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Abstract
Interdependence between random variables and processes is analyzed extensively in
the literature using different techniques. In this paper, a new direction of analysis to
investigate the reliability of systems such as a k-out-of -n : G system and, in par-
ticular serial and parallel systems with interdependence among the components, is
introduced. This procedure is through a special case of semi-Markov process. The
distribution of the time to failure of serial, parallel and also that of the more general
k-out-of -n : G system, are derived. A theoretical comparison between systems with
interdependent components and systems with independent components is provided.

Keywords Interdependence · System reliability · k-out-of-n system · Serial
and parallel systems

1 Introduction

Analysis of interdependence among random variables and processes is abundantly
available in the literature. The purpose of this paper is to study the reliability of
systems with two or more interdependent components. Krishnamoorthy (2020)
introduced analysis of interdependence through semi-Markov approach. He assumes
that the evolution is according to a multi-dimensional semi-Markov process; the
dimension depends on the number of processes involved. If there are n processes in
our study, a few of them could be interdependent in groups; between distinct groups
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there will be no interdependence. A few may remain neutral, which means that, those
are independent of all other processes involved. More specifically, we have a finite
number of processes forming distinct classes; members of the same class are
interdependent whereas those from distinct classes are not dependent on each other.
The analysis of such systems is much more complex. Therefore we consider the case
of interdependence among all the processes involved. Though interdependence of
processes have extensively been analysed in the literature, the type of analysis we
employ in this paper is a very recent introduction as mentioned in Krishnamoorthy
(2020).

First we give an overview of the work done very recently on system reliability
with interdependent components. A brief review of the work done on different kinds
of interdependent models in queueing theory could be found in Krishnamoorthy and
Viswanath (2021) . Some details on k-out-of -n : G system with/without repair can be
found in Krishnamoorthy et al. (1999) and in the references therein.

Bian et al. (2021) examine two reliability models for multi-component systems
whose normal functioning gets affected due to dependent competing failure
processes. All components in the systems are subject to two types of failures:

1. Soft failure owing to internal degradation
2. Hard failure due to external shocks.

A soft failure happens when the total degradation amount of a component exceeds its
soft failure threshold whereas a hard failure of components occur when a single
shock load or the accumulated shock load exceeds its hard failure threshold. A
component fails when a soft failure or a hard failure happens, whichever occurs first.
The external shock arrival is governed by a non-homogeneous Poisson process and
impacts all components of the system simultaneously. The soft failure and hard
failure processes are dependent because the external shock can not only break down
components stochastically, but also accelerate the degradation process of the
components. The analytic forms of the reliability functions for systems under
cumulative shock model and extreme shock model are derived. The random point
method in Monte Carlo simulation and vector program in Matlab are applied to
calculate multiple integral in the expressions of the reliability functions. Finally, a
case study on the Micro-Electro Mechanical Systems with multiple and distinct
components, is provided to illustrate the proposed model.

Bian et al. (1992) investigate the extreme and d shock models in which systems
are subject to dependent hard failure and soft failure processes. Under the extreme
shock model, a hard failure occurs if the magnitude of a single shock surpasses a
critical level, while under the d shock model, a hard failure occurs if the interval time
between two successive shocks is smaller than a threshold. Under both shock
models, soft failure of the system occurs if the total quantum of degradation
surpasses a given soft failure threshold. The hard and soft failure processes are
interdependent owing to the fact that external shock will bring abrupt increment in
the degradation path of the system, and on the other hand, the amount of total
degradation will affect the hard failure threshold of the system. The failure of the
system occurs if a hard failure or a soft failure occurs, whichever happens first. The

123

484 Journal of the Indian Society for Probability and Statistics (2022) 23:483–496



reliability expressions of the system subject to the two shocks are derived explicitly.
Some reliability indices of the system are calculated. A case study of the sliding
spool is provided to illustrate the proposed model.

Haiyan Shi et al. (2020). In the absence of failure data, to use the inaccurate
empirical data given by experts to evaluate the reliability of the system, the
inaccurate empirical data are regarded as uncertain variables, and the parameters in
uncertainty distribution function are also uncertain variables. This paper studies an
extreme shock model with dependent competitive failure, both internal natural
degradation and external shock can cause system failure, the external shock will
cause a sudden increase in the amount of degradation. The degradation process is a
linear uncertain process, and the external shock is described by an uncertain renewal
reward process. The reliability and the mean time to failure of the system are
calculated by employing uncertainty theory. Using micro-electro-mechanical systems
(MEMS) as an example, the sensitivity of the system reliability is simulated, and the
reliability of the system under uncertain parameters and constants is compared, as
well as the reliability of the system under the dependent competitive failure model
and the independent competitive failure model.

