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Abstract

In order to have more flexibility, several double distributions have been studied in
the literature. In this paper, we propose a double inverse Gaussian distribution using
random sign mixture transform and study its associated inferences. The maximum
likelihood estimation is performed to estimate the parameters. Extensive simulation
studies are carried out to examine the performance of the estimators and the cor-
responding confidence intervals of the parameters. A real data set example is pre-
sented to illustrate the procedure.
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1 Introduction

In the last 40 years, there has been a considerable literature on the double con-
tinuous distributions on the real line, some of which explain the word dou-
ble and some do not. Several of them use the word double as the distribution
of the absolute value and some of them use the word reflection. Balakrishnan
and Kocherlakota (1985) and Rao and Narasimham (1989) presented the double
Weibull distribution and studied its order statistics and linear estimation. Bindu
and Sangita (2015) studied the double Lomax distribution as the distribution of
the absolute value of the ratio of two independent Laplace distributed variables.
Govindarajulu (1966) studied the reflected version of the exponential distribution.
The reflected version of the generalized Gamma was studied by Plucinska (1965,
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1966, 1967) and the reflected version of the gamma distribution was studied by
Kantam and Narasimham (1991). Kumar and Jose (2019) called the distribution
of the absolute value of the Lindley variable as the double Lindley distribution,
see also Ibrahim et al. (2020). Nadarajah et al. (2013) presented a double general-
ized Pareto distribution and Halvarsson (2020) studied double Pareto type II dis-
tribution. Armagan et al. (2013) presented a generalized double Pareto shrinkage
distribution and used it as a prior for Bayesian shrinkage estimation and infer-
ences in linear models.

Most of the above cited double continuous distributions have some limitations
such as (i) non-existence of moments for some values of the parameters, see for
example Nadarajah et al. (2013) and, (ii) non-existence of some MLEs of the
parameters, see for example de Zea Bermudez and Kotz (2010a) and de Zea Ber-
mudez and Kotz (2010b).

Recently, Aly (2018) presented a unified approach for developing double con-
tinuous/discrete distributions using two well known transforms (representations),
namely

(i) random sign transform (RST):

Z, = QY - DX,

where Y is a Bernoulli r.v. with parameter § and X is a non-negative r.v. independent
of Y. The probability density function (p.d.f.) of Z, is given by

oo S Bfxz]:0), z<0,
‘&@ji”_{ﬂ&@ﬁx 250, 60

where fy(+; 0) is the p.d.f. of a non-negative r.v. X with (vector) parameter € and

B=1-5.

(ii) random sign mixture transform (RSMT):
Z, =YX, — (1 -1)X,,

where Y is a Bernoulli r.v. with parameter § while X, X, are independent non-nega-
tive r.v.’s independent of Y.
The p.d.f. of Z, is given by

Efx2(|z|§92), z<0,

12,z B, 6,,0,) :{ B fx,(z:0y), 220, @

where ij(-; 0., j = 1,2, are the p.d.f.’s of a non-negative r.v.’s X;, X, with (vector)
parameters 60, j = 1,2.

If X, and X, are from the same family of distributions F, we say that Z, has a
double F distribution.

Note that RST is a special case of RSMT when X, X, are independent and
d _ d
identically distributed (i.i.d.), i.e. X; = X, = X. Moreover, all the above cited dou-

ble distributions considered only the case f = %
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The inverse Gaussian distribution, denoted by IG(u, 4), has a p.d.f.

A _ Ax — p)?
fx(XQﬂJ)=\/ﬂxyz@XP[‘%]s x>0, u,A>0,

where u is the mean and 4 is the shape parameter. This distribution is a very ver-
satile life distribution and its various modifications and transformations have been
extensively studied in the literature. We refer the reader to Gupta and Akman (1995,
1996, 1997, 1998), Gupta and Kundu (2011) and the references therein. The inverse
Gaussian distribution has also been studied under the umbrella of Birnbaum Saun-
ders distribution. For a survey article on Birnbaum Saunders distribution, we refer to
Balakrishnan and Kundu (2019).

