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Abstract
In order to have more flexibility, several double distributions have been studied in 
the literature. In this paper, we propose a double inverse Gaussian distribution using 
random sign mixture transform and study its associated inferences. The maximum 
likelihood estimation is performed to estimate the parameters. Extensive simulation 
studies are carried out to examine the performance of the estimators and the cor-
responding confidence intervals of the parameters. A real data set example is pre-
sented to illustrate the procedure.

Keywords Random sign transform · Random sign mixture transform · Inverse-
Gaussian distribution · Maximum likelihood estimation · Monte Carlo simulations
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1 Introduction

In the last 40 years, there has been a considerable literature on the double con-
tinuous distributions on the real line, some of which explain the word dou-
ble and some do not. Several of them use the word double as the distribution 
of the absolute value and some of them use the word reflection. Balakrishnan 
and Kocherlakota (1985) and Rao and Narasimham (1989) presented the double 
Weibull distribution and studied its order statistics and linear estimation. Bindu 
and Sangita (2015) studied the double Lomax distribution as the distribution of 
the absolute value of the ratio of two independent Laplace distributed variables. 
Govindarajulu (1966) studied the reflected version of the exponential distribution. 
The reflected version of the generalized Gamma was studied by Plucinska (1965, 
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1966, 1967) and the reflected version of the gamma distribution was studied by 
Kantam and Narasimham (1991). Kumar and Jose (2019) called the distribution 
of the absolute value of the Lindley variable as the double Lindley distribution, 
see also Ibrahim et al. (2020). Nadarajah et al. (2013) presented a double general-
ized Pareto distribution and Halvarsson (2020) studied double Pareto type II dis-
tribution. Armagan et al. (2013) presented a generalized double Pareto shrinkage 
distribution and used it as a prior for Bayesian shrinkage estimation and infer-
ences in linear models.

Most of the above cited double continuous distributions have some limitations 
such as (i) non-existence of moments for some values of the parameters, see for 
example Nadarajah et  al. (2013) and, (ii) non-existence of some MLEs of the 
parameters, see for example de Zea Bermudez and Kotz (2010a) and de Zea Ber-
mudez and Kotz (2010b).

Recently, Aly (2018) presented a unified approach for developing double con-
tinuous/discrete distributions using two well known transforms (representations), 
namely

(i) random sign transform (RST):

where Y is a Bernoulli r.v. with parameter � and X is a non-negative r.v. independent 
of Y. The probability density function (p.d.f.) of Z1 is given by

where fX(⋅;�) is the p.d.f. of a non-negative r.v. X with (vector) parameter � and 
� = 1 − �.

(ii) random sign mixture transform (RSMT):

where Y is a Bernoulli r.v. with parameter � while X1,X2 are independent non-nega-
tive r.v.’s independent of Y.

The p.d.f. of Z2 is given by

where fXj
(⋅;�j), j = 1, 2, are the p.d.f.’s of a non-negative r.v.’s X1,X2 with (vector) 

parameters �1, j = 1, 2.

If X1 and X2 are from the same family of distributions F  , we say that Z2 has a 
double F  distribution.

Note that RST is a special case of RSMT when X1,X2 are independent and 
identically distributed (i.i.d.), i.e. X1

d
= X2

d
= X. Moreover, all the above cited dou-

ble distributions considered only the case � =
1

2
.

Z1 = (2Y − 1)X,

(1)fZ1(z; 𝛽,�) =

{
𝛽 fX(|z|;�), z < 0,

𝛽 fX(z;�), z ≥ 0,

Z2 = YX1 − (1 − Y)X2,

(2)fZ2(z; 𝛽,�1,�2) =

{
𝛽 fX2

(|z|;�2), z < 0,

𝛽 fX1
(z;�1), z ≥ 0,
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The inverse Gaussian distribution, denoted by IG(�, �), has a p.d.f.

where � is the mean and � is the shape parameter. This distribution is a very ver-
satile life distribution and its various modifications and transformations have been 
extensively studied in the literature. We refer the reader to Gupta and Akman (1995, 
1996, 1997, 1998), Gupta and Kundu (2011) and the references therein. The inverse 
Gaussian distribution has also been studied under the umbrella of Birnbaum Saun-
ders distribution. For a survey article on Birnbaum Saunders distribution, we refer to 
Balakrishnan and Kundu (2019).

