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Abstract
In this paper, we introduce a generalized mixture distribution, so-called the binomial

mixture Lindley distribution (BMLD). The density function of this distribution is

obtained by mixing binomial probabilities with gamma distribution. BMLD have

various distributions as its special cases and posses various shapes for its hazard rate

function including increasing, decreasing, bathtub shape and upside down bathtub

shape depending on its parameters. Several mathematical, structural and statistical

properties of the new distribution is presented such as moments, moment generating

function, hazard rate function, vitality function, mean residual life function,

inequality measures, entropy and extropy etc. The parameters of the model are

estimated using the method of maximum likelihood and finally real life data sets are

considered to illustrate the relevance of the new model by comparing it with some

other lifetime models.
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1 Introduction

Numerous probability distributions are introduced in the literature by mixing,

extending and modifying well known distributions and hence provide more flexible

hazard rate function for modelling lifetime data. These distributions will then be

more suitable for fitting appropriate real data than the base models. Knowledge of

the appropriate distribution plays an important role in improving the efficiency of

any statistical inference related to data sets. Hence the researchers are more keen to

develop new distributions by extending classical distributions to increase model

flexibility and adaptability in various aspects of modelling data.

Lindley (1958) introduced in the literature one of the most discussed lifetime

distribution, the Lindley distribution, in the context of the Bayesian statistics as a

counter example of the fiducial statistics. Lindley distribution (LD) have the

probability density function (pdf),

f1ðxÞ ¼
h2

1þ h
ð1þ xÞe�hx; x[ 0; h[ 0; ð1:1Þ

which is a mixture of exponential ðhÞ and gamma ð2; hÞ distributions. The corre-

sponding cumulative distribution function (cdf) has been obtained as,

F1ðxÞ ¼ 1� hþ 1þ hx
1þ h

e�hx; x[ 0; h[ 0; ð1:2Þ

where h is the scale parameter.

Mixture models provide a mathematical based, flexible and meaningful approach

for the wide variety of classification requirements. There are numerous fields in

which mixture models have practical applicability. Lindley itself being a mixture

model, it has gained momentum in the theoretical perspective as well as in terms of

its applications. Ghitany et al. (2008) have studied various properties of this

distribution and showed that (1.1) provides a better model for some applications

than the exponential distribution. Mazucheli and Achcar (2011) applied the Lindley

distribution to competing risk life time data. A discrete version of this distribution

has been suggested by Deniz and Ojeda (2011) having its applications in count data

related to insurance. Al-Mutairi et al. (2013) developed the inferential procedure of

the stress-strength parameter, when both stress and strength variables follow

Lindley distribution. The applicability of Lindley distribution in solving lifetime

modelling problems and modelling stress strength model made researchers to

develop many generalizations, modifications and extensions of this distribution.

Shanker et al. (2013) introduced a two parameter Lindley distribution (LD2) for

modelling waiting and survival times data with pdf,

f2ðx; a; hÞ ¼
h2

hþ a
ð1þ axÞe�hx; x[ 0; h[ 0; a[ � h; ð1:3Þ

where f2ðx; a; hÞ is a mixture of exponential ðhÞ and gamma ð2; hÞ with mixing

probabilities h
hþa and a

hþa respectively. Even though one parameter and two

parameter Lindley distributions are mixture of EðhÞ and Gð2; hÞ, most of the further
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generalizations are based on two gamma models with suitable mixtures. The gen-

eralizations that we aware of are:

Zakerzadeh and Dolati (2009) introduced a generalized Lindley distribution

(GLD) with pdf,

f3ðx; a; h; cÞ ¼
h2ðhxÞa�1ðaþ cxÞ
ðcþ hÞCðaþ 1Þ e�hx; x[ 0; a; h; c[ 0; ð1:4Þ

f3ðx; a; h; cÞ is a mixture of gamma ða; hÞ and gamma ðaþ 1; hÞ with mixing

probabilities h
cþh and

c
cþh respectively.

Ghitany et al. (2011) introduced a weighted Lindley distribution (WLD) with pdf,

f4ðx; h; aÞ ¼
haþ1

ðhþ aÞCðaÞ x
a�1ð1þ xÞe�hx; a; h; x[ 0; ð1:5Þ

f4ðx; h; aÞ can also be expressed as a two component mixture such that

f4ðx; h; aÞ ¼ pg1ðxÞ þ ð1� pÞg2ðxÞ;

where p ¼ h
hþa and giðxÞ ¼ haþj�1

Cðaþj�1Þ x
aþj�2e�hx; a; h; x[ 0; j ¼ 1; 2, is the pdf of the

gamma distribution with the shape parameter aþ j� 1 and scale parameter

h; j ¼ 1; 2:
Elbatal et al. (2013) proposed a new generalized Lindley distribution (NGLD)

with pdf,

f5ðx; h; a; bÞ ¼
1

1þ h
haþ1xa�1

CðaÞ þ hbxb�1

CðbÞ

" #
e�hx; x[ 0; a; h[ 0; ð1:6Þ

where f5ðx; a; hÞ is a mixture of gamma ða; hÞ and gamma ðb; hÞ with mixing

probabilities h
hþ1

and 1
hþ1

respectively.