We follow the procedure presented by Aly (2018) and study the double inverse
Gaussian distribution. Specifically, we consider four double inverse-Gaussian
distributions:

Double inverse Gaussian 1, DIG-1(f, u;, Ay, 3, 4,),

Double inverse Gaussian 2, DIG-2(S, u;, py, A) = DIG-1(6, py, 4, py, A),
Double inverse Gaussian 3, DIG-3(f, u, 4,, 4,) =DIG-1(f, u, A1, u, 4,),
Double inverse Gaussian 4, DIG-4(f, u, A) = DIG-1(f, u, A, u, A).

i e

These distributions are bimodal with one mode on each side of the origin.

The contents of this paper are organized as follows. In Sect. 2, we present the sta-
tistical properties of the double inverse Gaussian distributions, including the prob-
ability density function, cumulative distribution function (c.d.f.), modes, moment
generating function (m.g.f.), raw moments, variance, skewness, kurtosis, Tsallis
entropy, Shannon entropy and extropy. The maximum likelihood estimation of the
parameters and their asymptotic distributions are studied in Sect. 3. Extensive simu-
lation studies are carried out in Sect. 4 to study the performance of the estimators.
In Sect. 5, a real data set application is presented to illustrate the procedure. Finally,
some conclusion and comments are presented in Sect. 6.

2 Statistical Properties

In this section, we present a comprehensive summary of the basic properties of
the DIG-1 (B, u;, Ay, 4y, A4,) distribution. These properties include, the p.d.f., c.d.f.,
modes, m.g.f., raw moments and associated measures, Tsallis entropy, Shannon
entropy and extropy. Corresponding properties for the nested distributions DIG-2,
DIG-3 and DIG-4 are obtained as special cases when (4; = 1, = A), (4 = pp = )
and (4, = u, = p, A; = A, = A), respectively.
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2.1 Probability Density Function

The p.d.f of DIG-1 distribution is given by

_ Efxz(m;ﬂzs A2, z<0,
f2@ _{ B fx, @ s Ap), 2>0, (€)

[ 4 A(x = )
X p, A) =) = x /% exp |-——L— |,
fo( H; j) i p 2#-2x @

x>0, /4]-,/1j>0, j=12,

where

are the p.d.f.’s of inverse Gaussian distributions.
Figure 1 shows the bimodality of the p.d.f. of DIG distributions as a function in /.
Also, this figure shows that the left (right) peak gets smaller (larger) as f increases.
The DIG-1 distribution has two modes given by

Mode(Z,) = — Mode(X,) and Mode(X,), 5)

where

Mode(X)) = y; b= 1,2, (6)

are the modes of inverse Gaussian distributions.

DIG-1 (B, u1=1, AM1=5, u2=2, A2=1)

0.8} — B=03,;
— B=05

0.6f — B=0.7]
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Fig.1 P.d.f. of DIG-1 distribution
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2.2 Cumulative Distribution Function

The c.d.f of DIG-1 distribution is given by

Fy (2) ={ b [1 = Fy,(Izls iy, A)] 2 <0,

F+BFy@und) 220, ™

where

A; A
FyGop, A)=01 Z(Z—1) |+ of-1/Z(Z+1)]
A x \ x \ gy ®)

x>0, j=12,
are the c.d.f.’s of inverse Gaussian distributions and

‘1

Pa)=P(Z <La)= /

e_zz/2 dz, -0 <a< o, )
- V21

is the c.d.f. of the standard normal distribution.
Figure 2 shows the c.d.f. of the DIG-1 distribution as a function in §. Also, this
figure shows that F Z (0) = p and hence F, Z (0) decreases as f increases.