Bian et al. (1992) proposes an effective dependent competing failure model for
systems subject to shocks. Under worse system degradation, shocks with the same
magnitudes can bring sudden degradation increments which was ignored in most
existing research. To address this problem, a time-dependent rate is included for the
sudden degradation increments by shocks. This time-varying rate is applied for the
consideration that system degradation is closely related to operation time. Two
dependent competing failure processes, i.e., soft failure and hard failure, are involved
in the dependent competing failure model. The distribution of the total sudden
degradation increments is then deduced, and its accuracy is verified by Monte Carlo
simulation. The so developed reliability model is illustrated by the analysis of a
micro-electro-mechanical system. The sensitivity analysis of important parameters is
also performed. The results obtained show that the proposed time-varying model
effectively considers the impact of system degradation on sudden degradation
increments, and by using this model, the change of sudden degradation increments
can be well reflected under different system performances. These advantages make
the reliability model more practical and help achieve more effective maintenance
policies.

With this brief survey, we proceed to the theme of this paper Shuyuan and Zhifang
(2021) evaluate the reliability of a dependent competing failure model including a
time-varying rate for sudden degradation increments.

The salient features of this paper are:

● It introduces a new approach to the analysis of reliability of systems with
components (units) which are interdependent.

● Distributions of time to failure of serial, parallel and the more general
k-out-of -n : Gsystem with interdependent units, are derived.

● Theoretical comparisons with the independent systems are provided.

● It opens a new direction of research in reliability analysis.
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Notations and Abbreviations used:

MC: Markov chain
CTMC: Continuous time Markov chain
rv: Random variable

The section-wise breakup of this paper is as follows: In section 2, the
mathematical formulation of the problem is provided. Distributions of the time to
failure of distinct interdependent systems are derived in section 3. Comparisons with
the corresponding independent systems are also provided. Finally in the concluding
section, we provide an outline of future course of work.

2 Description and Mathematical Formulation

In the sequel we need Phase type (PH) distribution, introduced by Marcel F. Neuts in
1970’s (see Neuts 1981). Consider a MC on the state space f1; . . .;m;mþ 1g with
the first m states transient and the state mþ 1; absorbing. The initial probability
vector of this MC is ða1; . . .; am; amþ1Þ ¼ ða; amþ1Þ and one step transition
probability matrix P ¼ ðpijÞ. In most of the modeling problems amþ1 is taken as
zero, to avoid instantaneous absorption (this assumption also ensures that in phase
type processes only a finite number of events takes place with positive probability in
a finite time interval). Imagine a particle, starting from one of the transient states
according to the initial probability vector, moving through the transient states and
finally getting absorbed in state mþ 1. The sojourn time random variable in a
transient state j depends on j as well as the state to be visited next, say k (including
k ¼ mþ 1). This sojourn time random variable is assumed to be exponentially
distributed with parameter ljk. The sojourn time distribution is usually taken as a
general one. However, in this paper we restrict the sojourn time to be exponentially
distributed. The general case will be investigated in a follow up paper. We may
regard pjk and ljk connected via ljk ¼ lpjk for some positive l.Such an evolution is
referred to as semi-Markov process (see Ross 1992, pp. 86–87). The distribution of
the time T, spent by the particle in the transient states before it escapes to mþ 1, is
referred to as Phase type distribution with representation ða; SÞ of order m and S is
the matrix of coefficients of the pjðtÞ0s on the right hand side of the matrix difference-
differential equations described below. This is obtained by solving the finite system
of difference-differential equations satisfied by pjðtÞ ¼ probability that the particle is
in the transient state j at time t, that is PðT [ tÞ. We get this as the solution to the
matrix differential equation: P0ðtÞ ¼ PðtÞ:S with initial condition Pð0Þ ¼ a. In this
P0ðtÞ ¼ ðp01ðtÞ; . . .; p0mðtÞÞ is the vector of component wise derivatives of PðtÞ ¼
ðp1ðtÞ; . . .; pmðtÞÞ and S is the matrix of coefficients on the right hand side of the
equations (these are precisely the transition rates among the transient states). The
solution to the above matrix differential equation is: PðtÞ ¼ aeSt . This means that
PðT � tÞ ¼ 1� aeSte where e stands for the m-component column vector of 1’s.
Define S0 by S0 ¼ �Se. Thus S0 consists of rates of absorption into mþ 1 from the
transient states.