We follow the procedure presented by Aly (2018) and study the double inverse 
Gaussian distribution. Specifically, we consider four double inverse-Gaussian 
distributions: 

1. Double inverse Gaussian 1, DIG-1(�,�1, �1,�2, �2),

2. Double inverse Gaussian 2, DIG-2(�,�1,�2, �) ≡ DIG-1(�,�1, �,�2, �),

3. Double inverse Gaussian 3, DIG-3(�,�, �1, �2) ≡ DIG-1(�,�, �1,�, �2),
4. Double inverse Gaussian 4, DIG-4(�,�, �) ≡ DIG-1(�,�, �,�, �).

These distributions are bimodal with one mode on each side of the origin.
The contents of this paper are organized as follows. In Sect. 2, we present the sta-

tistical properties of the double inverse Gaussian distributions, including the prob-
ability density function, cumulative distribution function (c.d.f.), modes, moment 
generating function (m.g.f.), raw moments, variance, skewness, kurtosis, Tsallis 
entropy, Shannon entropy and extropy. The maximum likelihood estimation of the 
parameters and their asymptotic distributions are studied in Sect. 3. Extensive simu-
lation studies are carried out in Sect. 4 to study the performance of the estimators. 
In Sect. 5, a real data set application is presented to illustrate the procedure. Finally, 
some conclusion and comments are presented in Sect. 6.

2  Statistical Properties

In this section, we present a comprehensive summary of the basic properties of 
the DIG-1 (�,�1, �1,�2, �2) distribution. These properties include, the p.d.f., c.d.f., 
modes, m.g.f., raw moments and associated measures, Tsallis entropy, Shannon 
entropy and extropy. Corresponding properties for the nested distributions DIG-2, 
DIG-3 and DIG-4 are obtained as special cases when (�1 = �2 = �), (�1 = �2 = �) 
and (�1 = �2 = �, �1 = �2 = �) , respectively.

fX(x; 𝜇, 𝜆) =

√
𝜆

2𝜋
x−3∕2 exp

[
−
𝜆(x − 𝜇)2

2𝜇2x

]
, x > 0, 𝜇, 𝜆 > 0,
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2.1  Probability Density Function

The p.d.f of DIG-1 distribution is given by

where

are the p.d.f.’s of inverse Gaussian distributions.
Figure 1 shows the bimodality of the p.d.f. of DIG distributions as a function in � . 

Also, this figure shows that the left (right) peak gets smaller (larger) as � increases.
The DIG-1 distribution has two modes given by

where

are the modes of inverse Gaussian distributions.

(3)fZ2(z) =

{
𝛽 fX2

(|z|;𝜇2, 𝜆2), z < 0,

𝛽 fX1
(z;𝜇1, 𝜆1), z ≥ 0,

(4)
fXj
(x;𝜇j, 𝜆j) =

√
𝜆j

2𝜋
x−3∕2 exp

[
−
𝜆j(x − 𝜇j)

2

2𝜇2
j
x

]
,

x > 0, 𝜇j, 𝜆j > 0, j = 1, 2,

(5)Mode(Z2) = − Mode(X2) and Mode(X1),

(6)Mode(Xj) = �j

⎡⎢⎢⎣

����
1 +

�
3�j

2�j

�2

−
3�j

2�j

⎤⎥⎥⎦
, j = 1, 2,

Fig. 1  P.d.f. of DIG-1 distribution



155

1 3

Journal of the Indian Society for Probability and Statistics (2023) 24:151–182 

2.2  Cumulative Distribution Function

The c.d.f of DIG-1 distribution is given by

where

are the c.d.f.’s of inverse Gaussian distributions and

is the c.d.f. of the standard normal distribution.
Figure 2 shows the c.d.f. of the DIG-1 distribution as a function in � . Also, this 

figure shows that FZ2
(0) = � and hence FZ2

(0) decreases as � increases.