2.3 Moment Generating Function
The m.g.f. of DIG-1 distribution is given by
My (6) = My () + f My (=1),  —c0 <1< o, (10)

where

DIG-1 (B, u1=1, M=5, p2=2, A2=1)

Fig.2 C.d.f. of DIG-1 distribution
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4;
, |l|<2— j=12, (11)

2 9
H;
are the m.g.f.’s of inverse Gaussian distributions.
2.4 Moments and Associated Measures
The rth moment of DIG-1 distribution is given by
EZ)=pEX)+ (-1 BEX}), r>1, (12)
where, using the result of Sato and Inoue (1994),
r—1 . i
(r—1+0! H; .
EX)=u’ _— =), =1,2, 1
XD =w ;r!(r—l—i)!T P / (13)

are the rth moments of inverse Gaussian distributions.
Using the last expressions of E(Z;), the mean, variance, skewness, and kurtosis of
DIG-1 distribution are easily obtained. Note that E(Z,) does not depend on 4, and 4,.

DIG-1 (B, 41, M, 12, A2) DIG-1 (B, 41, M, 12, A2)
- - - - - ] 25F - - - - 3
6 — p1=3M=32=2,02=2 — 1= 30= 2,2 1,02= 1
al — M=3M=2,42=1,42=2 20} — M=3,M=2,2=2,12=2 ]
— =3M=2,2= 3 02 1 o — 1= 3A1= 2,2= 3 p= 1
[ ] p
g §
s 5
>

0.0 0.2 0.4 0.6 0.8 1.0

B B
DIG-1 (B, i1, M, 2, A2) DIG-1 (B, p1, M, 12, A2)
of — =3M=22=120=1 | — p1=3.M=2,2=1,22=1
1ol — 1=3M=2,12=2,02=2 | 150 — =3M=2,2=2,12=2 ]
@ — p1=3,M=2,2=3,22=1 ® — M=3M=2,12=3,02=1
8 2 ]
s 5 £
g <
[)]
-
-5} ) ) ) ) p
0.0 0.2 04 06 08 1.0

B B

Fig.3 Mean, variance, skewness and kurtosis of DIG-1 distribution
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Figure 3 shows the mean, variance, skewness, and kurtosis of the DIG-1 distribu-
tion as a function in f. Also, this figure shows that the skewness can be negative/
positive, i.e. the DIG-1 distribution can be skewed to the left/right.

2.5 Tsallis Entropy

Entropies are measures of a system’s variation, instability, or unpredictability. The
Tsallis entropy, Tsallis (1988), is an important measure in statistics as index of
diversity. It has many applications in areas such as physics, chemistry, biology and

economics.
For a continuous r.v. V with p.d.f. f;,(v), the Tsallis entropy of V is defined as

T(V) = [1 —/fV(v)dv] = —E[l WL O<a#l,

where S is the support of V.
First, we derive the Tsallis entropy of RSMT Z,.

T(Z,) = { / fe (z)dz}

a—l{l_/ ﬂ“fx(z)dz—/ ﬂfx z)dz}
1{1—/3“/ f,?l(z)dz—ﬁa/ f;z(x)dX}
- 0 0

_ (14)

1 o o pa— Y orpa—
=——{1- B o1 - BB ()1

1 —a
=——{1- 1l - @- DT, -7 11 - (@ = DT,
=L (1= =B+ T + B T,
=T,(0) + F* T,(X) + B T(Xy),

where
_ 1 _ fpa—1 _ 1 _ Dt__a

TN = ——Ell 7' 0] = ——(1 - p" = ") (1)

Note that Tsallis entropy of RSMT 7(Z,) is a non-linear function in .
Second, we find the Tsallis entropy of X ~ IG(u, A).
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7,00 =— {1 - / f;?(x)dx}
a — 1 0
1 ® AN a
N (Y W e ey
a—1 { A 271_ x3a/2 p [ 2[,[2 (-x l’l) X
1 A \? 1 al al
= 1-— <_) 0/1/14/ —| =L x4+ Z2£ d
a—l{ ) )y e P T\ 2 T )|
2\ —(Ba/2-1)
=L I (i)a/z 2u” o
a—1 2 a
| (ah/u)*
/(; 30l exp [— <l+ 4—t dt
a2
1 Alu 2etH 1
=a_1{1—<g> FK3[1/2_1 ((li///l) .
(16)
where
K(s)—l(s/Z)"/oo ! exp |— t+£ dt, —co<v<o, s§s>0
=3 o P a )| ’ ’
(17)
is the modified Bessel function of the second kind.
Therefore, Tsallis entropy of DIG-1 distribution is explicitly given by
T.(Z) = T, + f* T,X) + " T,(X,), (18)