123

486 Journal of the Indian Society for Probability and Statistics (2022) 23:483–496



3 Derivation of Distributions of Time to Failure

In reliability, interdependence is considered in different forms. We have seen a few
work on interdependence in the introduction. In a two component system if both
perform independently of each other, we can easily compute the time to system
failure irrespective of whether it is a serial or parallel system. Let us consider an n�
component system with identical or non-identical components. Assume that there are
n Markov chains each of which generates the lifetime of one component each. When
the components are interdependent, we have to consider the product space of these
MCs. The Markov chain defined on this product space is our “starting set”. To this
we associate an initial probability vector and a one-step transition probability matrix.
The generating MCs for the first, second,..., nth components be designated by
fZj; j ¼ 1; . . .; ng, on finite state spaces f1; 2; . . .;mjg; j ¼ 1; 2; . . .; n. Look at the
process that evolves according to a semi-Markov process on the product space of
these state spaces: fðk1; . . .; knÞjkj 2 the state space of theMCfZj; j ¼ 1; 2. . .; ng. The
sojourn time in state ðk1; . . .; knÞ is assumed to have exponential distribution with
parameter kðk1;...;knÞ;ðr1;...;rnÞ where ðr1; . . .; rnÞ is the state visited after the sojourn in
ðk1; . . .; knÞ according to the Markov chain rule. Here none, one, two,.., all
coordinates in ðr1; . . .; rnÞ can differ from the corresponding ones in ðk1; :. . .; knÞ. If
the component life times are independent, then at most one coordinate change alone
can take place with positive probability. The purpose with the assumption of
exponentially distributed sojourn time is to have a continuous time Markov chain
(CTMC). The transition could be to itself as well, which is equivalent to not moving
out. A transition can trigger an “event” of the type of the component Markov chains
or may turn out to be a transition without any event occurrence. Here by “event” we
mean a component failure. To make such “event occurrence” more explicit, we can
include one extra state (phase) in the state spaces of each of the MC0s
fZj; j ¼ 1; 2; . . .; ng. Transitions without event occurrence are referred to as those
resulting in mere phase changes. If the MC does not have any specific absorbing
state, then the starting phase of the next event(s) is the new coordinate resulting due
to coordinate change. Note that when the components are interdependent, more than
one coordinate changes can take place with positive probability.

First we consider a 2-component system. Let the state spaces of the underlying
MC0s, indicating the evolution of the components be labeled as f1; 2; . . .; r; r þ 1g
and f1; 2; . . .; s; sþ 1g where states r þ 1 and sþ 1 indicate the absorbing (failure)
state of the components 1 and 2 respectively.

We consider two cases: 1.The system fails when the state ði; sþ 1Þ or ððr þ 1; jÞ or
ðr þ 1; sþ 1Þ is reached. 2. The system fails only when the state ðr þ 1; sþ 1Þ is
reached. In reliability theory, a system with failure of the first type is called a serial
system system where as the one which fails only when situation described by 2 is
arrived at, is called a parallel system. We shall compute the reliability of such
systems. For case 1, system failure could be consequent to its entering the state
ðr þ 1; sþ 1Þ(if it is an interdependent system in which more than one coordinate
change is also permitted due to a transition in an interval of very short duration) or on
entering the stateði; sþ 1Þor the state ðr þ 1; jÞ.
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We can also consider the case of transitions being restricted to the cases where at
most one coordinate in the second state differs from the corresponding state in the
first state indicated in the pair. We shall discuss all these in the sequel.

Notice that, for systems with independent components, only none or one
coordinate change takes place in a short time interval, with positive probability.
Therefore the infinitesimal generator of the system evolution contains a large number
of zeros (results in a sparse matrix); the same is the case if we consider the
interdependent system also as having the property that due to a transition at most one
change in coordinate takes place with positive probability. If we allow the possibility
of more than one coordinate change also with positive probability, then the
infinitesimal generator of the system evolution becomes less sparse (in the case of a
two-component system, the infinitesimal generator will have all entries different from
zero, provided all transitions are possible with positive probability). Thus analysis of
interdependent systems with more than two components becomes harder depending
on the assumptions we make.