2.3  Moment Generating Function

The m.g.f. of DIG-1 distribution is given by

where

(7)FZ2
(z) =

{
𝛽
[
1 − FX2

(|z|;𝜇2, 𝜆2)
]

z < 0,

𝛽 + 𝛽 FX1
(z;𝜇1, 𝜆1) z ≥ 0,

(8)
FXj

(x;𝜇j, 𝜆j) = Φ

⎛⎜⎜⎝

�
𝜆j

x

�
x

𝜇j

− 1

�⎞⎟⎟⎠
+ e2𝜆j∕𝜇j Φ

⎛⎜⎜⎝
−

�
𝜆j

x

�
x

𝜇j

+ 1

�⎞⎟⎟⎠
,

x > 0, j = 1, 2,

(9)Φ(a) = P(Z ≤ a) = �
a

−∞

1√
2𝜋

e−z
2∕2 dz, −∞ < a < ∞,

(10)MZ2
(t) = 𝛽 MX1

(t) + 𝛽 MX2
(−t), −∞ < t < ∞,

Fig. 2  C.d.f. of DIG-1 distribution



156 Journal of the Indian Society for Probability and Statistics (2023) 24:151–182

1 3

are the m.g.f.’s of inverse Gaussian distributions.

2.4  Moments and Associated Measures

The rth moment of DIG-1 distribution is given by

where, using the result of Sato and Inoue (1994),

are the rth moments of inverse Gaussian distributions.
Using the last expressions of E(Zr

2
) , the mean, variance, skewness, and kurtosis of 

DIG-1 distribution are easily obtained. Note that E(Z2) does not depend on �1 and �2.

(11)MXj
(t) = exp

⎡
⎢⎢⎣
𝜆j

𝜇j

⎛
⎜⎜⎝
1 −

����
1 −

2𝜇2
j
t

𝜆j

⎞
⎟⎟⎠

⎤
⎥⎥⎦
, �t� < 𝜆j

2𝜇2
j

, j = 1, 2,

(12)E(Zr
2
) = � E(Xr

1
) + (−1)r � E(Xr

2
), r ≥ 1,

(13)E(Xr
j
) = �r

j

r−1∑
i=0

(r − 1 + i)!

r! (r − 1 − i)! 2i

(
�j

�j

)i

, j = 1, 2,

Fig. 3  Mean, variance, skewness and kurtosis of DIG-1 distribution
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Figure 3 shows the mean, variance, skewness, and kurtosis of the DIG-1 distribu-
tion as a function in � . Also, this figure shows that the skewness can be negative/
positive, i.e. the DIG-1 distribution can be skewed to the left/right.

2.5  Tsallis Entropy

Entropies are measures of a system’s variation, instability, or unpredictability. The 
Tsallis entropy, Tsallis (1988), is an important measure in statistics as index of 
diversity. It has many applications in areas such as physics, chemistry, biology and 
economics.

For a continuous r.v. V with p.d.f. fV (v) , the Tsallis entropy of V is defined as

where S is the support of V.
First, we derive the Tsallis entropy of RSMT Z2.

where

Note that Tsallis entropy of RSMT T(Z2) is a non-linear function in �.
Second, we find the Tsallis entropy of X ∼ IG(�, �).

T𝛼(V) =
1

𝛼 − 1

[
1 − �S

f 𝛼
V
(v)dv

]
=

1

𝛼 − 1
E[1 − f 𝛼−1

V
(V)], 0 < 𝛼 ≠ 1,

(14)

T�(Z2) =
1

� − 1

{
1 − ∫

∞

−∞

f �
Z2
(z)dz

}

=
1

� − 1

{
1 − ∫

∞

0

��f �
X1
(z)dz − ∫

0

−∞

�
�
f �
X2
(−z)dz

}

=
1

� − 1

{
1 − �� ∫

∞

0

f �
X1
(z)dz − �

�

∫
∞

0

f �
X2
(x)dx

}

=
1

� − 1

{
1 − ��E[f �−1

X1
(X1)] − �

�
E[f �−1

X2
(X2)]