where 7_(Y) is given by (15) and

a2
1 Al 2%/ H; .
T,(X) = —{1 - ( : ) Koy (ahi/p) ¢ =12,

a—1 2r j{’—l
(19)
2.6 Shannon Entropy
Using L’Hospital rule, we have
1 V) == | 10 0 ) = E= nfy (V)] = HV,
a— Ky
which is the Shannon entropy of V, Shannon (1948).
Asa — 1, (14) and (15), are simplified to
H(Z,) = H(Y) + B HX,) + f HX,), (20)

where
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H(Y)=—p Inf—f Inp, Q1)

which agrees with the result obtained by Aly (2018). Note that Shannon entropy of
RSMT 'H(Z,) is a non-linear function in .
Using (16), the Shannon entropy of X ~ IG(u, 4) is given by

HX) = lim 7,(X)

11 A 3 (22 4, 0 (22)
== — =1 — 2422 K (A )]y o
2 2 “<27m3> Ve B /W12

where K (s), s > 0, is given by (17). The proof follows by using L’Hépital’s rule.
The last expression can be calculated using the Mathematica function
BesselKV[1/2, 4/u] = =K, (A/ )l =1 j2-
Using (20), the Shannon ventropy of DIG-1 distribution is given by

H(Z,) = H(Y) + f HX)) + f H(X,), (23)
where H(Y) is given by (21) and

11 4; 3 |24 .. 0 .
HX) =~ — =1 =24 S LK Gy =12
X)) 2 2 n<27ruj3> 2\ my ¢ v, y Al Hly=iye

(24)
2.7 Extropy
The following relation
1 1 2 1
L) = 1= =3 | By = E[-3/,0)] = 30, )
s
is known as the extropy of V (Lad et al. 2015).
Using (14) and (15), with @ = 2, the extropy of RSMT is given by
1 -2
HZ,) = E[Tz(zz) —11=pTX)+ B TX,). (26)
Note that extropy of RSMT H(Z,) is a quadratic function in .
Using (16), with @ = 2, the extropy of X ~ IG(u, 1) is given by
1 A
JIX) = SIT,(X) - 1] = — == & K,(24/ ), 27)
2 27
where K (z) is given by (17).
The extropy of DIG-1 distribution is given by
-2
TZy) = f* TX) + B~ TXy), (28)
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DIG-1 (8, y1=3, A1=2, 112=6, A2=6) DIG-1 (8, 1, A, 12, A2)
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Fig.4 Tsallis entropy, Shannon entropy and extropy of DIG-1 distribution

where

A
T = = 35 S K. =12 @9)
J
where K (z) is given by (17).
Figure 4 shows Tsallis entropy, Shannon entropy and extropy of DIG-1 distribu-
tion as a function in g for selected values of the parameters. This figure also shows
that Tsallis entropy of DIG-1 distribution decreases as « increases.
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3 Maximum Likelihood Estimation
In this section, we derive the MLEs of the parameters of DIG distributions and their
asymptotic distributions. These asymptotic distributions turned out to be multivari-

ate normal which can be used to make statistical inference (confidence intervals and
hypothesis testing) about the parameters of DIG distributions.