Abouammoh et al. (2015) defined another new generalized Lindley distribution

(NGLD1) with pdf,

f6ðx; a; hÞ ¼
haxa�2

ðhþ 1ÞCðaÞ ðxþ a� 1Þe�hx; x[ 0; h� 0; a� 1; ð1:7Þ

where f6ðx; a; hÞ is a mixture of gamma ða; hÞ and gamma ða� 1; hÞ with mixing

probabilities 1
hþ1

and h
hþ1

respectively.

All these generalizations play various roles in the literature both in theoretical

and applied perspectives. It can be perceived that most of the further developments

are based on these six models, which immensely motivates to propose a generalized

family, which generalizes the afore mentioned Lindley models. Hence in this work

we introduce a wider class of Lindley distribution by mixing binomial probabilities

with gamma distribution and name the distribution as binomial mixture Lindley

distribution (BMLD).
One of the main peculiarity of the LD is its shape of hazard rate (increasing

hazard rate) function compared to the well known exponential distribution. By
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scrutinizing the flexibility of various variants of Lindley model in terms of the

hazard rate function, Lindley-Exponential distribution (Bhati et al. 2015) possess

decreasing hazard rate function, GLD possess bathtub shape hazard rate function

and inverse Lindley distribution (Sharma et al. 2015) possess upside down bathtub

shape hazard rate function. Hence another motivation of this work is to propose a

flexible extension of Lindley model which possess all the available shapes of hazard

rate function. During the initial stage of this work, we came across several recent

articles based on Lindley models. Several authors claim that their model possess

bathtub shaped hazard rate but not even a single author attempted to fit a bathtub

shaped data. Hence one motivation of this work is to propose a model and

successfully apply a well known bathtub shaped data of Aarset (1987). In addition to

Aarset data, to prove the superiority of BMLD we also took two other data sets, viz.,

strength of glass fiber data (see, Smith and Naylor 1987) and survival times of 72

guinea pigs data (see, Bjerkedal 1960) both having increasing hazard rate function.

The rest of the paper is outlined as follows. In Sect. 2 binomial mixture Lindley

distribution is defined along with its moments, model identifiability, mean, variance,

a recursive relationship for moments and moment generating function. Some of the

reliability properties of the model such as hazard rate function, vitality function,

mean residual life function, inequality measures and some uncertainty measures are

presented in Sect. 3. In Sect. 4, the parameters of the distribution are estimated

using method of maximum likelihood and thus obtained observed Fisher informa-

tion matrix and asymptotic confidence intervals. A simulation study is presented in

Sect. 5. Finally in Sect. 6, experimental results of the proposed distribution based

on real data sets are illustrated.

2 Binomial Mixture Lindley Distribution

In this section, we present definition and some important properties of the binomial

mixture Lindley distribution . Here after we use the short form BMLD for binomial

mixture Lindley distribution.

Definition 2.1 A continuous random variable X is said to follow BMLD if its pdf

f(x) has the following form,

f ðxÞ ¼
Xg
i¼0

pi hiðxÞ; ð2:1Þ

where

hiðxÞ ¼
hai

CðaiÞ
xai�1e�hx;

for h[ 0, ai [ 0 for i ¼ 0; 1; � � � ; g. We define the mixing weights pi such that
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pi ¼
g

i

� �
h

hþ b

� �i b
hþ b

� �g�i

; ð2:2Þ

for i ¼ 0; 1; � � � ; g and
Xg
i¼0

pi ¼ 1, b[ 0, h[ 0 .

Special cases

(1) If g=1, a0=1 and a1=1, then BMLD becomes the exponential distribution

(ED).
(2) If g=1, b=1 and a0=a1=a, then BMLD becomes the gamma distribution (GD).
(3) If g=1, b=1, a0=2 and a1=1, then BMLD becomes the Lindley distribution

(LD).
(4) If g=1, a0=2 and a1=1, then BMLD becomes the two parameter Lindley

distribution [LD2 (Shanker et al. 2013)].

(5) If g=1, a0=aþ 1 and a1=a, then BMLD becomes the generalized Lindley

distribution [GLD (Zakerzadeh and Dolati 2009)].

(6) If g=1 a0 ¼ aþ 1, a1 ¼ a and b ¼ a, then BMLD becomes the weighted

Lindley distribution [WLD (Ghitany et al. 2011)].

(7) If g=1 and b=1, then BMLD becomes the new generalized Lindley

distribution [NGLD (Elbatal et al. 2013)].

(8) If g=1, b=1, a0=a and a2=a� 1, then BMLD becomes new generalized

Lindley distribution [NGLD1 (Abouammoh et al. 2015)].