}

=
1

� − 1

{
1 − ��[1 − (� − 1)T�(X1)] − �

�
[1 − (� − 1)T�(X2)]

}

=
1

� − 1
(1 − �� − �

�
) + �� T�(X1) + �

�
T�(X2),

=T�(Y) + �� T�(X1) + �
�
T�(X2),

(15)T�(Y) =
1

� − 1
E[1 − f �−1

Y
(Y)] =

1

� − 1
(1 − �� − �

�
).
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where

is the modified Bessel function of the second kind.
Therefore, Tsallis entropy of DIG-1 distribution is explicitly given by

where T�(Y) is given by (15) and

2.6  Shannon Entropy

Using L’Hospital rule, we have

which is the Shannon entropy of V, Shannon (1948).
As � → 1 , (14) and (15), are simplified to

where

(16)

T�(X) =
1

� − 1

{
1 − ∫

∞

0

f �
X
(x)dx

}

=
1

� − 1

{
1 − ∫

∞

0

(
�

2�

)�∕2 1

x3�∕2
exp

[
−

��

2�2x
(x − �)2

]
dx

}

=
1

� − 1

{
1 −

(
�

2�

)�∕2

e��∕� ∫
∞

0

1

x3�∕2
exp

[
−

(
��

2�2
x +

��

2x

)]
dx

}

=
1

� − 1

{
1 −

(
�

2�

)�∕2
(
2�2

��

)−(3�∕2−1)

e��∕�

∫
∞

0

1

t3�∕2
exp

[
−

(
t +

(��∕�)2

4t

)]
dt

}

=
1

� − 1

{
1 −

(
�∕�

2�

)�∕2
2e��∕�

��−1
K3�∕2−1 (��∕�)

}
.

(17)

K𝜈(s) =
1

2
(s∕2)𝜈 ∫

∞

0

1

t𝜈+1
exp

[
−

(
t +

s2

4t

)]
dt, −∞ < 𝜈 < ∞, s > 0,

(18)T�(Z2) = T�(Y) + �� T�(X1) + �
�
T�(X2),

(19)

T�(Xj) =
1

� − 1

{
1 −

(
�j∕�j

2�

)�∕2
2e��j∕�j

��−1
j

K3�∕2−1 (��j∕�j)

}
, j = 1, 2.

lim
�→1

T�(V) = −∫S

ln(fV (v))fV (v)dv = E[− ln fV (V)] = H(V),

(20)H(Z2) = H(Y) + � H(X1) + � H(X2),
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which agrees with the result obtained by Aly (2018). Note that Shannon entropy of 
RSMT H(Z2) is a non-linear function in �.

Using (16), the Shannon entropy of X ∼ IG(�, �) is given by

where K𝜈(s), s > 0, is given by (17). The proof follows by using L’HÔpital’s rule.
The last expression can be calculated using the Mathematica function 

BesselK(1,0)[1∕2, �∕�] =
�

��
K�(�∕�)|�=1∕2.

Using (20), the Shannon entropy of DIG-1 distribution is given by

where H(Y) is given by (21) and

2.7  Extropy

The following relation

is known as the extropy of V (Lad et al. 2015).
Using (14) and (15), with � = 2 , the extropy of RSMT is given by

Note that extropy of RSMT H(Z2) is a quadratic function in �.
Using (16), with � = 2 , the extropy of X ∼ IG(�, �) is given by

where K�(z) is given by (17).
The extropy of DIG-1 distribution is given by

(21)H(Y) = −� ln � − � ln �,

(22)

H(X) = lim
�→1

T�(X)

=
1

2
−

1

2
ln

(
�

2��3

)
−

3

2

√
2�

��
e�∕�

�

��
K�(�∕�)|�=1∕2,

(23)H(Z2) = H(Y) + � H(X1) + � H(X2),

(24)

H(Xj) =
1

2
−

1

2
ln

(
�j

2��3
j

)
−

3

2

√
2�j

��j

e�j∕�j
�

��j
K�j

(�j∕�j)|�j=1∕2, j = 1, 2.

