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Abstract
Dependent data are ubiquitous in statistics and across various subject matter

domains, with dependencies across space, time, and variables. Basis expansions

have proven quite effective in modeling such processes, particularly in the context

of functional data and high-dimensional spatial, temporal, and spatio-temporal data.

One of the most useful basis function representations is given by the Karhunen-

Loève expansion (KLE), which is derived from the covariance kernel that controls

the dependence of a random process, and can be expressed in terms of reproducing

kernel Hilbert spaces. The KLE has been used in a wide variety of disciplines to

solve many different types of problems, including dimension reduction, covariance

estimation, and optimal spatial regionalization. Despite its utility in the univariate

context, the multivariate KLE has been used much less frequently in statistics. This

manuscript provides an overview of the KLE, with the goal of illustrating the utility

of the univariate KLE and bringing the multivariate version to the attention of a

wider audience of statisticians and data scientists. After deriving the KLE from a

univariate perspective, we derive the multivariate version and illustrate the imple-

mentation of both via simulation and data examples.
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1 Introduction

Observed data are often generated by random processes that induce dependence.

Common examples of such data are time series, spatial data, longitudinal data, and

functional data. Often, we may only have one realization from such a process over the

domain of interest. This can make it challenging to consider realistic dependence

structure in statistical models. Arguably, the most common tool for studying

dependence structure is the covariance (or correlation) between any pairs of

observations or hypothetical observations in the domain. In practice, this requires

construction and computation with a covariance or correlation matrix, which can be

challenging computationally when the number of observations or inference locations

becomes large. An alternate way of analyzing such a random process is by

representing it as a series expansion of some deterministic basis functions with

associated random coefficients. In practice, a finite number of such basis functions are

used to expand the process and the random coefficients are then estimated. This is

sometimes referred to as ‘‘random field discretization’’ and it reduces the compu-

tational burden since the process is expressed as a low dimensional (reduced rank)

series (Wikle 2010). Importantly, this expansion implies a covariance function.

There are many examples of random field discretization methods. The most

common examples are spectral expansions (e.g., Shinozuka and Deodatis 1991;

Grigoriu 1993). In addition, polynomial based expansion methods (typically called

‘‘polynomial chaos’’) are also quite common in the uncertainty quantification

literature (see Li and Der Kiureghian 1993); Zhang and Ellingwood 1994); Xiu

2009) for a review of these methods). Another popular approach of direct relevance

to this manuscript is the expansion method proposed by Karhunen (Karhunen 1946)

and Loève (Lóeve 1955), which is now widely known as the Karhunen-Loève

expansion (KLE).

As we show here, the KLE is analogous to the diagonalization of a given matrix

and hence, has close ties with many commonly known statistical techniques such as

principal component analysis (PCA) (Hotelling 1933), singular value decomposition

(Golub and Van Loan 1996), empirical eigenfunction decomposition (Sirovich

1987), factor analysis (Mulaik 2009), proper orthogonal decomposition (Lumley

1967), and empirical orthogonal function (EOF) decomposition for spatio-temporal

data (Cressie and Wikle 2011). One important aspect of the KLE is its bi-

orthogonality; i.e., the use of orthogonal basis functions for the expansion and

associated uncorrelated random coefficients. As discussed herein, the KLE is the

optimal procedure among all reduced-rank expansion methods in the sense of

reducing global mean square error.

The literature concerned with the KLE is vast and it is beyond the scope of this

manuscript to provide a comprehensive review. Fortunately, many review articles

are available that provide historical developments of the KLE and its application in

various field. For example, the KLE is tied closely to matrix factorization and one

can find a review of matrix decomposition methods in Stewart Gilbert (1993).

Additional details of the history of the KLE are provided in Van Trees (2004).

Application of the KLE in statistics can be divided into a few distinct categories. For
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example, KLE methods are used to simulate random fields as described in Zheng

and Dai (2017) and Gutiérrez et al. (1992). In addition, there is a very large

literature on using KLE approaches in numerical solution to various types of

problems. Many of these approaches are closely related to Galerkin and finite

element methods as used in the computational solution of partial differential

equations. Some examples can be found in Boente and Fraiman (2000); Phoon et al.

(2004, 2002); Hu and Zhang (2015); Spanos et al. (2007); Ghanem and Spanos

(2003), and Spanos and Ghanem (1989). Furthermore, Huang et al. (2001) studied

the convergence of the KLE when used as a numerical solution approach. In the area

of data analysis and applications, KLE methods have been used extensively to

analyze spatio-temporal data in the geophysical sciences and statistical analysis of

such data. Overviews can be found in Jolliffe and Cadima (2016); Cressie and

Wikle (2011); Wikle et al. (2019), and examples of applications include Obled and

Creutin (1986); Monahan et al. (2009); Hannachi et al. (2007); Fontanella and

Ippoliti (2012); Bradley et al. (2017); Wikle et al. (2019); Hu (2013), and Dong

et al. (2006). The KLE has also been applied to the study of the Gaussian Processes

(GPs) ( Levy 2008; Jin 2014; Greengard and O’Neil 2021) and non-Gaussian

processes (Poirion 2016; Dai et al. 2019; Li et al. 2007; Li and Zhang 2013).

Further application areas of the KLE are in pattern recognition (Zhao et al. 2020;

Barat and Roy 1998; Yamashita et al. 1998; Kirby and Sirovich 1990), machine

learning (Yeung et al. 2021; Rasmussen 2003), functional data analysis (Ramsay

and Silverman 2002; Castrillon-Candas et al. 2021; Jacques and Preda 2014, 2014;

Zapata et al. 2019), and discretization of random fields (Betz et al. 2014; Rahman

2018; Huang et al. 2014; Li et al. 2008) (among many others).

It is apparent that the KLE has become a common approach for modeling

dependent processes across many disciplines. That said, by far the majority of these

studies have only considered a univariate KLE. Much less attention has been

devoted to the multivariate KLE and thus, our primary goal in this manuscript is to

revisit the multivariate KLE and describe its utility when modeling in statistics,

primarily in the context of spatial and spatio-temporal statistics. As we will show,

the multivariate KLE can be cast similar to the univariate version when one

considers them from an underlying reproducing kernel Hilbert space (RKHS)

perspective. Thus, we also provide an overview of the univariate approach and show

through simulation and an optimal spatial data aggregation example that these

methods can be effective even when one does not know the underlying dependence

structure corresponding to the data generating process.

The remainder of the manuscript is structured as follows. For background, we

first present a brief overview of RKHS theory and its connection to the KLE in Sect.

2. This is followed by the multivariate version of the RKHS and KLE in Sect. 3. We

then show how the KLE can be used in statistical modeling through simulation and

application in Sect. 4, from both the univariate and multivariate perspectives. We

provide a brief conclusion in Sect. 5.
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2 Univariate Karhunen-Loève Expansion

To set the stage for discussion of the multivariate KLE, we first present theoretical

motivation for the univariate KLE, which is based on the theory of reproducing

kernel Hilbert spaces and associated representation theorems.

2.1 Reproducing Kernel Hilbert Space (RKHS)

The analysis of a stochastic process involves the study of functional data. That is,

we consider the observed data to be a realization from an unknown function with the

indexing variable being an argument that belongs to an infinite continuous set. The

building blocks of such fields are functions that span the process over the entire

domain of interest (e.g., a spatial domain). Thus, we shall begin the mathematical

formulation of the KLE by studying a particular vector space formed by functions,

namely the Hilbert space, which was first formulated in the beginning of the 20th

century with David Hilbert and Erhard Schmidt’s study of integral equations. We

define the Hilbert space in Definition 2.1. Note, Table 1 provides the notation used

in this subsection.

Definition 2.1 (Hilbert Space) A Hilbert space H is a vector space over its domain

(e.g., R, Rn, C, etc.) equipped with a norm k � kH such that the space is complete

with respect to the norm.

Although this general definition of a Hilbert space may take any space as its

argument, we shall specifically focus on spaces defined over R (univariate) and Rn

(multivariate). We begin reviewing the univariate case and then extend it over Rn in

the multivariate case, noting that any extension to a general metric space is similar

to the study over Rn.

The particular Hilbert space of interest in this manuscript is the one formed by all

functions defined over a fixed domain and range set. In the remainder of this section

we motivate the construction of such a Hilbert space, commonly known as a

reproducing kernel Hilbert space (RKHS). More details about the RKHS can be

found in Aronszajn (1950); Wahba (1990); Kailath (1971), and Wang (2008),

among others.

Table 1 Notation and

definitions for RKHS and KLE
Notation Definitions

Rd Real space of dimension d

H A Hilbert space

D Domain of Hilbert Space, D � RM

Y Range of Hilbert Space, Y � RN

k � kZ Norm associated with a space Z

h�; �iZ Inner product associated with a space Z

KH or K Kernel associated to RKHS H
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We first briefly review the univariate RKHS and KLE. In that context, assume

that Y � R, although the domain set can be from an arbitrary subspace of Rd. For

example, a spatio-temporal univariate random variable Xs1;s2;t is a 1-dimensional

stochastic process, but the domain set is 3-dimensional with, for example, latitude,

longitude, and time serving as the three input arguments. Formally, the univariate

RKHS is defined as:

Definition 2.2 (Univariate Reproducing Kernel Hilbert Space) A Hilbert space H
of functions f from D to Y is called a RKHS if there exists a function KH :
D�D ! Y such that the following holds:

i For all t 2 D, the function Kð:; tÞ is an element from the Hilbert space H.

ii For all t 2 D and for every function / 2 H, the following relation is satisfied

h/;Kð:; tÞiH ¼ /ðtÞ

The second property given in (ii) above is called the ‘‘reproducing property’’ of

the Hilbert space and hence, the function KH associated with the space H is called a

reproducing kernel associated with the space H.