The pdf of the distribution, for different values of parameters, is plotted in Fig. 1.

2.1 Identifiability

A set of parameters for a particular model is said to be identifiable if not any two

sets of the parameters gives same distribution for the given x.

Result 2.1 The identifiability condition for BMLD with pdf as given in (2.1) is
ai 6¼ aj for each i; j 2 0; 1; 2; :::; g such that i 6¼ j .

Proof For mathematical simplicity, first we consider the case of g ¼ 2 and let

b0B0ðxÞ þ b1B1ðxÞ þ b2B2ðxÞ ¼ 0; ð2:3Þ

where b0, b1 and b2 are real numbers, B0ðxÞ ¼
Rx

u¼0

f ðuÞdu, B1ðxÞ ¼
Rx

u¼0

gðuÞdu and

B2ðxÞ ¼
Rx

u¼0

hðuÞdu with x[ 0. Also g(u) and h(u) can be obtained from f(u) by

replacing ai by qi and ai by li respectively. Assume that for each i ¼ 0; 1; 2,
ai 6¼ qi 6¼ li,
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B0ðxÞ ¼
Z x

0

b
hþ b

� �2 ha0

C a0ð Þ t
a0�1e�ht þ 2bh

ðhþ bÞ2
ha1

C a1ð Þ t
a1�1e�ht

"

þ h
hþ b

� �2 ha2

C a2ð Þ t
a2�1e�ht

#
dt;

ð2:4Þ

B1ðxÞ ¼
Z x

0

b
hþ b

� �2 hq0

C q0ð Þ t
q0�1e�ht þ 2bh

ðhþ bÞ2
hq1

C q1ð Þ t
q1�1e�ht

"

þ h
hþ b

� �2 hq2

C q2ð Þ t
q2�1e�ht

#
dt

ð2:5Þ

and

Fig. 1 The pdf of BMLD for g=2 and different values of h, b, a0, a1, a2
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B2ðxÞ ¼
Z x

0

b
hþ b

� �2 hl0

C l0ð Þ t
l0�1e�ht þ 2bh

ðhþ bÞ2
hl1

C l1ð Þ t
l1�1e�ht

"

þ h
hþ b

� �2 hl2

C l2ð Þ t
l2�1e�ht

#
dt:

ð2:6Þ

Putting the values of B0ðxÞ, B1ðxÞ and B2ðxÞ in (2.3) , we obtain the following,Z x

0

b0
ha0

C a0ð Þ t
a0�1e�ht þ b1

hq0

C q0ð Þ t
q0�1e�ht þ b2

hl0

C l0ð Þ t
l0�1e�ht

� �
dt ¼ 0; ð2:7Þ

Z x

0

b0
ha1

C a1ð Þ t
a1�1e�ht þ b1

hq1

C q1ð Þ t
q1�1e�ht þ b2

hl1

C l1ð Þ t
l1�1e�ht

� �
dt ¼ 0 ð2:8Þ

andZ x

0

b0
ha2

C a2ð Þ t
a2�1e�ht þ b2

hq2

C q2ð Þ t
q2�1e�ht þ b2

hl2

C l2ð Þ t
l2�1e�ht

� �
dt ¼ 0: ð2:9Þ

On combining Eqs. (2.7), (2.8) and (2.9), we get

Fb ¼ 0; ð2:10Þ

in which, F=

fa0 fq0 fl0
fa1 fq1 fl1
fa2 fq2 fl2

2
4

3
5, b=

b0
b1
b2

2
4

3
5 and 0=

0

0

0

2
4
3
5 and we define

fai ¼ hai
Cai

Rx
0

tai�1e�htdt, fqi ¼ hqi
Cqi

Rx
0

tqi�1e�htdt and fli ¼ hli
Cli

Rx
0

tli�1e�htdt for i ¼ 0; 1; 2.

Obviously det F 6¼ 0 shows that b ¼ 0 and thereby we conclude that the distribution

functions B0, B1 and B2 are linearly independent over the set of real numbers ( see,

Titterington et al. 1985). In a similar way, the argument can be extended to the case

of any positive integer gð� 3Þ and thus the result follows. h

Result 2.2 The cumulative distribution function (cdf) of the BMLD given in (2.1)
has the following form,