To make the analysis a bit simple, consider the case of n ¼ 2 to start with. Let the
life times of the two components be generated, respectively by the Markov chains X
and Y, described by the sequences fXng and fYng and having state spaces labeled as
f1; . . .; r; r þ 1g and f1; 2; . . .; s; sþ 1g with the states r þ 1 and sþ 1 absorbing
states of the respective MC’s. The initial probability vectors of these MC0s are
ða; arþ1Þ ¼ ða1; . . .; ar; arþ1Þ and ðb; bsþ1Þ ¼ ðb1; . . .; bs; bsþ1Þ respectively; in these
a and b are the vectors formed by the first r and first s components of the initial
probability vector. The last components of arþ1 and bsþ1 of these vectors are taken to
be zero to ensure that the two do not have zero life time (instantaneous failure on
starting). The MC0s X ¼ fXng and Y ¼ fYng are independent if

PfðXnþ1; Ynþ1jðXn; YnÞg ¼ PfXnþ1jXng:PfYnþ1jYng;
if the equality does not hold, the processes involved are interdependent.

We consider a two-component system which starts its operation in one of the
states described above according to the initial probability vector which can be
regarded as

a� b ¼ ðða1; b1Þ; ða1; b2Þ; :::ða1; bsþ1Þ; ða2; b1Þ; :::; ðarþ1; bsþ1ÞÞ;
an ðr þ 1Þðsþ 1Þ component row vector. We continue to assume that
arþ1 ¼ bsþ1 ¼ 0. We have a one-step transition probability matrix L for this MC.
Assume that the sojourn time in a state (i, j) depends on the that state and also state,
say (p, q) , to be visited next, according to the MC rule. Further assume that this
sojourn time is exponentially distributed with parameter kði;jÞ;ðp:qÞ. This is how the
process evolves. This is a particular case of semi-Markov transition“(the description
given below for the general case is assumed to have the components behaving
independently of each other); particular case because there is no need to assume the
sojourn time to be exponentially distributed. It is done to get a continuous time MC.
However, the parameter should have dependence on the state currently occupied and
the state to be visited next, as indicated earlier.
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A brief analysis of the underlying semi-Markov process with generally distributed
sojourn time in the transient states is given below: Assume that the sojourn time
random variable in the state i, has the distribution Gijð:Þ where j is the state visited
next according to the MC rule. Upon visiting the state mþ 1, the component fails.
Thus the semi-Markov kernel is GðtÞ ¼ ½GijðtÞ�. Similarly, for the second component
let Fijð:Þ be the distribution of the sojourn time in state i before jumping to the next
state j. Its semi-Markov kernel is FðtÞ ¼ ½FijðtÞ�. Then, for the 2-component parallel
system with independent components the failure time distribution can be computed.
To this end we proceed as follows. Suppose that the system starts in stage 1 of each
component and the degradation process is in the order 1 ! 2 ! 3:::r ! r þ 1 and
1 ! 2 ! 3:::s ! sþ 1 . Then we have

Theorem 3.1 The distribution to the time till failure for the serial system is
minfGð12Þ � Gð23Þ � ::: � Gðr;rþ1ÞðtÞ;Fð12Þ � Fð23Þ � ::: � Fðs;sþ1ÞðtÞg for non-identically
distributed component life times. For parallel system it is given by
maxfGð12Þ � Gð23Þ � ::: � Gðr;rþ1ÞðtÞ;Fð12Þ � Fð23Þ � ::: � Fðs;sþ1ÞðtÞg. The notation *
stands for convolution.

The more general case in which the system starts with initial states as given by the
IPVs a and b, can be treated in a similar fashion. The book by Dudin et al. (2020)
gives a detailed analysis of queues with semi-Markov arrival and semi-Markov
service. However, the processes discussed therein are not interdependent. Now we
turn to a few special cases of the general results derived above. We have the
following

Corollary 1 If the MC0s X and Y are independent, then

a. for a two-component serial system with non-identical but mutually independent
PH life time distributions with representations, PHða; TÞ and PHðb; SÞ of
dimensions r and s, the life time is Phase type distributed with representation
PHða� b; T � Is þ Ir � SÞ of order mn where T and S are, respectively the
infinitesimal generators of the two components life times. Im stands for identity
matrix of order m.

b. for a two-component parallel system the failure time distribution is also PH with
representation PHðC; LÞ of order rsþ r þ s where C ¼ ða� b; bsþ1a; arþ1bÞ

and L is the matrix
T � S Ir � So To � Is
0 T 0
0 0 S

2
4

3
5: In this T0 ¼ �Te and S0 ¼

�Se .