To study the properties of a RKHS, we first consider its associated reproducing

kernel. Consider the following lemmas (for proofs, see Appendix A):

Lemma 2.1 The reproducing kernel K (or KH) associated with H is symmetric in
its argument.

Lemma 2.2 The reproducing kernel KH of a Hilbert space H is unique.

We now drop the suffix from a reproducing kernel KH and simply denote it as K.

A reproducing kernel also has another very important property that will be utilized

throughout the manuscript.

Lemma 2.3 A reproducing kernel is always positive semi-definite in the sense of E.

H. Moore. That is, given any set of scalars fcigni¼1 and any set of elements fuigni¼1

from D for i ¼ 1; . . .; n,
Pn

i¼1

Pn
j¼1 cicjKðui; ujÞ� 0 for any n.

The above properties of symmetry and positive semi-definiteness are used to

characterize kernels, which are functions of two arguments. Kernels are used

extensively in many areas of statistics (non-parametric statistics, Gaussian processes,

basis function expansions, etc.). Note, the terms ‘‘kernel’’ and ‘‘reproducing kernel’’

can be used interchangeably since every reproducing kernel satisfies both symmetry

and positive semi-definiteness, which are the conditions that kernels must satisfy.

Now, associated with every such kernel K over a domain D, there exists a Hilbert

spaceH of functions from D ! Y such that K reproduces the Hilbert SpaceH. This

is known as Moore-Aronszajn Theorem (Aronszajn 1950) and is stated as follows:

Theorem 2.1 (Moore-Aronszajn Theorem) Let K : D ! Y be a kernel. For every
t 2 D, define the function Kt: KtðxÞ ¼ Kðt; xÞ. Then there exists an unique RKHS
HK such that K reproduces HK. The space is given as:
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HK ¼ Closure
nX

i

ciKti

o
; ci 2 Y:

The Moore-Aronszajn Theorem completes the connection between kernels and

the associated RKHS in both directions – i.e., associated with every kernel there

exists a RKHS and vice versa. The RKHS spanned by a kernel is formally called the

‘‘native space’’ associated with the kernel (Schaback 1998).

2.1.1 Examples of Kernels

There are an infinite number of kernels that can be used. In practice, some specific

ones have proven useful. We present a few examples here for illustration (for more,

see Small and McLeish 2011).

Example 2.1 Let fe1; . . .; eng be an orthonormal basis of H and define:

Kðx; yÞ ¼
Xn

i¼1

eiðxÞejðyÞ:

Then, for any x,

Kyð�Þ ¼ Kð�; yÞ ¼
Xn

i¼1

ejðyÞeið�Þ

belongs to H. Now, take any function w from H where

wð�Þ ¼
Xn

i¼1

kieið�Þ:

Then, we get the following

hw;KyÞiH ¼
DXn

i¼1

kiei;
Xn

j¼1

ejðyÞei
E

H

¼
Xn

i¼1

Xn

j¼1

kiejðyÞhej; eiiH

¼
Xn

i¼1

kieiðyÞ ¼ wðyÞ:

Example 2.2 Let D ¼ Rþ. The function Kðx; yÞ ¼ minðx; yÞ is a kernel. To show

this, we note that
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Kðx; yÞ ¼
Z

Rþ

Z

Rþ
1½0;x�ðtÞ1½0;y�ðtÞdt;

which means there exists a map /ðxÞ ¼ 1½0;x�ðtÞ such that Kðx; yÞ ¼ h/ðxÞ;/ðyÞiH
and hence, it is a kernel.

Example 2.3 Let L2 denote the set of second order functions from D ! R. Then,

L2 is a Hilbert space with inner product

hf ; giL2
¼

Z Z

fgdP:

Example 2.4 Let ðX;A;PÞ be a probability space and let H be a Hilbert space with

inner product h:; :iH. Let L2ðX;A;PÞ be the set of random variables X with values

in H. Then, L2ðX;A;PÞ is a Hilbert space with inner product given by

hf ; giL2 ¼ EPðhX; YiHÞ:

2.2 Representation Theorems

We now shift our focus to representation theorems that facilitate the Karhunen-

Loève representation. Representation of any Hilbert space corresponds to finding a

set of vectors in another space such that the inner product of the ‘‘representation

vector’’ remains the same as the original inner product in the range space. We seek

to represent a stochastic process as an infinite series through the Mercer

representation theorem, which in turn leads to the Karhunen-Loéve representation.

First, we formally define representation.

Definition 2.3 (Representation) We consider a stochastic process Xt; t 2 D with the

associated kernel being the covariance function Cðs; tÞ ¼ Covðxs; xtÞ. A family of

vectors f/ðtÞ : D ! Yg is called a representation of Xt if for all s; t 2 D, we have

h/ðsÞ;/ðtÞi ¼ Cðs; tÞ:

Next, we discuss the Mercer representation of a second order stochastic process

Xt : t 2 D with covariance function R (De Vito et al. 2013; Carmeli et al. 2006).

The assumptions are the same as before, but we make some additional assumptions

concerning the existence of two quantities, m and Lm, as defined by

mðAÞ ¼
Z

A

1

1þ kCðx; xÞkY
dlðxÞ; A 2 D;

ðLmf Þð�Þ ¼
Z

A

Cð�; tÞf ðtÞdmðtÞ; 8f 2 H:

ð1Þ

If the measure m is a bounded, positive measure, the integral
R
Cðx; xÞdmðxÞ\1.

When this is satisfied, we get the Mercer representation theorem (Theorem 2.2).
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Theorem 2.2 (Mercer Representation Theorem) Assume that the conditions in (1)

hold. Then there exists a countable set I and corresponding countable sequence of
eigenfunctions f/i : D ! Y; i 2 Ig, orthonormal with respect to h�; �iC, along with
corresponding non-increasing non-negative eigenvalues fkigi2I such that

i Cðu; vÞ ¼
P

i2I ki/iðuÞ/iðvÞ
ii For all i 2 I,

R
D Cðu; vÞ/iðvÞdv ¼ ki/iðuÞ.

The second equation is known as Fredholm Integral Equation (Freiberger and

Grenander 1965; Holmstrom 1977; Davenport et al. 1958). The proof of Mercer’s

theorem is beyond the scope of this manuscript (see Riesz and Nagy 1955 for the

proof). Given Mercer’s theorem, we note the following important lemma.

Lemma 2.4 Below are the consequences of the Mercer’s theorem.

i The family f/igi2I is an orthogonal basis of Lm
ii

R
/iðsÞ/jðsÞds ¼ dij

iii The family f
ffiffiffiffi
ki

p
/igi2I is orthonormal in HC.

2.2.1 Karhunen-Loève Representation Theorem

Mercer’s theorem and the associated lemma lead directly to the Karhunen-Loéve

(KL) representation of a stochastic process. Without loss of generality, assume we

have mean zero univariate random variables from a stochastic process. Recall, we

seek a KLE that represents such a process through a series with orthogonal basis

functions and uncorrelated random coefficients. The formal KL representation

theorem is stated in Theorem 2.3.

Theorem 2.3 (Karhuen-Loéve Representation Theorem) Let fXt; t 2 Dg be a zero
mean second order stochastic process with continuous covariance function Cðs; tÞ.
Then, there exists a sequence of mean zero, uncorrelated random variables
fai : i 2 Ig, with corresponding non-increasing non-negative eigenvalues ki : i 2 I

with
P

i2I k
2
i\1 and orthonormal eigenfunctions /i : i 2 I such that the following

holds:
Z

Cðu; vÞ/iðvÞdv ¼ ki/iðuÞ

Cðu; vÞ ¼
X

i2I
ki/iðuÞ/iðvÞ

ai ¼
Z

/iðtÞXtdt

Xt ¼
X

i2I
ai/iðtÞ:

Additionally, if Xt is a Gaussian process, ai �Nð0; kiÞ.
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To recap, the KLE is a direct consequence of the Mercer representation theorem.

Since Mercer’s theorem finds an orthonormal basis to represent a positive semi-

definite matrix, the basis is a representation of a covariance kernel in an infinite

series. Because this representation deals with a linear transformation, one can find

the associated eigenvalue-eigenvector pairs corresponding to the linear operator.

Thus, one obtains an orthonormal basis function representation of the process where

the basis expansion coefficients are uncorrelated. This in turn shows the bi-

orthogonal property of the KLE.

Without loss of generality, let the index set I be f1; 2; . . .g. Then, the

convergence of the KLE is in mean square, i.e., E½Xt �
PK

i¼1 ai/iðtÞ�2 ! 0 as

K increases. This is very useful in practice since it is impossible to work directly

with an infinite sum of representative features. Hence, in practice, one truncates the

summation. Fixing the number of terms, the following theorem provides the

rationale as to why the KLE is the best representation in terms of squared-error loss.

Theorem 2.4 Consider the following representation of a stochastic process Xt

XpðtÞ ¼
Xp

i¼1

ai/iðtÞ;

where /iðtÞs are mutually orthonormal. Define the error of this truncated repre-

sentation as epðtÞ ¼ XðtÞ � XpðtÞ. Then among all such expansions, the KLE min-

imises the integrated mean squared error. That is,
R
t E½e2pðtÞ�dt is minimized when

the expansion is the KLE. In this case, we have

epðtÞ ¼
X1

i¼pþ1

ai/iðtÞ:

As with principal component analysis, one may decide to choose p terms that

explain a pre-specified amount of the variation (e.g., 90% or 95%) using the first

few eigenvalues, or consider scree plots, etc. (see Wikle et al. 2019 for examples in

spatio-temporal statistics). This also provides the link between the KLE and many

statistical techniques close to PCA (e.g., EOFs as mentioned in Sect. 1).