(25)
1

2
[T2(V) − 1] = −

1

2 ∫S

f 2
V
(v)dv = E

[
−
1

2
fV (V)

]
= J(V),

(26)J(Z2) =
1

2
[T2(Z2) − 1] = �2 J(X1) + �

2
J(X2).

(27)J(X) =
1

2
[T2(X) − 1] = −

�

2��2
e2�∕� K2(2�∕�),

(28)J(Z2) = �2 J(X1) + �
2
J(X2),
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where

where K�(z) is given by (17).
Figure 4 shows Tsallis entropy, Shannon entropy and extropy of DIG-1 distribu-

tion as a function in � for selected values of the parameters. This figure also shows 
that Tsallis entropy of DIG-1 distribution decreases as � increases.

(29)J(Xj) = −
�j

2��2
j

e2�j∕�j K2(2�j∕�j), j = 1, 2,

Fig. 4  Tsallis entropy, Shannon entropy and extropy of DIG-1 distribution
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3  Maximum Likelihood Estimation

In this section, we derive the MLEs of the parameters of DIG distributions and their 
asymptotic distributions. These asymptotic distributions turned out to be multivari-
ate normal which can be used to make statistical inference (confidence intervals and 
hypothesis testing) about the parameters of DIG distributions.

3.1  DIG‑1: Maximum Likelihood Estimation

Let z2,1, z2,2,… , z2,n be a r.s. from DIG-1(�,�1, �1,�2, �2) distribution. The log-
likelihood function is given by

where 1A = 1(0) if A is true (false) is the indicator function.
The MLEs of (�,�1, �1,�2, �2) are:

where

Moreover, the asymptotic distribution of the MLEs is given by:
as n → ∞,

(30)

lnL1 =

n∑
i=1

ln[𝛽 fX1
(z2,i;𝜇1, 𝜆1)] 1{z2,i>0} +

n∑
i=1

ln[𝛽 fX2
(|z2,i|;𝜇2, 𝜆2)] 1{z2,i<0},

(31)

�̂ =
n1

n
, �̂1 =

a1

n1
, �̂1 =

n1

c1 −
n2
1

a1

, �̂2 =
a2

n2
, �̂2 =

n2

c2 −
n2
2

a2

,

(32)n1 =

n∑
i=1

1{z2,i>0}
, n2 =

n∑
i=1

1{z2,i<0}
, n1 + n2 = n,

(33)a1 =

n∑
i=1

z2,i 1{z2,i>0}, a2 =

n∑
i=1

|z2,i| 1{z2,i<0},

(34)c1 =

n∑
i=1

1

z2,i
1{z2,i>0}

, c2 =

n∑
i=1

1

|z2,i| 1{z2,i<0}.
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where d
⟶

 denotes convergence in distribution and MVN stands for multivariate 
normal distribution.

3.2  DIG‑2: Maximum Likelihood Estimation

Let z2,1, z2,2,… , z2,n be a r.s. from DIG-2(�,�1,�2, �) distribution. The log-likelihood 
function is given by

The MLE of � is

and the MLEs of (�1,�2, �) are the solutions of the normal equations:

It follows that

Moreover, the asymptotic distribution of the MLEs is given by: as n → ∞,

(35)
√

n

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̂ − �
�̂1 − �1
�̂1 − �1
�̂2 − �2
�̂2 − �2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

d
⟶ MVN

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

� � 0 0 0 0
0 �3

1
��1

0 0 0

0 0 2�21
�

0 0

0 0 0 �3
2

��2
0

0 0 0 0 2�22
�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(36)

lnL2 =

n∑
i=1

ln[𝛽 fX1
{z2,i;𝜇1, 𝜆)] 1{z2,i>0} +

n∑
i=1

ln[𝛽 fX2
(|z2,i|;𝜇2, 𝜆)] 1{z2,i<0).

