9633
4 11 30.4714 15.1218
5 14 21.9262 10.9552
6 14 5.0595 6.1277
7 10 0.4898 3.1987
8 11 83.8893 83.5494
9 3 – –
10 10 – –
11 7 – –
12 4 – –
13 5 – –
14 2 – –
15 2 – –
16 6 – –
Total 233 233 233

 MLE � = 0.2371 � = 2.3922 × 10−01

� = 5.4974 � = 2.20034 × 10−01

� = 1.4319 × 10−09

� = 7.4995 × 10−02

− logL 686.656 607.3465
�2 822.4426 199.3087
AIC 1377.312 1222.693
BIC 1384.214 1236.497
AICc 1377.3641 1222.8684
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