3.1 DIG-1: Maximum Likelihood Estimation

Let 251,205 -+-5 2, be a 1.s. from DIG-1(8, u;, 4y, py, 4,) distribution. The log-
likelihood function is given by

InL; = 2 ln[ﬁfx1 (Zz,,@//ila Al 1{22‘,.>o} + Zln[ﬁfxzuzz,ihﬂz, )] 1{Z2‘i<0}’
i=1 i=1

(30)
where 1, = 1(0) if A is true (false) is the indicator function.
The MLEs of (8, p,, 4, iy, 4,) are:
~ ~  a ~ n, ~ ~ n,
ﬁ =), /'{1 =, )’1 = —2? /’t2 =, 12 = —25
n n o, =4 ny ch— 2
17 27 o,
(31)
where
n n
ny = Z 1, o) n, = Z 1, <o) ny+n, =n, (32)
i=1 i=1
n n
a; = 2 2 1z, 5000 a, = Z 22,41 11, <oy (33)
i=1 i=1
o 1 o 1
¢ = —1 , cy = —1 . 34
1 Z o, @0 2 Z o] (0 (34)
i=1 > i=1 3

Moreover, the asymptotic distribution of the MLEs is given by:
asn — oo,
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B 0O 0 0 O
b-p 0]Jo =L 0 0 0
H—Hm 0 o 22
A 1
\/1; A —A | — MVN]|O], 0 0 7 0 0 (35)
= 1y Ollo o o £ o
12_12 0 ﬁiz 2
0 0 0 0 %

where d; denotes convergence in distribution and MVN stands for multivariate
normal distribution.

3.2 DIG-2: Maximum Likelihood Estimation

Let 21,2505 -+ » 22, b€ @ 1.8 from DIG-2(f, u;, u,, 4) distribution. The log-likelihood
function is given by

n n
InL, = Z In[f fy {zo.s 1> D1 1, 50y + Z In[f fx, (12, Ha> D1 11, <o)-
py Py

(36)
The MLE of g is
p=m
= (37)
and the MLEs of (u;, u,, A) are the solutions of the normal equations:
n . 1 ~\2 c 1 ~\2
== 2, o i = M) 1 s0) — 2, 5 Uzl = )" 1, <) =0,
1 lzzl M%Zz’i > {22,>0} ; M§|Z2,,~| > {22,<0)
Z{Zz,i - i) 1{22_,»>0} =0,
i=1
Z(|Zg,,‘| - ﬁz) 1{22_i<o} =0.
i=1
It follows that
n=2 a=2 T "
ot Ty : n (38)

n
1
Cl—;‘l'Cz—a—z

Moreover, the asymptotic distribution of the MLEs is given by: as n — oo,
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~ pg 0 0 0

g ﬁ 8 0 222 0 0
Val 274 = mnl| |, u 39
Hi — My 0 0 0 A 03 (39

Hy = o Olfo o o &

pA

3.3 DIG-3: Maximum Likelihood Estimation

Let 251,20, .-+ » 2, b€ a .. from DIG-3(8, u, 4, 4,) distribution. The log-likelihood
function is given by

InLy = Y Inlf fy {205 A1 iy 50y + D, 0B fi, (12,3, 4] 1, <o) (40)
i=1 i=1
The MLE of g is
§="1

and the MLEs of (u, 4,, 4,) are the solutions of the normal equations:

n n
A Z{Zz,i —Hy) 1{121‘->0} + 4 Z(|Zz,i| - [ l{zz',‘<0) =0,
i=1 i=1

n
n; 1

2_1 h pt ﬁTZ,»{ZZ'i - ﬁ)z l{ZZ,i>O} =0,
== i L{ - A)z 1 =0
;1\2 i=1 ﬁzzz’i ST M) gy <o) T
It follows that
~ n . "
TEme Ui @)
where i is the solution in g of the cubic equation:
e Qe D=0 @3)
where
A = nic, +njey,
B = —(nycya, + nycqa, + 2n n,n),

C= n%az + ngal + 2n,ny(a; + a,),

D= —naa,.
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The discriminant of the above cubic equation is given by

A = 18ABCD — 4B*D + B>C? — 4AC? - 27A*D?

and it is well known that if this is negative, the cubic equation has a unique real root.

This will imply that the MLEs /1 and /12 are also unique.