Proof of a: Note that under the assumptions made, the life times of the two
components are distributed as Phase type with representations ða; TÞ and ðb; SÞ
respectively, and independent of each other. The minimum of two independent PH
distributions is also PH with representation, indicated in the statement of the
Theorem (see Theorem 2.2.9 of Neuts 1981).

Proof of b: In this case we have to write the infinitesimal generator of the system
to accommodate the two phase type random variables (i.i.d. or merely independent).
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Writing the difference-differential equation satisfied by the probability of the system
state (j, k) at time t and solving it using the initial condition, we get the stated result.
Alternatively, we can make use of the fact that the maximum of two independent PH
distributions is also a PH distribution (see Neuts 1981), Theorem 2.2.9).

Next we consider the case of the two chains being interdependent. Consider the
product space of the two MC0s: fði; jÞji ¼ 1; 2. . .; r; r þ 1; j ¼ 1; 2; . . .; s; sþ 1g and
the MC defined on that. We may consider the states r þ 1 and sþ 1 as absorbing
states of the respective MC0s. . When we consider the MC on the product space, the
states ðr þ 1; jÞ; ði; sþ 1Þ; ðr þ 1; sþ 1Þ for i ¼ 1; 2; . . .; r and j ¼ 1; 2; . . .; s could
be absorbing states, depending on the specific problem under consideration - for
example if the system is a serial one, then the states ðr þ 1; jÞ; ði; sþ 1Þ; ðr þ 1; sþ
1Þ; for i ¼ 1; 2; . . .; randj ¼ 1; 2; . . .; s, are absorbing. Since in interdependence cases
more than one change in coordinates due to a transition is possible with positive
probability, we first consider the case where at most one change in coordinate is
possible with positive probability when a transition takes place. In this case the
resulting infinitesimal generator of the CTMC is sparse: rates of transitions is zero for
transitions like ðj; kÞ ! ðj0; k0Þ where both entries in the right hand pair differ from
the corresponding ones on the left.

First we consider the reliability of a 2-component serial system. Designate the
transition rates ðj; kÞ ! ðj0; kÞ by kðj;kÞ;ðj0;kÞ and to represent transitions of the form
ðj; kÞ ! ðj; k0Þ we use the notation lðj;kÞðj;k0Þ. Thus along the diagonal of the

infinitesimal generator the typical element is �ðkðj;kÞ;ðj;kÞ þ lðj;kÞðj;kÞÞ. These descrip-

tions of entries in the infinitesimal generator provide a clear picture of how it looks
like. For a quick reference the infinitesimal generator Q1 of the process is given
below:

�ðkð1;1Þ;ð1;1Þ þlð1;1Þ;ð1;1ÞÞ lð1;1Þ;ð1;2Þ ::: 0 kð1;1Þ;ð2;1Þ :: 0 :: 0

..

. . .
. . .

.

0 ::: :: 0 :: �ðkðr;sÞ;ðr;sÞ þlðr;sÞ;ðr;sÞÞ lðr;sÞ;ðr;sþ1Þ ::: kðr;sÞ;ðrþ1;sÞ 0
0 ::: 0 :: :: 0

2
6664

3
7775

Assume that the initial probability vector of the system state (restricted to the
transient part; the rest of the states are assumed to be occupied by the process with
zero probability) is given by the vector c ¼ ðc11; c12; . . .; c1r; c21; . . .c2r; . . .crsÞ. It is
to be noted that there are several absorbing states for the serial system given by
ðj; sþ 1Þ, for j ¼ 1; . . .; r and ðr þ 1; kÞ for k ¼ 1; . . .; s.

Now form the difference-equations satisfied by the probabilities Pðj;kÞðtÞ of the
transient states (j, k) , being occupied by the system at time t. Solving the resulting
matrix differential equation we get the solution as given in the following

Theorem 3.2 Let U be the random variable designating the time until absorption
(system failure). Then PðU [ tÞ ¼ c:eQ1te where the entries of Q1 are the rates of
transitions among the transient states with the entries along the diagonal each equal
to the negative of the sum of all off-diagonal entries of that row, including those in
the positions corresponding to the absorbing columns. Its complement is the
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probability of the system failure at or prior to time t. This distribution is also of PH
type with representation PHðc;Q1Þ of order r.s.

Note: A comparison between results in Corollory 1a. and the result in Theorem 3.2
gives us the significant difference between reliability of a 2-component independent
serial system and that of an interdependent serial 2-component system.