2.3 Implementation of the KLE

For numerical computation, the main idea behind the KLE is to use the Fredholm

integral equation. For example, assume that we are given a n� n covariance matrix

C, for which we need to find the KL decomposition numerically. For any such

matrix, the eigenfunctions and eigenvalues can be obtained by performing an

eigendecomposition using any numerical integration method (e.g., Riemann

integration, Gaussian quadrature, trapezoid integration, etc.); i.e., by solving

CWW ¼ KW, whereW is the collection of eigenvectors and K is the diagonal matrix

of eigenvectors. The weight matrix W can vary depending on the integral method,
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e.g., W ¼ 1
n I for Riemann integral, or W ¼ diagð 1

2ðn�1Þ ;
1

n�1
; . . .; 1

n�1
; 1
2ðn�1ÞÞ for

Trapezoid integral etc.

A more common approach in this setting is to consider an expansion method

using any choice of basis functions and then project them linearly onto the KL

eigenfunctions. This is useful when one has many data points and cannot take the

eigendecomposition of a large covariance matrix. The initially chosen basis

functions are called ‘‘generating basis functions (GBF)’’ and they can be chosen

from any family of basis functions, e.g., the Fourier basis, Legendre polynomials,

Haar basis, radial basis, bisquare basis, spline basis, etc.

Consider a one-dimensional index set (e.g., time). Denote the j-th GBF at time t
as hjðtÞ and the i-th KL eigenfunction as wjðtÞ. In matrix form, the GBF matrix is

written by H ¼ ððhijÞÞ ¼ hjðiÞ. Then the linear expansion of GBFs is accomplished

by assuming W ¼ HF, where the matrix F contains the expansion coefficients. The

Fredholm equation is then used to solve for the unknown coefficients in F, which
then are plugged in the above equation to get W. The detailed computation for the

above method of solving F is explained in Appendix B. It should be noted that when

one uses K many GBFs, the expansion method only needs the eigendecomposition

of a K � K positive definite matrix, which is more computationally feasible than

doing the same to a n� n covariance matrix for large n. Hence, this expansion

method using GBFs is usually chosen for practical purposes, and will be of our main

interest in this manuscript.

We now discuss the case where we assume that the true covariance model is not

known and instead we are given one or more realizations from a stochastic process

that has an unknown covariance function. When more than one realization is present

(for example, in the cases of functional data), an empirical covariance matrix can be

computed from the data, which is then used to get the KL decomposition of the

unknown covariance matrix. A more common scenario (specifically with spatial or

spatio-temporal data) is the presence of a single realization, where an empirical

covariance matrix can not be computed without further model assumptions. Even in

this case, the KLE can be used, implicitly providing a parameterization that allows

for estimation in a manner that corresponds to Mercer’s theorem. We discuss one

algorithm to implement the KLE in this context as presented in Bradley et al. (2017)

and Bradley et al. (2021) for the case of one realization, where the covariance

kernel is estimated under a Bayesian framework, and thereby posterior estimates of

the KLE are obtained from this estimated covariance. We call this the ‘Obled-

Creutin’ (OC) basis model following a similar early development in Obled and

Creutin (1986).

2.4 Obled-Creutin Basis Model

Assume that Y ¼ ðY1; . . .; YnÞ are observations following an unknown covariance

matrix C with kernel Cðs; tÞ and we want to find the KLE of C based on Y. This is
modeled as:

123

294 Journal of the Indian Society for Probability and Statistics (2022) 23:285–326



Y ¼ Wgþ �; ð2Þ

where W contains the KL eigenfunctions and � are truncation and measurement

errors. Like before, starts with a set of GBFs hjðtÞ and then linearly projects them to

get the KL eigenfunctions as W ¼ HF. However, without the knowledge of the

covariance kernel Cðs; tÞ, we cannot estimate the coefficients F and hence the KL

eigenfunctions W can not be computed from H. So, the algorithm is modified as

below. First, define W as the matrix with (i, j)th element asWij ¼
R
t hiðtÞhjðtÞdt. For

the KL eigenfunctions to satisfy the Fredholm equation, we need the following

condition to hold

FTWF ¼ I: ð3Þ

Assuming that W is positive definite and let Q be the Cholesky decomposition of

W�1. Then, F ¼ QG satisfies Condition (3), where G is any orthonormal matrix of

proper size. Hence, given G, and a solution of the KL eigenfunction can be obtained

as W ¼ HQG. Plugging this into the Model 2, one gets

Y ¼ HQGgþ � ¼ Um þ �:

where U ¼ HQ and m = Gg. Note that U is an orthonormal basis function and is

computed in an unsupervised manner with only the knowledge of the GBFs, but m

needs to be estimated here. If k1 � k2 � � � � are the eigenvalues of the unknown

covariance matrix C, CovðgÞ ¼ K ¼ diagðk1; k2; . . .Þ and hence CovðmÞ ¼ GKGT ,

where � corresponds to the measurement and truncation error. Now, to perform

Bayesian inference, we can specify the following prior distributions:

Y ¼ Um þ �

��N nð0; s2IÞ
m�N Kð0;RÞ

R ¼ 1

r2
�
R�1AðþÞQ0ðI � AÞQR�T

��1 ¼ 1

r2
M�1

r2 � IGðar; brÞ
r2 � IGðas; bsÞ:

ð4Þ

This prior for R has been used in Bradley et al. (2017) and Bradley et al. (2015) and

is called a the Moran’s I (MI) prior due to it’s similarity with Moran’s I statistic in

spatial statistics. Here A is the adjacency matrix of the locations, ðQ;RÞ are the QR
decomposition of the basis matrix U and AðþÞð�Þ is the best positive definite

approximation of a matrix. With model and prior distributions, we can perform

MCMC estimation, generating Gibbs samples of the posteriors. Details of the Gibbs

sampler for this model ar given in Appendix C. The posterior estimates of R are

then used to get the eigendecomposition as bR ¼ bG bK bGT , which is used to get the KL

eigenfunctions as bW ¼ UbG and eigenvectors as diagonal elements of bK.
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Note that in general one does not need to build the full Bayesian structure as

given above to obtain the KLE of the unknown process if one has regularly space

observations and enough replicates to estimate the required n� n covariance matrix.

Then, the symmetric decomposition of the estimated covariance matrix can give the

appropriate KL eigenfunctions. However, as originally demonstrated in Obled and

Creutin (1986), in cases where one has irregularly spaced observations (say, in a

spatial case), and seeks to have eigenfunctions corresponding to any location, then

the KLE approach presented here is optimal, as it takes into account the ‘‘area of

influence’’ of a particular data point through the integration of the GBFs.

3 Multivariate Karhunen-Loéve Expansion

Increasingly there is a need to model multivariate dependent processes. The

multivariate case is more complicated than the univariate setting because one needs

to account for the dependence structure between the random variables as well as the

different indexing points. Although the multivariate KLE (MKLE) is analogous to

the univariate case presented in Sect. 2, it is more complicated in the sense that there

is no unique MKLE.

Before presenting the mathematical details, we shall first discuss the scenario at

hand. The response variable in this section will be treated as a multivariate random

variable, Xt, indexed by t from an arbitrary continuous index set D. We assume

Xt ¼ ðXt1; . . .;XtKÞ0. Additional assumptions are the same as in Sect. 2; that is,

t 2 D 2 Rm and H is the Hilbert space of functions from D to Y, where Y is now a

subset of RK for some K[ 1 with a (multivariate) norm k � kH and inner product

h�; �iH. In the remainder of this section we briefly discuss multivariate (reproducing)

kernels, the multivariate extension of Mercer’s theorem, and the associated

multivariate Karhunen-Lóeve representation theorem (for details, see Carmeli et al.

2006; Berlinet and Thomas-Agnan 2004; Chiou et al. 2014).

3.1 Multivariate RKHS

In this subsection we describe the multivariate RKHS. First, we define a

multivariate reproducing kernel.

Definition 3.1 (Multivariate (Reproducing) Kernel) A multivariate kernel is a

function K from D�D to Y such that the following holds.

i K is symmetric, i.e., Kðu; vÞ ¼ Kðv; uÞT .
ii K is positive definite in the sense of E.H. Moore; i.e., for any collection of

vectors fcigni¼1 and any set of elements fuigni¼1 from D, the following holds:
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Xn

i¼1

Xn

j¼1

cTi Kðui; ujÞcj ¼
Xn

i¼1

Xn

j¼1

cTi hKðuiÞ;KðujÞiHcj

¼
DXn

i¼1

cTi KðuiÞ;
Xn

j¼1

cTj KðujÞ
E

H
� 0:

Thus, multivariate kernels are analogous to the univariate kernels discussed in

Sect. 2, with the extension that they are now matrices rather than scalars. As in the

univariate case, any multivariate kernel K has an associated native Hilbert space

HK. This native space can be constructed as

HK ¼ Closure
nX

i

ciKti

o
ci 2 Y;

where Kt are similarly defined. Interested readers can also see De Vito et al. (2013);

Carmeli et al. (2006), which discuss extensively the properties of such kernels.