FðxÞ ¼
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�i

caiðhxÞ: ð2:11Þ

Proof We have
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FðxÞ ¼
Zx
0

f ðtÞ dt

¼
Xg
i¼0

pi
CðaiÞ

Zx
0

hðthÞai�1e�htdt

¼
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i

caiðhxÞ;

where cðs; tÞ ¼
Rt
0

xs�1e�xdx is the lower incomplete gamma function and

csðtÞ ¼
cðs;tÞ
CðsÞ . h

Remark 2.1 The survival function of the BMLD is obtained as

FðxÞ ¼ 1�
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�i

caiðhxÞ: ð2:12Þ

Result 2.3 The rth raw moment about origin of the BMLD has been obtained as

l0r ¼
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�iCðai þ rÞ
hrCðaiÞ

; r ¼ 1; 2; � � � ð2:13Þ

Proof By definition, we have

l0r ¼
Z1
0

Xg
i¼0

pi
hai

CðaiÞ
xaiþr�1e�hxdx

¼
Xg
i¼0

pih
ai

CðaiÞ
Cðai þ rÞ
haiþr

¼
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�iCðai þ rÞ
hrCðaiÞ

:

h

Remark 2.2 Mean and variance of BMLD is given by

EðXÞ ¼
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�iai
h

ð2:14Þ

and
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VarðXÞ ¼ 1

h2
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i

ai

(
1þ ai

�
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i

ai

)
:

ð2:15Þ

Result 2.4 The moments of the BMLD can be calculated recursively through the
relationship

l
0

rþ1 ¼ l
0

r

Pg
i¼0

g

i

 !
CðaiÞ

h
hþb

� �i
b

hþb

� �g�i

Cðai þ r þ 1Þ

h
Pg
i¼0

g

i

 !
CðaiÞ

h
hþb

� �i
b

hþb

� �g�i

Cðai þ rÞ

: ð2:16Þ

Proof From (2.13), we have

hrl
0

r ¼
Xg
i¼0

g

i

� �
CðaiÞ

h
hþ b

� �i b
hþ b

� �g�i

Cðai þ rÞ

and

hrþ1l
0

rþ1 ¼
Xg
i¼0

g

i

� �
CðaiÞ

h
hþ b

� �i b
hþ b

� �g�i

Cðai þ r þ 1Þ:

hl
0

rþ1

Xg
i¼0

g

i

 !

CðaiÞ
h

hþ b

� �i b
hþ b

� �g�i

Cðai þ rÞ

¼ l
0

r

Xg
i¼0

g

i

 !

CðaiÞ
h

hþ b

� �i b
hþ b

� �g�i

Cðai þ r þ 1Þ:

By rearranging the above equation, we get (2.16). h

Result 2.5 If X has BMLD, then the moment generating function MXðtÞ has the
following form,
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MXðtÞ ¼
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�i h
h� t

� �ai

:

Proof We have

MXðtÞ ¼ EðetXÞ

¼
Z1
0

etxf ðxÞdx

¼
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i hai

CðaiÞ

Z1
0

e�ðh�tÞxxai�1dx

¼
Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i h
h� t

� �ai

:

h

Remark 2.3 The characteristic function of the BMLD is UXðtÞ ¼ MXðitÞ, where
i ¼

ffiffiffiffiffiffiffi
�1

p
is the unit imaginary number.

3 Certain Measures of Reliability, Inequality, Entropy and Extropy

In this section we derived expressions for some reliability measures such as hazard

rate function, reversed hazard rate function, cumulative hazard rate function, vitality

function and mean residual life function associated with BMLD. Certain inequality

measures, entropy and extropy measures are also obtained.

3.1 Reliability Properties

3.1.1 Hazard Rate Function

Let X denote a lifetime variable with cdf FðxÞ ¼ PrðX� xÞ and pdf f(x). Then the

hazard rate function(hrf) is given by,

hðxÞ ¼ f ðxÞ
FðxÞ

; ð3:1Þ

where FðxÞ ¼ 1� FðxÞ is the survival function of X. That is, h(x)dx represents the

instantaneous chance that an individual will die in the interval ðx; xþ dxÞ given that

this individual is alive at age x.
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3.1.2 Reversed Hazard Rate Function

Let X be a non-negative random variable representing lifetimes of individuals

having absolutely continuous distribution function F(x) and pdf f(x). Then the

reversed hazard rate function is given by

rðxÞ ¼ f ðxÞ
FðxÞ : ð3:2Þ

3.1.3 Cumulative Hazard Rate Function

Cumulative hazard rate function is the total number of failure or deaths over an

interval of time, and it is defined as

RðxÞ ¼ � logFðxÞ; where FðxÞ is the survival function: ð3:3Þ

Clearly R(x) is a non-decreasing function of x satisfying; (a) Rð0Þ ¼ 0 and (b)

lim
x!1

RðxÞ ¼ 1.

Result 3.1 If X has the BMLD with density function, cumulative distribution
function and survival function given in Eqs. (2.1), (2.11) and (2.12) respectively,
then

(a) Hazard rate function,

hðxÞ ¼

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i
hai

CðaiÞ x
ai�1e�hx

1�
Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
: ð3:4Þ

(b) Cumulative hazard rate function,

RðxÞ ¼ � log 1�
Xg
i¼0

g

i

� �
h

hþ b

� �i b
hþ b

� �g�i

caiðhxÞ
" #

: ð3:5Þ

(c) Reversed hazard rate function,

rðxÞ ¼

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i
hai

CðaiÞ x
ai�1e�hx

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
: ð3:6Þ
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Proof By using (2.1), (2.11) and (2.12) in the equations, hðxÞ ¼ f ðxÞ
FðxÞ, rðxÞ ¼

f ðxÞ
FðxÞ and

RðxÞ ¼ � logFðxÞ; the hazard rate function, reversed hazard rate function and

cumulative hazard rate function are easily obtained.