Next we proceed to compute the reliability of an interdependent 2-component
parallel system. In this case the states ðj; sþ 1Þ and ðr þ 1; kÞ for j ¼ 1; . . .; r and
k ¼ 1; ; . . .; s are transient states. These states did not appear in the initial probability
vector (of the states in the transient part of the serial system discussed in Theorem 3
because they are absorbing states for that system. However, for the parallel system
such states are not absorbing (they are rather “partially absorbing”). Nevertheless, we
assume that the system is not in any of these states initially with positive probability.
Let ðr; rrþ1;sþ1Þ be the initial probability vector. In this r is the initial probability
vector corresponding to the transient states. It is assumed that rrþ1;sþ1 ¼ 0: In this
case we shall designate transitions among states ðj; kÞ ! ðj0; k0Þ by the symbol
dððj;kÞ;ðj0;k0Þ; these will be zero whenever both coordinates in the second pair differ
from the corresponding coordinates in the first pair and also if j0 6¼ jþ 1 if change is
in the first coordinate and fork0 6¼ k þ 1 if change is in the second coordinate (not
skip-free to the right).

Writing the system of difference differential equations satisfied by the system state
probabilities (there are r:sþ r þ s such equations in the system), designating by
Vthe matrix of coefficients on the right sides of these equations(as done in
Theorem 3.2) and solving the resulting matrix differential equation we arrive at the
following

Theorem 3.3 The probability of the interdependent 2-component parallel system
providing failure free operation in the time interval [0,t] is given by PðT [ tÞ ¼
reVte where T is the time till failure (time till absorption to the state ðr þ 1; sþ 1Þ
and e is a column vector of 1s’ of order r:sþ r þ s. In other words the distribution of
the time until failure of the system is PH type with representation PHðr;V Þ of order
r:sþ r þ s. Presented in notations: PðT � tÞ ¼ 1� reVte .

Next we pass on to the computation of the reliability of a k-out-of -n : G system in
the two cases where the components are independent and also when the components
are interdependent. This system has n components (units); their lifetimes could be i.i.
d random variables or merely independent, but not identically distributed or even
mutually dependent (interdependent). The system is operational as long as at least k
among the n units are in working condition. Note that in the independent case it is
quite easy to compute the system reliability. We need to compute the distribution of
the time till n� k þ 1 units fail irrespective of the life time distribution of the
components. The computation of reliability becomes complex when the components
work in groups that have some dependence characteristics.

For simplicity in exposition, hereafter we restrict our attention to the case of
individual component life times distributed as Erlang of order r and parameter k (this
parameter is that of the exponentially distributed life time of each phase of the
components). It is a particular case of PH distribution in which the infinitesimal
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generator has entries �k along the diagonal up to the rth row and the last entry along
the diagonal is zero; along the upper diagonal each entry is k. The advantage with
this assumption is that the r stages of the Erlang distribution 1; 2; . . .; r can be
regarded as the best, second best,..., very poor working conditions of the component.
Erlang distribution of order r is the sum of r i.i.d exponential rvs. From the state r the
component moves to state r þ 1 which represents the failed state. One can assume
PH distributed component life times. However, this will not give a feel about the
increase in deterioration as the component working state moves from j to some state
u because in PH distribution the transitions can be to any of its states from a transient
state. The author of this paper has very recently devised an approach were each stage
life time can be of phase type-this will appear in a special issue of Annals of
Operations Research (2022/23). The assumption of Erlang distribution as component
life time is highly advantageous when we analyse the reliability of the k-out-of -n
system with interdependent components. It is quite easy to extend the results to
generalized Erlang life time distribution of components. In this case at least two
among the exponential rvs involved should have distinct parameters.

Each of the n components of the system has Erlang � r distribution with
parameter k for the exponentially distributed stage life time. If n is large compared to
r, we consider the number of components which occupy the same state at any given
time. On the other hand, if r is large compared to n, we consider the state associated
with each component at any given time. This helps in reducing the dimension
problem which is especially important in computation. Theoretically also this has an
advantage, as we see in the discussions to follow. When one of the components fails,
the number of working components moves down from n to n� 1 and again drops
down by one, each time a component failure takes place.

At time zero ðt ¼ 0Þ all components are in the best of their conditions (each one
occupying state/stage 1). With passage of time the components start deteriorating.
Because we have a CTMC describing the system state at any time, at most one state
change j ! jþ 1 can take place with positive probability and, that too in only one
component (this is the case when the components behave independently of each
other because only one event can take place with positive probability in a short
interval of time; in interdependent case the scenario could be different which,
however, is to be decided by the researcher concerned.