Multivariate kernels still hold the reproducing property, i.e., for any / from the

Hilbert space H associated with the kernel K, h/;Kti ¼ /ðtÞ is still satisfied. We

can define Kj
t as the j-th coordinate of the function Ktð�Þ, which simplifies notation:

Kj
t 2 Hj ¼ 1; . . .;N

/ðtÞ ¼ ðh/;K1
t iH; . . .; h/;KN

t iHÞ:

3.2 Multivariate Representation Theorems

Similar to the univariate case, Mercer’s theorem allows the multivariate kernel to be

represented as an infinite series

Theorem 3.1 (Multivariate Mercer Theorem) Assume a kernel

K : D�D ! Y � RN , HK is separable, and
R
D Kðt; tÞdt\1. Then, there exists

a countable sequence of continuous orthonormal eigenfunctions f/i : D ! Y : i 2
Ig and a sequence of non-negative decreasing eigenvalues fki : i 2 Ig with
P

i2I k
2
i\1 such that

ki/iðuÞ ¼
Z

D

Kðu; vÞ/iðvÞdv

Kðu; vÞ ¼
X

i2I
ki/iðuÞ/T

i ðuÞ:

Following from the Mercer representation theorem, the multivariate Karhunen-

Loève representation theorem for the multivariate stochastic process Xt is given in

Theorem 3.2.
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Theorem 3.2 (Multivariate KL Representation Theorem) Assume X : D ! Y
denotes a mean-zero square integrable stochastic process with covariance matrix
Cðt; sÞ ¼ CovðXt;XsÞ. Then, there exists a countable sequence of random variables
fai : i 2 Ig and associated eigenvectors fki : i 2 Ig and orthonormal eigenfunctions
f/i : D ! Y : i 2 Ig, such that

ki/iðuÞ ¼
Z

D

Kðu; vÞ/iðvÞdv

Cðu; vÞ ¼
X

i2I
ki/iðuÞ/T

i ðuÞ

ak ¼
Z

D

/iðuÞ
TXðuÞdu

Xt ¼
X

i2I
ai/iðtÞ;

and if Xt is Gaussian Process, ai �N ð0; kkÞ:

Again, this is the direct consequence of the multivariate Mercer theorem.

3.3 Relation between Multivariate and Univariate KLEs

Consider the MKLE as in Sect. 3.2 of the form Xt ¼
P

i ai/iðtÞ, where the

multivariate eigenfunctions are vector valued (N-dimensional) functions. An

immediate question is how is the multivariate KLE related to the univariate KLEs

of each of the corresponding processes. This can be found in Proposition 5 from

Happ and Greven (2018), which is stated in the theorem below. Here, we denote the

full covariance matrix of X is denoted as the block matrix:

C ¼
C11 . . . C1N

..

. ..
. ..

.

CN1 . . . CNN

2

6
6
4

3

7
7
5;

where the elements of j, k-th blocks are Cjk
st ¼ Cjkðs; tÞ = CovðXðjÞ

s ;X
ðkÞ
t Þ. Let the

eigenvalues and eigenvectors of C be fk1 � k2 � . . .g and f/1;/2; . . .g, and let the

j-th element of /i be denoted as
�
/i

�
j
. The j-th univariate process with covariance

matrix Cjj has the KLE X
ðjÞ
t ¼

P
i a

ðjÞ
i wðjÞ

i ðtÞ, with eigenvalues kðjÞ1 � kðjÞ2 � . . . and

eigenfunctions fwðjÞ
1 ;wðjÞ

2 ; . . .g. Then, we have the following theorem to link the

multivariate KLE to the univariate KLEs.

Theorem 3.3 (Relation between Multivariate KLE and process specific Univariate

KLEs) The multivariate vector Xt ¼ ðXð1Þ
t ; . . .;X

ðNÞ
t Þ : t 2 D has a KL expansion as

Xt ¼
P

i ai/iðtÞ if and only if each of the univariate processes X
ð1Þ
t ; . . .;X

ðNÞ
t : t 2 D

has an univariate KL expansion. Then the following two conditions hols.
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1. Given the multivariate KLE, the eigenvalues of the covariance kernel

corresponding to the j-th univariate process correspond to the eigenvalues of

the matrix RðjÞ with the (m, l)-th element as

R
ðjÞ
ml ¼

ffiffiffiffiffiffiffiffiffiffi
km kl

p
h
�
/m

�
j

�
/l

�
j
i:

Consider the k-th orthonormal eigenvector of RðjÞ as u
ðjÞ
k and denote the l-th

entry as u
ðjÞ
kl . Then, the eigenfunctions of Cjj are given by

wðjÞ
k ðtÞ ¼ 1

ffiffiffiffiffiffiffi

kðjÞk

q
X

l

ffiffiffiffi
kl

p
u
ðjÞ
kl

�
/k

�
j
ðtÞ:

2. Given the univariate KLEs of each individual process, the eigenvalues of the

large covariance matrix C correspond to the positive eigenvalues of the block

matrix K with blocks KðjkÞ, where the (m, l)-th element of KðjkÞ is

K
ðjkÞ
ml ¼ Cov

�
aðjÞm ; aðkÞl

�
. The j-th element of the k-th multivariate eigenfunction

of C is constructed as

�
/k

�
j
ðtÞ ¼

X

i

v
ðjÞ
ki w

ðjÞ
k ðtÞ;

where v
ðjÞ
ki denotes the i-th element of the j-th block of an orthonormal

eigenvector vk of K associated with eigenvalue kk.

Theorem 3.3 shows that one does not need to directly deal with the full

covariance matrix and instead can work with the process specific KLEs for each of

the univariate process. We discuss this alternative approach for constructing the

MKLE starting from the univariate processes in the next section.

3.4 Alternative MKLE Construction

We note that it is more difficult to work with the multivariate KL representation for

developing expansions as compared to univariate expansions because of the matrix-

valued formulation. Hence, it is often of interest to consider whether a reasonable

multivariate expansion can be obtained from the individual univariate KLEs. As

with any multivariate process, there are multiple ways to achieve such an expansion.

We next summarize two such approaches as presented in Cho et al. (2013).

3.4.1 Multiple Uncorrelated KLEs (muKL)

Perhaps the simplest approach is to treat the K-dimensional multivariate process as

K observations from one univariate stochastic process by tweaking the indexing

variables. To demonstrate this in simple terms, assume that we have a K-variate

random stochastic process Xt ¼ ðXð1Þ
t ; . . .;X

ðKÞ
t Þ and assume that we observe n many

such vector observations, namely X1; . . .;Xn, observed at some index points
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t1; . . .; tn 2 D. The covariance structure is given by a block matrix C with the (j, k)-

th block CðjkÞ with elements C
ðjkÞ
st ¼ CðjkÞðs; tÞ ¼ CovðXðjÞ

s ;X
ðkÞ
t Þ. The goal here is to

create an assembled (i.e., augmented or stacked) univariate process from the

vectorized data, such that

eX t ¼X
ð1Þ
t if t	 n;

¼X
ð2Þ
ðt�nÞif n\t	 2n;

..

.

¼X
ðKÞ
ðt�ðK�1ÞnÞ if ðK � 1Þn\t	Kn:

The assembled process is still a stochastic process, with a new covariance matrix of

size Kn� Kn with elements

eCðs; tÞ ¼ CovðeX s; eX tÞ
¼ CovðXðiÞ

ðs�ði�1ÞnÞ;X
ðjÞ
ðt�ðj�1ÞnÞÞ

¼ CðijÞðs� ði� 1Þn; t � ðj� 1ÞnÞ;

where ði� 1Þ n\s	 in; ðj� 1Þ n\t	 jnt.
The above representation is simple and easily connected to the univariate setup

from Sect. 2. The covariance matrix of the assembled process eX , eC, is still the same

as the original ‘‘unassembled’’ process, but is indexed using different sets of

parameters when compared to the original process. The vector process is now

expanded using this assembled covariance matrix eC, which is assumed to have an

eigen-decomposition with eigenvalues k1 � k2 � � � � and eigenfunctions

f/1;/2; . . .g. Hence, using the univariate formulations, eX has a KLE as

eX t ¼
X1

i¼1

ai/iðtÞ; where ai ¼
Z

D

eX t/iðtÞdt:

Note that in our vector representation all the observations from the first variable are

grouped together, followed by those for the second variable, and so on. Following

the same ordering, we can now back-calculate to determine the KLE of any par-

ticular variable Xj as follows. First, define wi
jðtÞ ¼ /jðt þ ði� 1ÞnÞ where

ði� 1Þn\t	 in. Then, define the vector wjðtÞ ¼ ðwð1Þ
j ðtÞ; . . .;wðNÞ

j ðtÞÞ0. Now, the
multivariate process has the following expansion

Xt ¼
X1

j¼1

ajwjðtÞ:

Importantly, the random coefficients (ais) are shared among different variables in

this expansion and hence, induces dependence. This suggests that this approach is

best used when the individual processes are somewhat alike. Importantly, one must

be careful because the covariance matrix constructed from a collection of small
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matrices is not guaranteed to be positive definite, even though individual blocks

represent valid covariance matrices Cho et al. (2013).

3.5 Multiple Correlated KLEs (mcKL)

An alternative approach to implement the multivariate KLE is given here. This is a

more generally applicable scenario where one has an arbitrary set of correlated

stochastic processes. We use the same notation for the available data and covariance

matrices as discussed previously. In this approach, one uses the KLE of each

individual variable separately first then computes the matrix of correlation

coefficients that give the joint covariance matrix (C from above).

Mathematically, consider the j-th process Xj to have a KLE as

X
ðjÞ
t ¼ XjðtÞ ¼

X1

m¼1

aðjÞm /ðjÞ
m ðtÞ:

For each j, this can be derived from univariate KLE of Cjj. For a fixed j, the

coefficients aðjÞm are uncorrelated for different m and the variances of aðjÞm is given by

the m-th eigenvalue of Cjj. From these univariate KLEs, the next step is to get the

full covariance matrix by estimating the terms of the cross covariance functions

between the variables. For that, we define

Kml
ij ¼ Cov

�
aðiÞm ; aðjÞl

�
¼ E

�
aðiÞm ; aðjÞl

�
:

Then, the cross-covariances are obtained as the following weighted linear combi-

nation of the univariate eigenfunctions

Cov½Xsi;Xtj� ¼ Cov
X1

m¼1

aðiÞm /ðiÞ
m ðtÞ;

X1

l¼1

aðjÞl /ðjÞ
l ðtÞ

" #

¼
X1

m¼1

X1

l¼1

/ðiÞ
m ðsÞ/ðjÞ

l ðtÞCov½aðiÞm ; aðjÞl �

¼
X1

m¼1

X1

l¼1

Kml
ij /

ðiÞ
m ðsÞ/ðjÞ

l ðtÞ:

Hence, to get a multivariate KLE, the remaining task here is to solve for Kml
ij . One

can show that this can be solved using the following relationship

Kml
ij ¼

Z

D

Z

D

Cijðs; tÞ/ðiÞ
m ðsÞ/ðjÞ

l ðtÞ ds dt: ð5Þ

Let Kij be the matrix with (m, l)-th element Kml
ij and define K to be the block matrix

with the (i, j)-th block Kij, where the diagonal blocks Kiis are defined to be an

identity matrix. Also collect all the variable-wise expansion coefficients into a large

vector as in A ¼
�
a11; a21; . . .; a1K ; a2K ; . . .