(37)�̂ =
n1

n
,

n

�𝜆
−

n∑
i=1

1

�𝜇2
1
z2,i

{z2,i − �𝜇1)
2
1{z2,i>0}

−

n∑
i=1

1

�𝜇2
2
|z2,i|

(|z2,i| − �𝜇2)
2
1{z2,i<0)

=0,

n∑
i=1

{z2,i − �𝜇1) 1{z2,i>0} =0,

n∑
i=1

(|z2,i| − �𝜇2) 1{z2,i<0} =0.

(38)
�̂1 =

a1

n1
, �̂2 =

a2

n2
, �̂ =

n

c1 −
n2
1

a1
+ c2 −

n2
2

a2

.
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3.3  DIG‑3: Maximum Likelihood Estimation

Let z2,1, z2,2,… , z2,n be a r.s. from DIG-3(�,�, �1, �2) distribution. The log-likelihood 
function is given by

The MLE of � is

and the MLEs of (�, �1, �2) are the solutions of the normal equations:

It follows that

where �̂  is the solution in � of the cubic equation:

where

(39)
√
n

⎡
⎢⎢⎢⎣

�̂ − �

�̂ − �

�̂1 − �1

�̂2 − �2

⎤
⎥⎥⎥⎦

d
⟶ MVN

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

�� 0 0 0

0 2�2 0 0

0 0
�3
1

��
0

0 0 0
�3
2

��

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

.

(40)lnL3 =

n∑
i=1

ln[𝛽 fX1
{z2,i;𝜇, 𝜆1)] 1{z2,i>0} +

n∑
i=1

ln[𝛽 fX2
(|z2,i|;𝜇, 𝜆2)] 1{z2,i<0).

(41)�̂ =
n1

n
,

�𝜆1

n∑
i=1

{z2,i − �𝜇1) 1{z2,i>0} +
�𝜆2

n∑
i=1

(|z2,i| − �𝜇1) 1{z2,i<0) =0,

n1

�𝜆1

−

n∑
i=1

1

�𝜇2zi
{z2,i − �𝜇)2 1{z2,i>0} =0,

n2

�𝜆2

−

n∑
i=1

1

�𝜇2z2,i
{zi − �𝜇)2 1{z2,i<0) =0.

(42)�̂1 =
n1

a1

�̂2
−

2n1

�̂
+ c1

, �̂2 =
n2

a2

�̂2
−

2n2

�̂
+ c2

,

(43)A�3 + B�2 + C� + D = 0,

A = n2
1
c2 + n2

2
c1,

B = − (n1c2a1 + n2c1a2 + 2n1n2n),

C = n2
1
a2 + n2

2
a1 + 2n1n2(a1 + a2),

D = − na1a2.
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The discriminant of the above cubic equation is given by

and it is well known that if this is negative, the cubic equation has a unique real root. 
This will imply that the MLEs �̂1 and �̂2 are also unique.

Moreover, the asymptotic distribution of the MLEs is given by:
as n → ∞,

3.4  DIG‑4: Maximum Likelihood Estimation

Let z1,1, z1,2,… , z1,n be a r.s. from DIG-4(�,�, �) distribution. The log-likelihood func-
tion is given by

The MLEs of (�,�, �) are:

Moreover, the asymptotic distribution of the MLEs is given by:
as n → ∞,

Δ = 18ABCD − 4B3D + B2C2 − 4AC3 − 27A2D2

(44)
√
n

⎡
⎢⎢⎢⎢⎣

�̂ − �

�̂ − �

�̂1 − �1
�̂2 − �2

⎤
⎥⎥⎥⎥⎦

d
⟶ MVN

⎛
⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

�� 0 0 0

0
�3

��1+� �2
0 0

0 0
2�2

1

�
0

0 0 0
2�2

2

�

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

.

(45)

lnL4 =

n∑
i=1

ln[𝛽 fX{z1,i;𝜇, 𝜆)] 1{z1,i>0} +

n∑
i=1

ln[𝛽 fX(|z1,i|;𝜇, 𝜆)] 1{z1,i<0}

= n1 ln 𝛽 + n2 ln 𝛽 +

n∑
i=1

ln fX(|z1,i|;𝜇, 𝜆).