Assume that n[ r. Then the state space of the process has the form

fðð1; n1Þ; ð2; n2Þ; . . .; ðr; nrÞ; sÞjn1 þ 	 	 	 þ nr þ s ¼ ng
where the last element s stands for the number of failed components at the time of
observation and nj is the number of components in operation whose stage of life is
j; j ¼ 1; 2. . .; r. This can also be represented in a much simpler form:
fððn1; n2; . . .; nr; sÞÞjn1 þ 	 	 	 þ nr þ s ¼ ng. Initially s ¼ 0 and on failure of the
system, s has the value n� k þ 1. This completely specifies the CTMC. Since
transitions are such that either the states remain the same or there is a change in
exactly one state due to the transition,the transition, we see that (j, nj) to ðjþ 1; njþ1Þ
has the rate k:nj. Consequent to this transition, ðj; njÞ becomes ðj; nj � 1Þ because one
component moves to the next higher deterioration stage and ðjþ 1; njþ1Þ changes to
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ðjþ 1; njþ1 þ 1Þ. If nj ¼ 0 then no such transition takes place with positive proba-
bility. Suppose a transition from ðr; nrÞ takes place. This indicates failure of a
component and so the last element s goes up by 1 to sþ 1. With the above
description we can write down the infinitesimal generator of the system evolution.
Note that the transient states of the underlying MC are

fðð1; n1Þ; ð2; n2Þ; . . .; ðr; nrÞ; sÞjn1 þ 	 	 	 þ nr þ s ¼ n� kg:
The infinitesimal generator of the above described system is:
�nk nk 0 . . . 0
0 � ðn� 1Þk ðn� 1Þk . . . 0

..

. . .
. . .

.

0 0 . . . k 0
0 0 0 0 0

2
666664

3
777775

Observe that the part of infinitesimal generator for the transient states of the
process is the matrix of order rn:s. These are the coefficients (of unknown
probabilities) appearing on the right hand side of the differential-differential
equations, satisfied by the system state probabilities Pðj;njÞðtÞ of being in state j with
nj components in that state at time t . The initial probability vector of the MC is
P ¼ ð1; 0; ::; 0; 0Þ: In this we consider only the contribution of the transient part
which is the vector n ¼ ð1; 0; . . .; 0Þ of dimension r(which is the part the initial
probability vector corresponding to the transient states). The solution to this matrix
differential equation gives the probability of the system in the transient states at least
up to time t : PðT [ tÞ ¼ neWte where W is the matrix of coefficients in the matrix
differential equation and e is a column vector of 1s’ of order r. Its complement gives
the probability of system failure at or prior to time t. The above discussion leads to
the

Theorem 3.4 The time T to failure of a k-out-of -n : G system with independent
identical Erlang � r distributed components, is given by the PH distribution
PðT [ tÞ ¼ neWte. Its complement is PðT � tÞ ¼ 1� neWte which is represented as
PHðn;W Þ of order rn:s� 1.

Next we pass on to a more complicated structure. What happens when the
components of the above described k-out-of -n : G system are interdependent. As
done in the development of Theorems 3.2 and 3.3, we assume that there are n finite
state space MCs which determine the evolution of the interdependent system.
Consider the product space of these MCs and look at the resulting semi-Markov
process whose state space is that product space, which governs the evolution of the
entire system. We assume that the transitions in the component states follow the order
1 ! 2 ! 3:::r ! the absorbing state r þ 1. Unlike the case when the components
behave independently of each other, in the case of interdependence, we have to
consider the components separately. This results in a huge increase in the dimension
of the state space as against the case described in Theorem 3.4. A typical element of
the state space is ðj1; . . .; jnÞ in which each coordinate takes values 1; 2; . . .; r; r þ 1.
Falling into state r þ 1, results in the failure of that component. Here again failure of
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n� k þ 1 components results in the failure of the system. First we restrict to the case
of at most one coordinate change with positive probability due to a transition. Note
that any coordinate js can change to js þ 1 for s ¼ 1; 2; . . .; n, consequent to a
transition. In this, if js is r, then a further transition that triggers a change in it results
in the failure of the corresponding component. Denote the rate of transition:
ðj1; . . .; js. . .; jnÞ ! ðj1; . . .js þ 1; . . .; jnÞ by kðj1;...js...;jnÞ;ðj1...jsþ1;...;jnÞ. Form the differ-
ence-differential equations satisfied by the probability that the process, occupying the
state ðj1; . . .; js. . .; jnÞ at time t, moves to ðj1; . . .js þ 1; . . .; jnÞ in the interval
ðt; t þ hÞ, for s ¼ 1; 2; . . .n. The infinitesimal generator is highly sparse. which is
represented below.