�0
. To get the multivariate KLE, consider

a Cholesky decomposition of K ¼ RRT and then define eA ¼ R�1A. So, eA are
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uncorrelated because E
�
eA eAT

�
¼ R�1E

�
AAT

�
R�T ¼ R�1KR�T ¼ I. Similarly the

univariate eigenfunctions /ðiÞ
m ð�Þ can be collected in a vector to define a multivariate

eigenfunction UðiÞ
m ð�Þ and then they can be made orthonormal by a similar trans-

formation as in eUð�Þ ¼ Uð�ÞR. Thus, we obtain the orthonormal eigenfunctions and

uncorrelated coefficients that gives the MKLE from the univariate KLEs of each

process.

Construction of the MKLE from the univariate KLEs is the most interesting

feature due to it’s practical implementation and simplicity of the expansion. The

truncated univariate expansion of each process is easy to obtain and a simple

cartesian product of the eigenfunctions is all that is needed to construct the

multivariate expansion. Discussions and theorems supporting this approach can be

found in Steinwart and Christmann (2008); Flaxman et al. (2017); De Vito et al.

(2013). Specifically, the Proposition 3.5 from De Vito et al. (2013) provides the

necessary intuition that when we deal with a bivariate process, the m-th bivariate

eigenfunction can be obtained by multiplying the m-th univariate eigenfunctions

from the individual univariate KLEs. Hence, when one knows the univariate

expansions, the dependence structure of the off-diagonal elements can be easily

derived. For example, if one starts with two random variables, each with a Gaussian

covariance kernel : K1ðx; yÞ ¼ expð�ðx� yÞ2=2r21Þ and

K2ðx; yÞ ¼ expð�ðx� yÞ2=2r22Þ, one can set the following eigenexpansion of the

j-th variable as

wðjÞ
i ðtÞ ¼ ti

ffiffiffi
i!

p
rij
expð�x2=2r2j Þ;

since the following is satisfied:

X

i

wðjÞ
i ðxÞwðjÞ

i ðyÞ ¼
X

i

xi
ffiffiffi
i!

p
rij
expð�x2=2r2j Þ

yi
ffiffiffi
i!

p
rij
expð�y2=2r2j Þ

¼
X

i

ðxyÞi

i!r2ij
expð�ðx2 þ y2Þ=2r2Þ

¼ expð�ðx� yÞ2=2r2j Þ ¼ Kjðx; yÞ:

The off-diagonal elements of the full covariance matrix can now be given by

K1;2ðx; yÞ ¼
X

i

wð1Þ
i ðxÞwð2Þ

i ðyÞ ¼ exp
�
� 1

2
ðx=r1 � y=r2Þ2

�
:

Note that the off-diagonal elements are not Gaussian kernels.

As another example, a univariate Brownian bridge kernel between [0, 1] is given

by

Kðx; yÞ ¼ minðxyÞ � xy;

and has a KLE with the following eigenfunctions and eigenvalues:
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eiðxÞ ¼
ffiffiffi
2

p
sinðipxÞ

ki ¼
1

p2i2

Kðx; yÞ ¼
X

i

ffiffiffi
2

p

p2i2
sinðipxÞ:

Given two such correlated variables, both individually following the same kernel,

the off-diagonals of the covariance matrix of the bivariate process can then be

constructed from the expansion

K1;2ðx; yÞ ¼
X

i

2

p4i4
sinðipxÞ sinðipyÞ:

3.6 Implementation of the MKLE from GBFs

The implementation of the MKLE is similar to the univariate case. The muKL

method essentially transforms the multivariate problem into an univariate problem

and hence the analysis is analogous to starting with univariate GBFs to get an

univariate KLE of the vectorized process and then re-indexing the eigenfunctions.

That said, the mcKL approach is truly multivariate and is of our interest for this

discussion. Noting again that mcKL requires individual KLEs from each stochastic

process, one needs to start with a set of GBFs for each individual random variable

and perform analogous operations as in the univariate case to get the individual

KLEs. After that, the computation of the multivariate KLE is done by estimating the

K matrix in (5) from Sect. 3.5. The mathematical details are given in Appendix D.

Alternatively, one may also start with multivariate GBFs to get multivariate

KLEs. For a K-variate random process, one starts with any multivariate basis

function /k : D ! RK for k ¼ 1; . . .;M. Letting UðtÞ be the T �M matrix with the

k-th column as /k, the KL eigenfunctions are constructed as

wið�Þ ¼
X

j¼1

fij/jð�Þ:

Similar to the univariate case, one must satisfy the condition FTWF ¼ I where the

i, j-th element of W is Wij ¼
R
/iðtÞT/jðtÞ dt. Hence, if Q is a Cholesky decom-

position of W�1 and if G is some orthonormal matrix, we get F ¼ QG and thus the

KL eigenfunctions are given by W ¼ QGU. Although this is more in line with the

univariate GBF expansion, we note that it can be problematic to choose multivariate

GBFs from individual processes. Also, this involves much larger matrix operations

compared to the univariate KLEs.

We conclude this section by re-emphasizing that when the true (or any target)

covariance matrix K is known, the coefficient matrix F can be exactly solved.

However, the analogous MKLE case where the multivariate covariance matrix is

unknown is still unsolved and is the subject of on-going research.
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4 Simulations and Applications

To illustrate the KLE we provide a simple univariate construction example with

simulated data in Sect. 4.1. This is followed in Sect. 4.2 by an important application

that uses the univeraite KLE as part of a criterion to determine the optimal

regionalization of spatial data. This is then followed in Sects. 4.3 and 4.4 with

simulated examples illustrating the MKLE. Finally, Sect. 4.5 presents a data

example considering multivariate spatio-temporal data (maximum and minimum

temperature for weather stations over the USA from 1990 to 1993).

4.1 Univariate: Expansion of a Univariate Exponential Covariance Kernel

In this example, we demonstrate the univariate KLE construction approach using

GBFs. The covariance matrix chosen here is based on the covariance function of the

form Cðs; tÞ ¼ expf� ks�tk
k g. We choose k ¼ 1 and n ¼ 200 locations in 1-d space

to evaluate the covariance matrix, which gives us a 200� 200 covariance matrix.

The evaluation locations are chosen on a regular grid

t ¼ ft1; . . .; tng ¼ f�1;�1þ d;�1þ 2d; . . .; 1� 2d; 1� d; 1g, where

d ¼ 2
ðn�1Þ ¼ 2

199
. As explained in Sect. 2, our goal is to construct the KL

eigenfunctions wjð�Þ, which will be obtained as a linear projection of some chosen

family of GBFs. Here, we use Legendre polynomial basis functions for GBFs (see

Appendix B for details of Legendre polynomials and the computation of the KL

eigenfunctions).

Following the methodology described in Sect. 2.3, the first two eigenfunctions

from the KLE and the reconstructed autocovariance functions are given in Figs. 1

and 2, respectively. We have used different numbers of GBFs for illustration, but

find little difference between the KLE eigenvalues and eigenfunctions for the

different values (e.g., see Fig. 1 for a plot of the first two eigenfunctions based on

the 10 basis function representation). In addition, the reconstructed autocovariance

plots in Fig. 2 show that 10 or more basis functions do a reasonable job of

representing the true correlation structure.

4.2 CAGE: Criterion for Spatial Aggregation Error

Spatial change of support is a long-standing problem in geography and spatial

statistics in which one seeks to do spatial inference at different spatial scales without

inducing effects from aggregation (the so-called ‘‘ecological fallacy’’). Bradley

et al. (2017) showed how the KLE could be used to mitigate this through a criterion

for spatial aggregation error (CAGE). We repeat the essence of this approach here to

illustrate the value of the univariate KLE in generating optimal regionalizations for

spatial statistical inference.

Consider a spatial stochastic process Y that has been observed across several

regions at a particular spatial scale. For example, one might consider the

unemployment rate for counties across different states in the United States, yet

we might wonder how we could aggregate the county level estimates at different
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Fig. 1 The first two eigenfunctions w1ð�Þ and w2ð�Þ obtained from the univariate KL representations of an
exponential covariance function using 10 generating basis functions

Fig. 2 Reconstructed autocovariance function for the exponential covariance function as a function of
univariate lag differences. The true autocorrelation function is given by the red line, and the univariate
KL expansions with 5, 10 and 15 basis functions are shown by the blue, golden and green lines,
respectively
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geographies than those given by the state boundaries. The CAGE procedure

assumes there exists some point (or very small spatial) level process Z (denoted

Zsð�Þ) and an associated larger-scale areal level process (denoted ZAð�Þ). Consider
the stochastic process Zsð�Þ to have a covariance function CovðZsðtÞ;ZsðuÞÞ ¼
Cðt; uÞ and note the KLE of this covariance function is given by

Cðt; uÞ ¼
X1

j¼1

/s;jðtÞ/s;jðuÞkj

ZsðtÞ ¼
X1

j¼1

/s;jðtÞaj;

where varðajÞ ¼ kj and aj ¼
R
D /s;jðtÞZsðtÞ dt. Then, the areal random variable is

obtained from

ZAðUÞ ¼
Z

t2U
ZsðtÞ dt:

The KLE of the areal level process can then be obtained from the point level KLE as

/A;jðUÞ ¼
Z

t2U
/s;jðtÞ dt

ZAðUÞ ¼
X1

j¼1

/A;jðUÞaj

CovðZAðUÞ;ZAðVÞÞ ¼
X1

j¼1

/A;jðUÞ/A;jðVÞkj:

The proof of this result can be found in Bradley et al. (2017). This representation in

turn helps one to provide an optimal discretization of the point level process that can

be used to construct an optimal areal level process from the point level data. The

CAGE statistic provided in Bradley et al. (2017) can be used for this purpose and is

given by:

CAGEðUÞ ¼ 1

jUj

Z

t2U

hX1

j¼1

kj½/s;jðtÞ � /A;jðUÞ�2
i
dt: ð6Þ

The CAGE statistic can be implemented in the rcage (Bradley et al. 2021) R

package. Here, we apply it to an ocean color dataset (Leeds et al. 2014; Wikle et al.