(46)�𝛽 =
1

n

n�
i=1

1{z1,i>0}
, �𝜇 =

1

n

n�
i=1

�z1,i�, �𝜆 =
n∑n

i=1

1

�z1,i� −
n

�𝜇

.

(47)
√
n

⎡⎢⎢⎣

�̂ − �

�̂ − �

�̂ − �

⎤⎥⎥⎦
d

⟶ MVN

⎛⎜⎜⎝

⎡⎢⎢⎣

0

0

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

� � 0 0

0
�3

�
0

0 0 2�2

⎤⎥⎥⎦

⎞⎟⎟⎠
.
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4  Simulations

The purpose of this section is to perform simulation studies to evaluate the behav-
iour of the MLEs of the parameters of the proposed four DIG distributions. Such 
behaviour will be evaluated in terms of the bias, mean-square error of the MLEs 
and the coverage probability of the 95% confidence intervals of the parameters. 
All computations in the simulation studies were done using the R language Ver-
sion 4.0.5 for Windows.

To generate a random sample of size n,  Z2,1, Z2,2,… , Z2,n , from DIG-1, DIG-2 
and DIG-3 distributions, we use the following algorithms: 

1. Generate Yi ∼ Bernoulli(�), i = 1, 2,… , n;

2. Generate X1,i ∼ IG(�1, �1), i = 1, 2,… , n;

3. Generate X2,i ∼ IG(�2, �2), i = 1, 2,… , n;

4. Set Z2,i = Yi X1,i − (1 − Yi) X2,i, i = 1, 2,… , n.

To generate a random sample of size n,   Z1,1, Z1,2,… , Z1,n , from DIG-4 distribu-
tion, we use the following algorithm: 

1. Generate Yi ∼ Bernoulli(�), i = 1, 2,… , n;

2. Generate Xi ∼ IG(�, �), i = 1, 2,… , n;

3. Set Z1,i = (2Yi − 1) Xi, i = 1, 2,… , n.

The sample sizes considered in the simulation studies are n = 50, 100,… , 500.

The above process of generating random data from DIG distributions is 
repeated M = 10, 000 times. In each of the M repetitions, the MLEs of the param-
eters and their standard errors (S.E.) were calculated using the expressions given 
in Subsections 3.1 to 3.4.

Measures examined in these simulation studies are: 

(1) Bias of the MLE �̂  of the parameter � = �,�1, �1,�2, �2 : 

 where �̂i is the MLE of the parameter � in the ith simulation repetition.
(2) Mean square error (MSE) of the MLE �̂  of the parameter � : 

(3) Coverage probability (CP) of 95% confidence intervals of the parameter � : 

Bias(�̂) =
1

M

M∑
i=1

(�̂i − �),

MSE(�̂) =
1

M

M∑
i=1

(�̂i − �)2.

CP(�) =
1

M

M∑
i=1

1{�∈(Li,Ui)}
,
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 where Li = �̂i − 1.96 S.E.(�̂i), Ui = �̂i + 1.96 S.E.(�̂i), i = 1, 2,… ,M.

The reported figures of the simulation studies support the following conclusions: 

1. Figures 5, 6, 7,  8 show that the absolute biases of the MLEs of the parameters 
are small and tend to zero for large n.

2. Figures 9, 10, 11,  12 show that the MSE of the MLEs of the parameters are small 
and decrease as n increases.

3. Figures 13, 14, 15,  16 show that the coverage probability of 95% confidence 
intervals of the parameters is close to the nominal level of 95%.

The above conclusions show that the MLEs of the parameters of the DIG distribu-
tions are well behaved for point estimation and confidence intervals.

5  Application

In this section, we apply the proposed DIG models to a real data set for illustration. 
The description of the data is as follows.

In an online final exam at Kuwait university during Covid-19 shut down, students 
are requested to write down their solutions on paper sheets, scan these sheets as a 
“pdf” file and send such file to the instructor via Teams Chat. The time of submit-
ting the solution file of each student is recorded automatically on the Teams system. 
Here, we are interested in modelling the difference between the time (in minutes) 
spent to submitting the solution file ti and the two hours exam period of 38 students, 
i.e. zi = ti − 120, i = 1, 2,… , 38.