The hazard rate function for BMLD is plotted for different values of parameters is

given in Fig. 2. h

The graphs of the hazard function for various combination of parameters show

various shapes including increasing, decreasing, bathtub shape (decreasing -stable-

increasing) and upside down bathtub shape. This attractive flexibility of the BMLD
hazard rate function highly suitable for non-monotone empirical hazard behaviours

which are more likely to be encountered in real life situations.

3.1.4 Vitality Function

If X is a non-negative random variable having an absolutely continuous distribution

function F(x) with pdf f(x). The vitality function associated with the random

variable X is defined as,

mðxÞ ¼ E½XjX[ x�: ð3:7Þ

In the reliability context (3.7) can be interpreted as the average life span of com-

ponents whose age exceeds x. It may be noted that the hazard rate reflects the risk of

sudden death within a life span, where as the vitality function provides a more direct

Fig. 2 The hrf of BMLD for g = 2 and different values of h, b, a0, a1, a2
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measure to describe the failure pattern in the sense that it is expressed in terms of

increased average life span.

Result 3.2 The vitality function of BMLD has the following form,

mðxÞ ¼
1
h

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

aiCaiþ1ðhxÞ

1�
Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
: ð3:8Þ

Proof The Eq. (3.7) can also be written as,

mðxÞ ¼ 1

FðxÞ

Z1
x

tf ðtÞdt: ð3:9Þ

Now

Z1
x

tf ðtÞdt ¼
Z1
x

t
Xg
i¼0

pi
hai

CðaiÞ
tai�1e�htdt

¼ 1

h

Xg
i¼0

pi
CðaiÞ

Cðai þ 1; hxÞ

¼ 1

h

Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i

aiCaiþ1ðhxÞ;

ð3:10Þ

where Cðs; tÞ ¼
R1
x

xs�1e�xdx is the upper incomplete gamma function and CsðtÞ ¼
Cðs;tÞ
CðsÞ : Substituting (3.10) and (2.12) in (3.9), we get the required result. h

3.1.5 Mean Residual Life Function

Mean residual life function or remaining life expectancy function at age x is defined
to be the expected remaining life given survival to age x. For a continuous random

variable X, with EðXÞ\1, then the mean residual life function (MRLF) is defined

as the Borel measurable function,

mðxÞ ¼ E½X � xjX[ x�

¼ 1

FðxÞ

Z1
x

FðtÞdt:
ð3:11Þ

MRLF is sometimes considered as a superior measure to describe the failure pattern

as compared to hazard rate function since the former focuses attention on the

123

Journal of the Indian Society for Probability and Statistics (2020) 21:437–469 449



average lifetime over a period of time while the latter on instantaneous failure at a

point of time. Also MRLF can be expressed in terms of vitality function. That is,

Eq. (3.9) can also be written as

mðxÞ ¼ 1

FðxÞ

Z1
x

FðtÞdt þ x

¼ mðxÞ þ x:

ð3:12Þ

Result 3.3 The mean residual life function of BMLD has the following form,

mðxÞ ¼
1
h

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

aiCaiþ1ðhxÞ

1�
Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
� x: ð3:13Þ

Proof Substituting (3.8) in (3.12), we get (3.13). h

3.2 Inequality Measures

Lorenz and Bonferroni curves are income inequality measures that are widely useful

and applicable to some other areas including reliability, demography, medicine and

insurance (see, Bonferroni 1930). Also Zenga curve introduced by Zenga (2007) is

another widely used inequality measure. In this section, we will derive Lorenz,

Bonferroni and Zenga curves for the BMLD. The Lorenz, Bonferroni and Zenga

curves are respectively given as

LFðxÞ ¼

Rx
0

tf ðtÞdt

EðXÞ , BFðxÞ ¼

Rx
0

tf ðtÞdt

FðXÞEðXÞ and AFðxÞ ¼ 1� l�ðxÞ
lþðxÞ, where l�ðxÞ ¼

Rx
0

tf ðtÞdt

FðXÞ

and lþðxÞ ¼

R1
x

tf ðtÞdt

FðXÞ :

Result 3.4 If X has the BMLD with density function, cumulative distribution
function and survival function given in Eqs. (2.1), (2.11) and (2.12) respectively,
then

(a) Lorenz curve,

LFðxÞ ¼

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

aicaiþ1ðhxÞ

Pg
i¼0

g

i

� �
h

hþb

� �i
b

hþb

� �g�i

ai

: ð3:14Þ
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(b) Bonferroni curve,

BFðxÞ ¼

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

aicaiþ1ðhxÞ

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

ai

( ) Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
( ) : ð3:15Þ

(c) Zenga curve,

AFðxÞ ¼ 1�

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

aicaiþ1ðhxÞ

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ

8>>>><
>>>>:

�

�
1�

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

caiðhxÞ
�

Pg
i¼0

g

i

 !
h

hþb

� �i
b

hþb

� �g�i

aiCaiþ1ðhxÞ

9>>>>=
>>>>;
:

ð3:16Þ

Proof

(a) By definition

LFðxÞ ¼

Rx
0

tf ðtÞdt

EðXÞ :
ð3:17Þ

Now

Zx
0

tf ðtÞdt ¼ 1

h

Xg
i¼0

pi
CðaiÞ

cðai þ 1; hxÞ

¼ 1

h

Xg
i¼0

g

i

 !
h

hþ b

� �i b
hþ b

� �g�i

aicaiþ1ðhxÞ:

ð3:18Þ

By using (3.18) and (2.14) in (3.17), we get (3.14)

(b) By definition

BFðxÞ ¼

Rx
0

tf ðtÞdt

FðXÞEðXÞ :

By using (3.18), (2.14) and (2.11), we get (3.15)
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(c) By definition

AðxÞ ¼ 1� l�ðxÞ
lþðxÞ : ð3:19Þ

By using (3.18) and (2.11), we get l�ðxÞ and by definition lþðxÞ ¼

R1
x

tf ðtÞdt

FðXÞ ¼ mðxÞ:
which is given in (3.8). Substituting l�ðxÞ and lþðxÞ in (3.19), we get (3.16). h

3.3 Entropy

Here we derive the expressions for Rényi Entropy and Havrda-Charv�at-Tsallis
(HCT) entropy. We are also deriving the expression for a recently developed

uncertainty measure, namely extropy and its residual version. For mathematical

simplicity these results are derived for g ¼ 2.

The concept of entropy was introduced and extensively studied by Shannon

(1948). Let X be a non-negative random variable admitting an absolutely continuous

cdf F(x) and with pdf f(x). Then the Shannon’s entropy associated with X is defined

as HðXÞ ¼ �
R1
0

f ðxÞ log f ðxÞ dx: It gives the expected uncertainty contained in

f(x) about the predictability of an outcome of X.
Several generalizations of Shannon’s entropy have been put forward by

researchers. A generalization which has received much attention subsequently is

due to Rényi (1959). The Rényi’s entropy of order m is defined as

HmðXÞ ¼ 1

1� m
log

Z1
0

f mðxÞ dx; for m[ 0; m 6¼ 1:

Another important generalization of Shannon’s entropy is the Havrda-Charv�at-
Tsallis (HCT) entropy. It was introduced by Havrda and Charv�at (1967) and further

developed by Tsallis (1988) and is given by,

HnðXÞ ¼ 1

n� 1
1�

Z1
0

f nðxÞ dx

0
@

1
A; for n[ 0; n 6¼ 1:

Result 3.5 The R �enyi entropy function for BMLD has the following form,
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HmðxÞ ¼ 1

1� m
log

b2ha0

ðhþ bÞ2Cða0Þ

 !mXm
j¼0

m

j

 !Xj

k¼0

j

k

 !
2ha1�a2�1Cða2Þ

Cða1Þ

� �k
(

ha2�a0þ2Cða0Þ
b2Cða2Þ

� �j

�
C
	
ða1 � a2Þk þ ða2 � a0Þjþ ða0 � 1Þmþ 1



ðmhÞða1�a2Þkþða2�a0Þjþða0�1Þmþ1

)
:

ð3:20Þ

Proof Using the definition of Rényi entropy, we have

HmðxÞ ¼ 1

ð1� mÞ log
Z1
0

1

ðhþ bÞ2

 !m
b2ha0xa0�1

Cða0Þ

�

þ 2ha1þ1bxa1�1Cða2Þ þ ha2þ2xa2�1Cða1Þ
Cða1ÞCða2Þ

�m

e�mhxdx

¼ 1

ð1� mÞ log
1

ðhþ bÞ2m
b2ha0

Cða0Þ

� �mXm
j¼0

m

j

 !(

Z1
0

2ha1�a0þ1Cða0Þxa1�a0

bCða1Þ
þ ha2�a0þ2Cða0Þxa2�a0

b2Cða2Þ

� � j

xða0�1Þme�mhxdx

9=
;

¼ 1

ð1� mÞ log
b2ha0

ðhþ bÞ2Cða0Þ

 !mXm
j¼0

m

j

 !Xj

k¼0

j

k

 !
2ha1�a2�1Cða2Þ

Cða1Þ

� �k
(

ha2�a0þ2Cða0Þ
b2Cða2Þ

� �jZ1
0

xða1�a2Þkþða2�a0Þjþða0�1Þme�mhxdx

9=
;

¼ 1

1� m
log

b2ha0

ðhþ bÞ2Cða0Þ

 !mXm
j¼0

m

j

 !Xj

k¼0

j

k

 !
2ha1�a2�1Cða2Þ

Cða1Þ

� �k
ha2�a0þ2Cða0Þ

b2Cða2Þ

� �j
(

C ða1 � a2Þk þ ða2 � a0Þjþ ða0 � 1Þmþ 1ð Þ
ðmhÞða1�a2Þkþða2�a0Þjþða0�1Þmþ1

)
:

h

Remark 3.1 When m ! 1 in (3.20), it reduces to Shannon entropy.