2013) over the coastal Gulf of Alaska. The dataset contains SeaWiFS ocean color

satellite observations – ocean color is a proxy for phytoplankton at the near surface

of the ocean. We then use ROMS ocean model output to predict the ocean color

because the SeaWiFS data have areas of missing data due to cloud cover. Specif-

ically, we use the ROMS ocean model output variables chlorophyll, sea surface

temperature, and sea surface height as covariates to predict the response, SeaWiFs

satellite ocean color, using the model given in (4). W consider data for May 12,

2000, which contains 4718 observations. The approach we consider is described in
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Sect. 2.4, with a slight change given the existence of the covariates. Specifically, we

consider

Y ¼lþUm þ �

l ¼l1

l�N ð0; r2lÞ
�js2 �N nð0; s2IÞ
mjr2 �N Kð0;RÞ

R ¼r2
�
R�1AðþÞQ0ðI � AÞQR�T

��1 ¼ r2M�1

r2 � IGðar; brÞ
s2 � IGðas; bsÞ:

We use bisquare basis functions as the GBFs here, which are defined as

hðjÞi ðtÞ ¼
�
1� ðt � cjÞ2

x2

�2

if kt � cjk	x

¼ 0 otherwise;

where x is chosen as 1.5 times the minimum distance among the locations. The

knots are carefully chosen following the space-filling ‘‘coverage designs’’ using a

swapping algorithm (Johnson et al. 1990). As shown in the model description, the

‘‘MI prior’’ is the choice for the prior for the unknown covariance matrix R. In
addition, r2l is chosen to be large, as ¼ bs ¼ 1 and ar and br are chosen based on

the suggestions in Sect. 3.2 of Sørbye and Rue (2014). Posteriors are obtained using

Gibbs sampling, and this is then used to estimate the CAGE Criterion (6).

Note that in the CAGE procedure, the clustering component is done in two

stages. Consider that S many samples have been drawn from the posterior

distribution. Then, based on each sample there is a ‘‘prediction’’ for each element of

Y, i.e., Ys j � : s ¼ 1; . . .; S. Now, using any naive clustering algorithm, one obtains

clusters for each Gibbs sample. Note that, in most applications, we recommend that

one consider a clustering procedure that explicitly accounts for spatial location and

can keep elements of the cluster to be spatially contiguous (e.g., in the rcage
package one can select structural hierarchical clustering to accomplish this). The

cluster centroids are used as the center of the areal units. Then in the second step,

the CAGE criterion is calculated based on these areal units to determine the optimal

number of clusters. For this example, we considered a range for the number of

clusters from gL ¼ 200 to gU ¼ 250, where 217 clusters were retained as optimal.

Figure 3 shows the optimal regionalizations that we obtained from this procedure.

Note that this aggregation represents an order of magnitude reduction in the number

of spatial units compared to the point level prediction. Thus, the KLE, which is

fundamental to the CAGE methodology, has demonstrated value in providing

dimension reduction for spatial data.
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4.3 Multivariate: Expansion of a Bivariate Exponential Covariance Function

In this example, we demonstrate the MKLE estimation procedure with a bivariate

stochastic process Xt ¼ ðXt1;Xt2Þ. The j-th processes is assumed to follow an

exponential covariance function Cj given by

CovðXsj;XtjÞ ¼ exp �kXsj � Xtjk
kj

	 


;

and the cross-covariance function C12 is specified as

CovðXs1;Xt2Þ ¼ exp �kXs1 � Xt2k
k12

	 


:

This representation gives a valid covariance function if k1k2 	 k212. Hence, we

consider k1 ¼ 0:5, k2 ¼ 0:8, k12 ¼ 0:6.
For both processes, orthonormal Legendre polynomials are used as the GBFs.

Figure 4 shows the first two eigenfunctions as constructed from the individual KLE

of each of the two univariate process. Figure 5 shows the reconstructed autoco-

variance function for both the univariate processes and also for the cross-covariance.

The true and the estimated autocovariance functions align with one another, which

is expected from the KL theory.

Fig. 3 Regionalization of ocean color by the CAGE approach. The top left panel shows the prediction at
the point level. The top right panel shows the prediction for the optimal areal units obtained from the
CAGE approach. The bottom left panel shows the areal level prediction errors and the bottom right panel
shows the evaluation of the CAGE criterion over the areal units
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4.4 Multivariate: Estimating KLE from Functional Data

Consider the full covariance matrix

C ¼
C11 C12

C21 C22

� �

;

where Cjj is a covariance matrix based on exponential covariance functions

Cjjðs; tÞ ¼ exp �kXsj � Xtjk
kj

	 


C12ðXs1;Xt2Þ ¼ exp �kXs1 � Xt2k
k12

	 


:

Consider the index points t1; . . .; tT with X1; . . .;Xnðn ¼ 1000Þ simulated from a

multivariate Gaussian distribution with the covariance matrix C and mean 0, where

Fig. 4 KL eigenfunctions from two individual univariate processes where the KLE for each univariate
process is first obtained using 10 Legendre polynomials as GBFs. The top row contains the first two

eigenfunctions
�
w1ð�Þ and w2ð�Þ

�
from the first process and bottom row contains the same for the second

process
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XiðtÞ ¼ ðXi1ðtÞ;Xi2ðtÞÞ with XijðtÞ being the i-th observation of the j-th variable at

time t. We denote X ¼
�
X1;X2

�
, where Xj is a n� K matrix, with each row as an

observation and the k-th column of Xj being the evaluations of the j-th variable at

the k-th time. Our goal is to get a KLE of the covariance matrix and thereby obtain

the expansion of the cross-covariance matrix from individual KLEs. We first get the

estimated covariance matrix

bC ¼
bC11

bC12

bC21
bC22

" #

;

where bC ij ¼ 1
N�1

XT
i Xj. From the simulated data, we will use the expansion of the

estimated covariance matrix, bC.
Now, we begin with the individual covariance matrices C11 and C22 and compute

KLEs for each of them following the previously mentioned technique, i.e., start with

Fig. 5 Left panel: the estimated autocovariance function based on the truncated KLE for process 1
compared to the truth; Middle panel: the estimated autocovariance function based on the truncated KLE
for process 2 compared to the truth; Right panel: the estimated cross-covariance function from the MKLE
approach compared to the truth
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K Legendre polynomial basis functionsHðjÞ and then compute the KL eigenfunc-

tions WðjÞ and eigenvalues kðjÞi . Then the multivariate KLE can be found from bC12

and by orthonormalizing the process-specific random coefficients and eigenfunc-

tions (see details in Appendix D).

The individual eigenfunctions from the two processes reconstructed by the

individual KLEs are shown in Fig. 6. The eigenfunctions are similar to the ones in

the univariate examples above. We then perform the multivariate KLE by

estimating the K matrix and reconstruct the full covariance matrix by estimating

the off-diagonals. We compare the true versus the target versus the reconstructed

covariances for the 3 different blocks (C11;C22;C12Þ in Fig. 8. Here ‘true’ is the true
covariance model, ‘target’ is the estimated covariance matrix from the data X (this

is what we are attempting to reconstruct from the individual KLEs) and ‘estimated’

is the reconstructed covariance function from the KLEs.

With the functional data, one can compute the scores (i.e., expansion

coefficients) for the data X. Given the matrix W, the scores are computed via a

linear model as in X ¼ Wgþ �, where � is the prediction error. We plot the score

Fig. 6 Univariate process eigenfunctions obtianed from the individual process specific KLEs where 10
Legendre polynomials are used for the expansion in each case. The top row contains the first two

eigenfunctions
�
w1ð�Þ and w2ð�Þ

�
from Process 1 and bottom row contains the same for Process 2
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variances corresponding to the eigenvalues in Fig. 7 and examine the 95% credible

intervals in Table 2 to show that these are consistent with what is expected from the

theory.

4.5 Multivariate Data Application: Maximum and Minimum Temperatures
Over Space and Time

We consider the KLE of a bivariate process that generates daily maximum and

minimum temperature observations obtained from the US National Oceanic and

Atmospheric Administration (NOAA) National Climatic Data Center. The spatial

locations considered are 138 weather stations in USA (between 32
N � 46
N and

80
W � 100
W) and the observations are recorded daily between 1990 and 1993.

The two variables of importance are denoted as Tmax (maximum daily temperature)

and Tmin. For the purposes of demonstration, we consider the observations as

replications over the spatial domain and the temporal process at each location is our

bivariate stochastic process of interest. So, these data are treated as observations

from a bivariate functional (temporal) process with spatial replicates and we

demonstrate how an expansion of the bivariate autocorrelation function is obtained

from the individual KL expansions of each variable.

As shown with the simulation example of an multivariate functional data in Sect.