The data set is given below.
− 18.06, −17.45, −9.90, −8.62, −6.14, −3.47, −2.57, −2.43, − 1.56, 0.84, 1.14, 

1.26, 1.34, 1.58, 1.81, 1.82, 1.89, 2.11, 2.23, 2.26, 2.33, 2.36, 2.40, 2.43, 2.52, 2.89, 
2.92, 3.25, 3.30, 3.30, 3.47, 3.71, 3.77, 4.02, 4.41, 4.85, 5.20, 7.94 where negative 
(positive) value means the student submitted the solution file earlier (later) than the 
two hours exam time.

Table 1 shows the MLE’s of the parameters, their standard errors (S.E.’s) and the 
maximized log-likelihood of the DIG models. Note that for DIG-3, the discriminant 
Δ = −1.08345 × 1017 , showing that the MLE �̂  is unique.

Table  2 shows two goodness-of-fit tests, Anderson-Darling (AD) and Cramer 
von-Misses (CvM) tests. Clearly, this table shows that all DIG models pass the two 
tests, i.e., we accept the null hypothesis that the data are drawn from each of the DIG 
models. However, the test statistics (p-value) for DIG-1 and DIG-2 are much smaller 
(larger) than those for DIG-3 and DIG-4.

Since DIG-2, DIG-3 and DIG-4 models are nested in DIG-1 model, we can use 
the likelihood ratio test (LRT) to test each of the following hypotheses: 

 (i) H0 ∶ �1 = �2 (DIG-2 model) versus H1 ∶ �1 ≠ �2 (DIG-1 model)
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 (ii) H0 ∶ �1 = �2 (DIG-3 model) versus H1 ∶ �1 ≠ �2 (DIG-1 model)
 (iii) H0 ∶ �1 = �2, �1 = �2 (DIG-4 model) versus H1 ∶ �1 ≠ �2, �1 ≠ �2 (DIG-1 

model)

Table 3 shows that DIG-2 model cannot be rejected for the given data.

We have seen above that LR test favour the DIG-2 model to be suitable for the given 
data. This conclusion is also supported by the Probability-Probability (P-P) plots pre-
sented in Fig. 17 and the Quantile-Quantile (Q-Q) plots presented in Fig. 18.

Table 1  Summary of fitted DIG 
distributions

Model MLE S.E ln L̂

DIG-1 �̂ =0.763 0.069 −94.656

�̂1=2.874 0.273

�̂1=10.945 2.874

�̂2=7.800 2.502

�̂2=8.423 3.970

DIG-2 �̂ =0.763 0.069 −94.779

�̂1=2.874 0.283
�̂2=7.800 2.271

�̂  = 10.220 2.345

DIG-3 �̂ =0.763 0.069 −100.491

�̂=3.237 0.322

�̂1=10.445 2.743

�̂2=2.678 1.262

DIG-4 �̂ =0.763 0.069 −102.417

�̂=4.041 0.504

�̂=6.837 1.569

Table 2  Goodness-of-fit tests of 
DIG distributions

Model AD statistic p value CvM statistic p value

DIG-1 0.135 0.999 0.019 0.998
DIG-2 0.159 0.998 0.024 0.993
DIG-3 1.271 0.241 0.111 0.533
DIG-4 2.170 0.075 0.284 0.150
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6  Conclusion and Comments

Double inverse Gaussian distribution, presented here, has been formed by a proce-
dure proposed by Aly (2018). This procedure is completely different from the proce-
dures adopted in the literature. The unified approach, adopted here, is quite general 
and can be used to formulate double distributions for various classes of distributions. 
A natural extension of such double distributions is to include possible covariates to 

Table 3  Likelihood ratio tests 
for nested DIG distributions

Model LR statistic d.f p value

DIG-2 0.246 1 0.6199
DIG-3 11.670 1 0.0006
DIG-4 15.522 2 0.0004

Fig. 17  P-P plots of fitted DIG distributions
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allow more flexibility for modelling purposes. We hope that the model presented 
here will be found useful for data analysts.
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