Moreover, the asymptotic dlstrlbutlon of the MLE:s is given by:

asn — oo,
~ BB 0 0
h=b 1o —£— o
H—u d 0 BA+B Ay
A M

\/; A=A — N of’f o 0 2’%%

2 0
A=Ay 0 0 0

3.4 DIG-4: Maximum Likelihood Estimation

oS O O

(44)

S
‘mll £
Sre)

Letz 1,215, .- 521, be ars. from DIG-4(f, u, A) distribution. The log-likelihood func-

tion is given by

InLy= Y (B fidzy5m D 1, sp +Zlnﬁfx<|z,,|u,z> (21,<0)
i=1

=n,Inf+n,Inf+ Z Infy(Iz;;134, ).
i=1

The MLEs of (§, u, A) are:

Z {z),>0}>

:I—‘

Moreover, the asymptotic distribution of the MLEs is given by:
as n — oo,

p-s] ., ol [s6 0 0O
\/ﬁ&y—)MVN0,0”jO
-2 Ollo o0 222
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4 Simulations

The purpose of this section is to perform simulation studies to evaluate the behav-
iour of the MLEs of the parameters of the proposed four DIG distributions. Such
behaviour will be evaluated in terms of the bias, mean-square error of the MLEs
and the coverage probability of the 95% confidence intervals of the parameters.
All computations in the simulation studies were done using the R language Ver-
sion 4.0.5 for Windows.

To generate a random sample of size n, Zy 132505 s Loy from DIG-1, DIG-2
and DIG-3 distributions, we use the following algorithms:

1. Generate Y; ~ Bernoulli(f), i=1,2,...,n;

2. Generate X ~1IG(uy, Ay, 1= 1,2,...,n;

3. Generate Xo; ~1G(uy, Ay), 1= 1,2,...,n;

4. SetZ,; =Y, X;;—-(1-Y)X,;, i=12,...,n

To generate a random sample of size n, Z,,,Z,,,...,Z;,, from DIG-4 distribu-

tion, we use the following algorithm:

1. GenerateY; ~ Bernoulli(f), i =1,2,...,n;

2. Generate X; ~ IG(u, 1), i=1,2,...,n;

3. SetZ,;=Q2Y;,-1)X;, i=12,...,n

The sample sizes considered in the simulation studies are n = 50, 100, ..., 500.
The above process of generating random data from DIG distributions is

repeated M = 10,000 times. In each of the M repetitions, the MLEs of the param-

eters and their standard errors (S.E.) were calculated using the expressions given

in Subsections 3.1 to 3.4.

Measures examined in these simulation studies are:

(1) Bias of the MLE V of the parameter v = §, u;, 4, ty, Ay:
| M
Bias(v) = i ;(vi —v),

where V; is the MLE of the parameter v in the ith simulation repetition.
(2) Mean square error (MSE) of the MLE V of the parameter v:

M
~ 1 A 2
MSE(®) = +- ;(vi — V)2
(3) Coverage probability (CP) of 95% confidence intervals of the parameter v:

M
1
CP(v) = M Z l{ve(L[,U[)],
i=1
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where L, =V, — 1.96 S.E.(V,), U, =7V, +1.96 S.E.(V)), i=12,...,M.
The reported figures of the simulation studies support the following conclusions:

1. Figures 5, 6, 7, 8 show that the absolute biases of the MLEs of the parameters
are small and tend to zero for large n.

2. Figures 9, 10, 11, 12 show that the MSE of the MLEs of the parameters are small
and decrease as n increases.

3. Figures 13, 14, 15, 16 show that the coverage probability of 95% confidence
intervals of the parameters is close to the nominal level of 95%.

The above conclusions show that the MLEs of the parameters of the DIG distribu-
tions are well behaved for point estimation and confidence intervals.

5 Application

In this section, we apply the proposed DIG models to a real data set for illustration.
The description of the data is as follows.

In an online final exam at Kuwait university during Covid-19 shut down, students
are requested to write down their solutions on paper sheets, scan these sheets as a
“pdf” file and send such file to the instructor via Teams Chat. The time of submit-
ting the solution file of each student is recorded automatically on the Teams system.
Here, we are interested in modelling the difference between the time (in minutes)
spent to submitting the solution file #; and the two hours exam period of 38 students,
ie.z; =1t —-120,i=1,2,...,38.