4.4, we label the time indices as t1; . . .; tT . Removing all the missing observations,

the full data with T ¼ 87 days are treated as bivariate time series with n ¼ 1461

spatial locations serving as replicates. As before, the data are denoted as X1; . . .;Xn,

Fig. 7 Score variances vs. eigenvalues for the simulated bivariate data. In this case, close agreement
between the score variances and the eigenvalues is observed
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where XiðtÞ ¼ ðXi1ðtÞ;Xi2ðtÞÞ0 with XijðtÞ being the i-th observation of the j-th

variable at time t. Write X ¼
�
X1;X2

�
, where Xj is a n� T matrix, with each row as

an observation and the k-th column of Xj being the value of the j-th variable at the k-

th time. Our goal is to get a KLE of the covariance matrix and thereby obtain the

expansion of the cross-covariance matrix from individual KLEs.

As was the case for the multivariate functional data example, we estimate the

covariance matrix

bC ¼
bC11

bC12

bC21
bC22

" #

;

where bC ij ¼ 1
N�1

XT
i Xj. We will use the expansion of bC matrix for the KLE. The

individual covariance matrices C11 and C22 are first expanded using individual

KLEs, i.e., using GBFs HðjÞ and then projecting them linearly to compute the KL

eigenfunctions WðjÞ and eigenvalues kðjÞi . As stated in Theorem 3.3, univariate KLEs

for the two processes are used to compute the the bivariate KLE of the given

bivariate process. This is done by estimating the terms of the K using the estimated

cross-covarince matrix bC12 and then by comupting K matrix (see details in

Appendix D). After computing K, the eigenvalues and eigenvectors of K are

computed to get the bivariate orthonormal eigenfunctions and eigenvalues.

Here we first show the estimated eigenfunctions from the two individual

univariate stochastic processes in Fig. 9. The multivariate KLE is then used to

compute the scores or the coefficients (i.e., the expansion coefficients as in the KLE

Xt ¼
P

i ai/iðtÞ). Note that the k-th estimated coefficient from the variables in Xj

are random variables with mean 0 and variance kðjÞk . We show this in Table 3.

Table 2 Summary of the scores (Coefficients of linear expansion using the KL eigenfunctions) : Indi-

vidual scores are expected to have mean 0. The table presents the 95% credible intervals and the true and

observed variances for these scores

Process 1 Process 2

Mean Lower

95%

Upper

95%

Observed

variance

True

variance

Mean Lower

95%

Upper

95%

Observed

variance

True

variance

0.00 -0.08 0.08 1.71 1.71 0.05 –0.03 0.12 1.50 1.50

–0.08 –0.15 –0.00 1.29 1.30 –0.04 –0.10 0.02 0.94 0.94

–0.02 –0.08 0.04 0.88 0.88 –0.02 –0.06 0.02 0.45 0.45

0.03 –0.02 0.07 0.53 0.53 0.00 –0.03 0.03 0.27 0.27

0.03 –0.01 0.07 0.39 0.39 –0.02 –0.05 0.00 0.17 0.17

0.02 –0.02 0.05 0.28 0.28 –0.02 –0.04 0.00 0.11 0.11

–0.01 –0.04 0.01 0.19 0.19 0.01 –0.01 0.02 0.08 0.08

0.00 –0.02 0.03 0.14 0.14 0.02 0.00 0.03 0.06 0.06

0.00 –0.01 0.02 0.05 0.06 0.00 –0.01 0.01 0.02 0.02

0.01 –0.00 0.02 0.03 0.04 –0.00 –0.01 0.01 0.01 0.02
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Finally, we show in Fig. 10 how the covariance reconstruction performs

compared to the original data. Similarly, the cross-covariances are shown in Fig. 11.

In both cases, ‘target’ is the estimated function that we are targeting to reconstruct,

and ‘estimated’ is the estimated function from the KLEs.

Fig. 8 Left panel: the estimated autocovariance function based on the truncated KLE for Process 1
compared to the truth; Middle panel: the estimated autocovariance function based on the truncated KLE
for Process 2 compared to the truth; Right panel: the estimated cross-covariance function from the MKLE
approach compared to the truth
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Fig. 9 The first
�
w1ð�Þ

�
and second

�
w2ð�Þ

�
estimated eigenfunctions for Tmax and Tmin plotted against

Time

Table 3 Summary of coefficient scores associated with the estimated KLE eigenfunctions

Process 1 Process 2

Mean Lower

95%

Upper

95%

Observed

variance

True

variance

Mean Lower

95%

Upper

95%

Observed

variance

True

variance

–0.00 –1.23 1.23 575.18 555.91 –0.00 –1.14 1.14 488.93 482.10

0.00 –0.42 0.42 67.27 20.17 –0.00 –0.38 0.38 55.65 18.63

–0.00 –0.21 0.21 16.31 13.90 –0.00 –0.21 0.21 16.16 9.47

0.00 –0.11 0.11 4.75 4.11 –0.00 –0.10 0.10 3.78 3.13

–0.00 –0.06 0.06 1.33 1.24 0.00 –0.05 0.05 1.03 0.95

0.00 –0.05 0.05 0.79 0.80 0.00 –0.05 0.05 1.10 0.62

–0.00 –0.05 0.05 1.02 0.56 0.00 –0.04 0.04 0.61 0.37

–0.00 –0.05 0.05 1.12 0.41 0.00 –0.05 0.05 0.86 0.28

0.00 –0.06 0.06 1.22 0.30 0.00 –0.05 0.05 0.88 0.22

–0.00 –0.02 0.02 0.19 0.14 –0.00 –0.02 0.02 0.16 0.13
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5 Conclusion

The univariate KLE is well-known in statistics and has many practical uses,

including dimension reduction and determining optimal regionalizations in space. In

addition, considering the increasing interest in recent years in data from multivariate

correlated processes, the multivariate KLE is also a highly relevant topic, but has

not seen a great deal of research or application in the statistics literature. The

multivariate KLE is applicable over any general multivariate stochastic process with

stationary or non-stationary covariance functions. Hence, it is very useful in

applications because it allows one to account for dependence structure, both

between different processes and within each process.

The multivariate KLE is more complex than the univariate KLE due to the

matrix-valued structure of the kernels. But, the univariate KLE can be derived in

terms of a RKHS. Similarly, the multivariate case is based on multivariate version

of RKHS and corresponding matrix valued kernels. We discussed how one can

utilize the univariate KLE of each process to get the multivariate expansion by

estimating the terms of the cross covariance matrix. The same can also be done by

re-indexing different processes and thereby converting it to a vectorized univariate

process, but this latter method is only suitable for a multivariate process where

Fig. 10 Individual Process Autocovariances: The target autocovariance function vs the estimated
autocovariance function from the KLE for the maximum and minimum temperature example
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individual processes are somewhat alike. The takeaway here is that there can be

more than one way to approach the problem of multivariate KLE and this is a topic

of interest for future study.

From the numerical perspective, the use of generalized basis functions (GBFs)

has been described here. One can further focus on how the choice different basis

functions affects the multivariate KLE. Other similar expansion methods (e.g.,

polynomial expansions, Fourier series, etc.) are applied as the methods described

here. Other approaches to induce dependence between processes (e.g., copula

models) could be considered here and are a subject of future research.

Appendix A : Proofs of Lemmas

Proof of Lemma 2.1 For each t 2 D, we define the functions Kt induced by the reproducing kernel KH as

Ktð�Þ ¼ Kð�; tÞ. From the reproducing property, taking / ¼ Kx, we get the following immediate

consequence

hKx;KtiH ¼ KxðtÞ ¼ Kðx; tÞ:

Since inner product is symmetric, this leads to the following

Fig. 11 Target and estimated autocovariance functions from the KLE for the maximum and minimum
temperature example

123

Journal of the Indian Society for Probability and Statistics (2022) 23:285–326 317



hKx;KtiH ¼hKt;KxiH
) Kðx; tÞ ¼KxðtÞ ¼ KtðxÞ ¼ Kðt; xÞ:

h

Proof of Lemma 2.2 Suppose there exists two reproducing kernels K and K0 for H defined over D. Then

for each t 2 D, we get the following

kKt �K0
tk

2
Y ¼ hKit �K0

x;Kx �K0
xi

¼ hKx �K0
x;Kxi � hKx �K0

x;K
0
xi

¼ ðKx �K0
xÞðxÞ � ðKx �K0

xÞðxÞ
¼ 0:

Hence, Kt ¼ K0
t, i.e for every x 2 D, KtðxÞ ¼ K0

tðxÞ. But since KtðxÞ ¼ Kðx; tÞ, this
would mean Kðx; tÞ ¼ K0ðt; xÞ, i.e K � K0. This provides the proof of the lemma. h

Proof of Lemma 2.3

Xn

i¼1

Xn

j¼1

cicjKðui; ujÞ ¼
Xn

i¼1

Xn

j¼1

cicjhKui ;KujiH

¼ h
Xn

i¼1

ciKui ;
Xn

j¼1

cjKujiH

¼ h
Xn

i¼1

ciKui ;
Xn

i¼1

ciKuiiH � 0:

h

Appendix B : Univariate KLE from a GBF

Here we are interested in estimating a covariance kernel Cðs; tÞ : s; t 2 D using the

expansion method from a GBF. Assume that the covariance kernel is evaluated at n
points ft1; . . .; tng from D. We denote the i-th KL eigenfunction as wið�Þ and the i-th
eigenvalue as ki. These eigenfunctions and eigenvalues will be estimated from

GBFs. We denote the j-th GBF as hjð�Þ. The KL eigenfunction is obtained by

projecting the GBFs linearly as below
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wiðtÞ ¼
XM

j¼1

FijhjðtÞ

) W ¼HF:

ð7Þ

Let W be the n� K matrix of KL eigenfunctions, where the i� jth element is wjðiÞ.
Similarly, the n� K GBF matrix H is similarly defined from hjðiÞs. Denote the j-th
row of W as the row vector wj: and similarly define hj:. Using the Fredholm

equation, we hae

Z

s

Cðs; tÞwiðsÞds ¼kiwiðtÞ

)
Z

s

Cðs; tÞws:
Tds ¼Kwt:

T

)
Z

s

Cðs; tÞFTHs:
Tds ¼KFTHt:

T

) FT

Z

s

Cðs; tÞHs:
Tds ¼KFTHt:

T

) FT

Z

s

Cðs; tÞHs:
THt:dsF ¼KFTHt:

THt:

) FT

Z

s

Z

t

Cðs; tÞHs:
THt:ds dt ¼KFT

Z

t

Ht:
THt:dt:

Denote AT ¼
R
s

R
t Cðs; tÞHs:

THt:ds dt, B
T =

R
t Ht:

THt:dt. Then, we get the following

FTAT ¼KBTFT

) AF ¼BFK:

The above problem is the well-known generalized eigenvalue problem, which is

equivalent to finding the eigenvalues of B�1A. This gives the solution of F and K,
which is now plugged in (7) to get the KL eigenfunctions. The eigenvalues are the

diagonal elements of K. This completes the KL expansion of the covariance matrix

C.
As the choice of GBFs, the rcage package considers Gaussian, Bisquare or

Wendland basis functions. The R package funData (Happ-Kurz 2020), mfpca
(Happ and Greven 2018) uses similar basis functions, but also includes the spline

basis, cosine basis, radial basis, Fourier basis, and others. In our simulated example,

we have tried different basis functions including Fourier, Haar, Legendre

polynomials, radial basis functions, and decided that the Legendre polynomials

worked well for the choice of GBFs in the examples presented here. Legendre

polynomials are orthonormal families of basis functions defined over ½�1; 1� and
given by
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P1ðtÞ ¼
1
ffiffiffi
2

p

P2ðtÞ ¼
3
ffiffiffi
2

p t

Pkþ1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1

2

r "
2k � 1

k
tPkðtÞ �

k � 1

k
Pk�1ðtÞ

#

:

..

.

Using recursion, it is straight-forward to show that
R 1

�1

R 1

�1
PiðsÞPjðtÞ ds dt ¼ dij. In

particular, when K many GBFs are chosen, the GBF matrix H becomes an n� K
matrix with the (i, j)-th element hi;j ¼ PjðtiÞ.

Appendix C : Univariate Bayesian KLE

Suppose that we have n observations Y ¼ ðY1; . . .; YnÞ at indices t1; . . .; tn from a

stochastic process Y t : t 2 D with covariance kernel Cðs; tÞ, which is unknown. In

this case we use the following hierarchical model

Y ¼Wgþ �

W ¼HF

CovðgÞ ¼K ¼ diagðk1 � k2 � � � �Þ
��N nð0; s2IÞ:

ð8Þ

One can start with any choice of GBF H here (as stated in Appendix B), where the

(i, j)-th element of H is the j-th GBF corresponding to the i-th observation, i.e.,

hjðtiÞ. To compute W from H, we need first define W as the matrix with i, j th

element as Wij ¼
R
t hiðtÞhjðtÞdt. Then, the Fredholm integral equation FTWF ¼ I

must be satisfied for W to be orthonormal. Let Q be the Cholesky decomposition of

W�1 and let G be any orthonormal matrix of proper dimension. Then, F ¼ QG
satisfies the Fredholm integral equation since

FTWF ¼ GTQTQ�TQ�1QG ¼ GTG ¼ I:

The first stage of the model in (8) now becomes

Y ¼Wgþ �

¼HFgþ �

¼HQGgþ �

¼Um þ �
�
where U ¼ HQ; m ¼ Gg

�
:

Note thatU can be pre-calculated from the GBFsH and CovðmÞ ¼ GKGT ¼ RÞ. We

need to specify a prior on R to complete the full Bayesian approach. The prior used

on R is the so-called Moran’s I (MI) prior developed in (Bradley et al. 2015, 2017),

which is computed as
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R ¼ r2
�
R�1AðþÞ�Q0ðI � AÞQ

�
R�T

��1 ¼ r2M�1;

where A is the adjacency matrix of the locations, ðQ;RÞ is the QR decomposition of

the basis matrix U and AðþÞð�Þ is the best positive definite approximation of a

matrix as explained in Higham (1988).

In addition, r2 and s2 are given inverse gamma priors with ar ¼ 10; br ¼ 10,

as ¼ 10; bs ¼ 1. The remaining part of the above expression is known once we

compute U and hence the prior specification on r2 completes the prior

specifications. We now compute the posteriors of the unknown parameters,

specifically the posterior predictive distribution of m. The complete hierarchical

model specification is given by

Y ¼Um þ �

�js2 �N nð0; s2IÞ

mjr2 �N K

�
0; r2

�
R�1AðþÞQ0ðI � AÞQR�T

��1Þ
r2 � IGðar; brÞ
s2 � IGðas; bsÞ:

The full-conditional distributions are then given by:

pðm; s2; r2 j YÞ / ðs2Þ�ð1þasþn
2
Þðr2Þ�ð1þarþK

2
Þ

exp�ðY � UmÞTðY � UmÞ þ 2bs
2s2

exp� mTMm þ 2br
2r2

pðs2 j �Þ � IG
� n

2
þ as;

ðY � UmÞTðY � UmÞ þ 2bs
2

�

pðr2 j �Þ � IG
�K

2
þ ar;

mTMm þ 2br
2

�

pðm j �Þ �N K

�
ð 1
s2

UTUþ 1

r2
MÞ�1 1

s2
UTY; ð 1

s2
UTUþ 1

r2
MÞ�1

�
:

Posterior samples of the parameters are obtained after running the MCMC for 5000

iterations with a burn-in of 1000 and then thinned the chains, keeping every 5-th

observation. Convergence was assessed through visual inspection of the sample

chains, with no lack of convergence detected. After getting the posterior samples,

one can finally construct the KL eigenfunctions from the posterior samples of ms and

compute the covariance matrix bR ¼ bG bK bG
T
. Now, we can get the KL eigenfunc-

tions under this prior by computing bW ¼ U bG.

Note that the reconstructed eigenfunctions and eigenvalues may depend heavily

on the priors chosen. In our examples, we found that the performance of the

algorithm is typically worse than the method when the true covariance function is

known, as expected. However, we note that the true covariance function is never

known in practice and this provides an elegant way to perform the KLE for the data
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when one has no knowledge apart from only one realization of the stochastic

process. We also note that in cases where more than one replicate is available, one

can estimate the covariance matrix from the data and then fall back to solving for

the unknown coefficients through Fredholm equation directly.

Appendix D : Multiple Separate GBFs

For the multiple separate KLE problem, one needs to proceed as in the univariate

case for each of the individual process. Consider a multivariate stochastic process

Xt ¼ ðXt1; . . .;XtKÞ with a block covariance matrix

C ¼

C1;1 . . . C1;K

..

. ..
. ..

.

CK;1 . . . CK;K

2

6
6
4

3

7
7
5;

where each block matrix Cjk is a n� n covariance matrix with elements

Cjkðs; tÞ ¼ CovðXjs;XktÞ. We need to construct individual process specific KLEs

first.

Consider the j-th process fXtj : t 2 Dg with covariance matrix as the j-th

diagonal block Cjj. Denote the corresponding GBF as the matrix HðjÞ with the (t, i)-

th element given by hðjÞi ðtÞ. Similarly, the i-th eigenvalue and eigenfunction for the j-

th process are then given by wðjÞ
i ð�Þ and kðjÞi , respectively. Define WðjÞ as the vector

with the t, i-th element to be wðjÞ
i ð�Þ. These KL eigenfunctions are obtained as linear

projections from HðjÞ using WðjÞ ¼ HðjÞFðjÞ.

From the Fredholm integral equation, FðjÞ is estimated by using the following

derivation
Z

s

Cjðs; tÞwðjÞ
i ðsÞds ¼ kðjÞi wðjÞ

i ðtÞ:

Proceeding similarly as in the univariate case, one gets the matrix AðjÞ and BðjÞ with

(k, l)-th element as
R
s

R
t Cjjðs; tÞhðjÞi ðsÞhðjÞj ðtÞ ds dt and

R
t h

ðjÞ
i ðtÞhðjÞj ðtÞ dt respectively.

To get the KLE, the generalized eigenvalue problem AðjÞFðjÞ ¼ BðjÞFðjÞKðjÞ is

solved, where KðjÞ and FðjÞ are the eigenvalues and eigenvectors of BðjÞ�1AðjÞ, the

diagonals of KðjÞ are the KL eigenvalues, and WðjÞ ¼ HðjÞFðjÞ are the KL

eigenfunctions.

After solving for each univariate process, we need to obtain the KLE which we

get by computing the following

Kml
ij ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð1Þm kð2Þl

q

Z

s

Z

t

Cijðs; tÞwðiÞ
m ðsÞwðjÞ

l ðtÞ ds dt:

Now as described in Sect. 3.6, we can define the block matrix K, where the (i, j)-th
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block is the matrix Kij with m, l-th element Kml
ij . The diagonal blocks Kii’s are

defined to be identity matrices. We then collect the variable-wise expansion coef-

ficients into a large vector as in A ¼
�
a11; a21; . . .; a1K ; a2K ; . . .

�0
. To get the mul-

tivariate KLE, we obtain the Cholesky decomposition K ¼ RRT and then define
eA ¼ R�1A. eA thus becomes uncorrelated since

E
�
eA eAT

�
¼ R�1E

�
AAT

�
R�T ¼ R�1KR�T ¼ I. Similarly the univariate eigenfunc-

tions /ðiÞ
m ð:Þ can be collected in a vector to define a multivariate eigenfunction

UðiÞ
m ð:Þ and then they can be made orthonormal by a similar transformation as in

eUð�Þ ¼ Uð�ÞR. Thus, we get the orthonormal eigenfunctions and uncorrelated

coefficients and this gives the multivariate KLE from the univariate KLEs of each

process.
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wavelet-Galerkin scheme. Probab Eng Mech 17(3):293–303
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