�kð1;...;1Þð1;...;1Þ kð1;...;1Þð1;...;2Þ . . . kð1;...;1Þð2;1;...;1Þ 0 . . . 0 0

..

. . .
. . .

.

0 0 . . . 0 . . . �kðrþ1;...rþ1;rÞ;ðrþ1;...rþ1;rÞ kðrþ1;...rþ1;rÞðrþ1;...;rþ1;rþ1Þ

2
64

3
75

At time zero, the system is new and so all components are in state 1 of their life
time. Thus there will be a lot of computational advantage.Denote by S the matrix of
coefficients in the difference-differential equations. The order of this matrix is
nr:ðn� k þ 1Þ. From the discussion above, we notice that only two types of events
have positive probability of occurrence in an interval ðt; t þ hÞ where h is pretty
small: (i) no change in ðt; t þ hÞand (ii) transitions with change in only one
coordinate. The remaining transitions have zero probability, thus leading to highly
sparse infinitesimal generator. Solve the system of equations with the initial condition
that at time zero, all components are in the best of their states (state/stage 1).
Therefore with probability 1, the system occupies state ð1; 1; . . .; 1Þ and so all other
states are occupied initially with probability zero. Here again use the notation
Pðj1;...;;jnÞðtÞ to denote the unconditional probability of the system occupying state
ðj1; . . .; jnÞ at time t. The time derivative of this probability is denoted by P0

ðj1;...;jnÞ.
The vector of these probabilities is designated by P(t) and the corresponding vector
of derivatives by P0ðtÞ. Solving the matrix differential equation P0ðtÞ ¼ PðtÞ:S and
using the initial condition indicated above, we get the solution given in

Theorem 3.5 The time T to failure of an interdependent k-out-of -n : G system,
described in the above paragraph, is phase type distributed with representation
ðr; SÞ of order nr:ðn� k þ 1Þ. where r is the initial probability vector and S is the
part of the infinitesimal generator corresponding to transient states. The number of
transient states is rnn!=½ðk � 1Þ!ðn� k þ 1Þ!�:
Corollary 2 Comparison between the distributions obtained in Theorems 3.4 and 3.5
we see that the two types of k-out-of -n : G systems–the independent and
interdependent component systems differ significantly.

The proof for interdependent systems in which two or more changes in
coordinates can also take place with positive probability due a transition, can be
described on similar lines. Therefore we omit the details for arriving at the
distribution of the time till failure of such a system. The result is given in the
following:
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Theorem 3.6 The waiting time W 0 to failure of the interdependent component
k-out-of -n : G system, is Phase type distributed with representation PHðg; S) of
appropriate order, where g is the part of the initial probability vector corresponding
to the transient states and S is that part of the infinitesimal generator corresponding
to the transient states. In fact g and rdiffer only in dimension (their first entry is the
same-an n- vector of 1’s and the remaining are zero-vectors of order n each) and S
has all its entries filled by non zero quantities. S has all entries non zero because we
assume that due to a transition, no change, one change, two changes,...,n changes in
coordinates are possible with positive probabilities, due to a transition.

4 Conclusion

In this paper we analysed the reliability of independent two component serial and
parallel systems to start with. Then we proceeded to derive the time to failure of such
systems when their components are interdependent through a semi-Markov process.
In all these we assumed that the life times of the components fall in a very general
frame work. However, the analysis of the reliability of the k-out-of-n: G system was
restricted to the case of the components degradation taking place in a graded fashion:
from state(stage) 1!stage 2! . . . ! stager and then to the state r þ 1, representing
the failure of the component. In this case also we obtained the distribution of the time
to failure of both independent and interdependent component systems. The technique
employed was semi-Markov analysis. We showed in all cases that the system failure
time distribution is of phase type with appropriate representations.

The approach employed in this paper is new in stochastic modeling in general, and
in particular in reliability analysis. In fact the scope of this method is too vast that
leads the author of this paper to make the following claim: given any finite number
(at least two) of interdependent processes in any branch of study, it is possible to
analyse the resulting processes using the procedure explained in this paper!
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