The data set is given below.

— 18.06, —17.45, —9.90, —8.62, —6.14, —3.47, —=2.57, —=2.43, — 1.56, 0.84, 1.14,
1.26, 1.34, 1.58, 1.81, 1.82, 1.89, 2.11, 2.23, 2.26, 2.33, 2.36, 2.40, 2.43, 2.52, 2.89,
2.92, 3.25, 3.30, 3.30, 3.47, 3.71, 3.77, 4.02, 4.41, 4.85, 5.20, 7.94 where negative
(positive) value means the student submitted the solution file earlier (later) than the
two hours exam time.

Table 1 shows the MLE’s of the parameters, their standard errors (S.E.’s) and the
maximized log-likelihood of the DIG models. Note that for DIG-3, the discriminant
A = —1.08345 x 10'7, showing that the MLE 7 is unique.

Table 2 shows two goodness-of-fit tests, Anderson-Darling (AD) and Cramer
von-Misses (CvM) tests. Clearly, this table shows that all DIG models pass the two
tests, i.e., we accept the null hypothesis that the data are drawn from each of the DIG
models. However, the test statistics (p-value) for DIG-1 and DIG-2 are much smaller
(larger) than those for DIG-3 and DIG-4.

Since DIG-2, DIG-3 and DIG-4 models are nested in DIG-1 model, we can use
the likelihood ratio test (LRT) to test each of the following hypotheses:

(i) Hy: 4, =2, (DIG-2 model) versus H; : A; # 4, (DIG-1 model)
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;?Slzlr?;utiil:lrsnmary of fitted DIG Model MLE SE ni
DIG-1 720763 0.069 ~94.656
7=2.874 0273
1,=10.945 2.874
7,=7.800 2.502
1,=8.423 3.970
DIG-2 £=0.763 0.069 —94.779
#=2.874 0.283
7,=7.800 2271
7=10.220 2345
DIG-3 £=0763 0.069 ~100.491
n=3.237 0.322
7,=10.445 2.743
1,=2.678 1.262
DIG-4 £=0763 0.069 -102.417
71=4.041 0.504
1=6.837 1.569
Lalbcl}edzistrci}l())l?tcilgﬁzs_()f_ﬁt testsof  nrodel AD statistic p value CvM statistic p value
DIG-1 0.135 0.999 0.019 0.998
DIG-2 0.159 0.998 0.024 0.993
DIG-3 1.271 0.241 0.111 0.533
DIG-4 2.170 0.075 0.284 0.150

(i) Hy : py = p, (DIG-3 model) versus H; : p; # u, (DIG-1 model)
(i) Hy : gy = Uy, Ay = 4, (DIG-4 model) versus H; : u; # py, 4, # 1, (DIG-1

model)

Table 3 shows that DIG-2 model cannot be rejected for the given data.

We have seen above that LR test favour the DIG-2 model to be suitable for the given
data. This conclusion is also supported by the Probability-Probability (P-P) plots pre-
sented in Fig. 17 and the Quantile-Quantile (Q-Q) plots presented in Fig. 18.
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Table 3 Likelihood ratio tests

Model LR statistic d.f value
for nested DIG distributions P
DIG-2 0.246 1 0.6199
DIG-3 11.670 0.0006
DIG-4 15.522 2 0.0004
DIG-1 P-P Plot DIG-2 P-P Plot
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g.17 P-P plots of fitted DIG distributions

6 Conclusion and Comments

Theoretical Probabilities

Double inverse Gaussian distribution, presented here, has been formed by a proce-
dure proposed by Aly (2018). This procedure is completely different from the proce-
dures adopted in the literature. The unified approach, adopted here, is quite general
and can be used to formulate double distributions for various classes of distributions.
A natural extension of such double distributions is to include possible covariates to
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DIG-1 Q-Q Plot DIG-2 Q-QPlot
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Fig. 18 Q-Q plots of fitted DIG distributions

allow more flexibility for modelling purposes. We hope that the model presented
here will be found useful for data analysts.
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