Result 3.6 The Havrda-Charv�at-Tsallis entropy of order q, for BMLD has the

following form,
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HnðxÞ ¼ 1

ðn� 1Þ 1� b2ha0

ðhþ bÞ2Cða0Þ

 !nXn
j¼0

n

j

 !Xj

k¼0

j

k

 !
2ha1�a2�1Cða2Þ

Cða1Þ

� �k
8<
:

ha2�a0þ2Cða0Þ
b2Cða2Þ

� �j
C ða1 � a2Þk þ ða2 � a0Þjþ ða0 � 1Þnþ 1ð Þ

ðnhÞða1�a2Þkþða2�a0Þjþða0�1Þnþ1

)
:

ð3:21Þ

Proof Proof is similar to that of Result 3.5 and hence omitted. h

3.4 Extropy

Recently, Lad et al. (2015) defined statistically the term extropy as a potential

measure of uncertainty, an alternative measure of Shannon entropy. For a random

variable X, its extropy is defined as

JðXÞ ¼ � 1

2

Z1
0

f 2ðxÞdx: ð3:22Þ

In statistical point of view, the term extropy is used to score the forecasting dis-

tributions under the total log scoring rule.

A serious difficulty involved in the application of Shannon’s entropy is that, it is

not applicable to a system which has survived for some units of time. In this

situation, Ebrahimi (1996) proposed the concept of residual entropy. As in the

scenario of introducing the concept of residual entropy, Qiu and Jia (2018)

introduced residual extropy to measure the residual uncertainty of a random

variable. For a random variable X, its residual extropy is defined as (see, Qiu and Jia

2018)

Jðf ; tÞ ¼ �1

2F
2ðtÞ

Z1
t

f 2ðxÞdx; ð3:23Þ

Result 3.7 The extropy function for BMLD has the following form,

JðXÞ ¼ �1

2ðhþ bÞ4

(
Cð2a0 � 1Þ
C2ða0Þ

b4h21�2a0 þ Cð2a1 � 1Þ
C2ða1Þ

b2h323�2a1

þ Cð2a2 � 1Þ
C2ða2Þ

h521�2a2 þ Cða0 þ a1 � 1Þ
Cða0ÞCða1Þ

b3h223�a0�a1

þ Cða1 þ a2 � 1Þ
Cða1ÞCða2Þ

bh423�a1�a2 þ Cða0 þ a2 � 1Þ
Cða0ÞCða2Þ

b2h322�a0�a2

)
:

ð3:24Þ
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Proof By definition of J(X),

JðXÞ ¼ �1

2ðhþ bÞ4
Z1
0

(
b2ha0xa0�1

Cða0Þ
þ 2bha1þ1xa1�1

Cða1Þ
þ ha2þ2xa2�1

Cða2Þ

)2

e�2hxdx

¼ �1

2ðhþ bÞ4

(
b4h2a0

C2ða0Þ

Z1
0

x2a0�2e�2hxdxþ 4b2h2a1þ2

C2ða1Þ

Z1
0

x2a1�2e�2hxdx

þ h2a2þ4

C2ða2Þ

Z1
0

x2a2�2e�2hxdxþ 4b3ha0þa1þ1

Cða0ÞCða1Þ

Z1
0

xa0þa1�2e�2hxdx

þ 4bha1þa2þ3

Cða1ÞCða2Þ

Z1
0

xa1þa2�2e�2hxdxþ 2b2ha0þa2þ2

Cða0ÞCða2Þ

Z1
0

xa0þa2�2e�2hxdx

)
:

ð3:25Þ

By simplifying (3.25), we get (3.24). h

Result 3.8 The residual extropy function for BMLD has the following form,

Jðf ; tÞ ¼ �1

2

 
1�

P2
i¼0

2

i

 !
h

hþb

� �i
b

hþb

� �2�i

caiðhtÞ
!2

ðhþ bÞ4

(
Cð2a0 � 1; 2htÞ

C2ða0Þ
b4h21�2a0

þ Cð2a1 � 1; 2htÞ
C2ða1Þ

b2h323�2a1 þ Cð2a2 � 1; 2htÞ
C2ða2Þ

h521�2a2

þ Cða0 þ a1 � 1; 2htÞ
Cða0ÞCða1Þ

b3h223�a0�a1 þ Cða1 þ a2 � 1; 2htÞ
Cða1ÞCða2Þ

bh423�a1�a2

þ Cða0 þ a2 � 1; 2htÞ
Cða0ÞCða2Þ

b2h322�a0�a2

)
; for g ¼ 2:

ð3:26Þ

Proof Proof is similar to that of Result 3.7 and hence omitted. h

4 Estimation and Inference

Estimation of unknown parameters of a distribution is essential in all areas of

statistics. In this section, first we obtain the maximum likelihood estimates (MLEs)

of the parameters of BMLD for a given random sample. The Fisher information

matrix is also computed in this section for the interval estimation. For mathematical

simplicity all these inferences are made for g ¼ 2.
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4.1 Maximum Likelihood Estimation

The method of maximum likelihood is the most frequently used technique for

parameter estimation. It’s success stems from its many desirable properties

including consistency, asymptotic efficiency, invariance property as well as intuitive

appeal.

Let X1;X2; :::;Xn be observed values from the BMLD with unknown parameter

vector �H ¼
�
h; b; a0; a1; a2

�
. The likelihood function is given by

l
	
�H


¼
Yn
i¼1

fi

�
x; h; b; a0; a1; a2

�

¼ 1

ðhþ bÞ2

 !n

e
�h
Pn
i¼1

xi Yn
i¼1

� b2ha0xa0�1
i

Cða0Þ
þ 2bha1þ1xa1�1

i

Cða1Þ
þ ha2þ2xa2�1

i

Cða2Þ

�
:

The partial derivatives of log l
	
�H


with respect to the parameters are given by

o log l

oh
¼ � 2n

hþ b
�
Xn
i¼1

xi þ
1

h

Xn
i¼1

a0Ai þ ða1 þ 1ÞBi þ ða2 þ 2ÞCi

Ai þ Bi þ Ci

� �
;

o log l

ob
¼ � 2n

hþ b
þ 1

b

Xn
i¼1

2Ai þ Bi

Ai þ Bi þ Ci

� �
;

o log l

oa0
¼
Xn
i¼1

Ai

�
logðhxiÞ � wða0Þ

�
Ai þ Bi þ Ci

0
@

1
A;

o log l

oa1
¼
Xn
i¼1

Bi

�
logðhxiÞ � wða1Þ

�
Ai þ Bi þ Ci

0
@

1
A

ð4:1Þ

and

o log l

oa2
¼
Xn
i¼1

Ci

�
logðhxiÞ � wða2Þ

�
Ai þ Bi þ Ci

0
@

1
A; ð4:2Þ

where Ai ¼ b2ha0 x
a0�1

i

Cða0Þ , Bi ¼ 2bha1þ1x
a1�1

i

Cða1Þ and Ci ¼ ha2þ2x
a2�1

i

Cða2Þ :

The MLE of the parameters �H ¼
�
h; b; a0; a1; a2

�
are obtained by solving the

equations o log l
oh ¼ 0, o log l

ob ¼ 0, o log l
oa0

¼ 0, o log l
oa1

¼ 0, o log l
oa2

¼ 0 simultaneously. This can

only be achieved by numerical optimization technique such as the Newton-Raphson

method and Fisher’s scoring algorithm using mathematical packages like R,

Mathematica etc. To avoid local minima problem, we first obtain the moment

estimators of the parameters of BMLD and setting these estimators as the initial

values to obtain MLEs of the parameters of BMLD.

123

456 Journal of the Indian Society for Probability and Statistics (2020) 21:437–469



4.2 Fisher Information Matrix

In order to determine the confidence interval for the parameters of BMLD, we need
to find the expected Fisher information matrix Ið�H Þ. The expected Fisher

information matrix of BMLD is given by,

Ið�H Þ ¼

�E
o2 log l

oh2

� �
� E

o2 log l

ohob

� �
� E

o2 log l

ohoa0

� �
� E

o2 log l

ohoa1

� �
� E

o2 log l

ohoa2

� �

�E
o2 log l

oboh

� �
� E

o2 log l

ob2

� �
� E

o2 log l

oboa0

� �
� E

o2 log l

oboa1

� �
� E

o2 log l

oboa2

� �

�E
o2 log l

oa0oh

� �
� E

o2 log l

oa0ob

� �
� E

o2 log l

oa20

� �
� E

o2 log l

oa0oa1

� �
� E

o2 log l

oa0oa2

� �

�E
o2 log l

oa1oh

� �
� E

o2 log l

oa1ob

� �
� E

o2 log l

oa1oa0

� �
� E

o2 log l

oa21

� �
� E

o2 log l

oa1oa2

� �

�E
o2 log l

oa2oh

� �
� E

o2 log l

oa2ob

� �
� E

o2 log l

oa2oa0

� �
� E

o2 log l

oa2oa1

� �
� Eðo

2 log l

oa22
Þ

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

The expected Fisher information can be approximated by the observed Fisher

information matrix J dð�H Þ given by,

J dð�H Þ ¼

� o2 log l

oh2
� o2 log l

ohob
� o2 log l

ohoa0
� o2 log l

ohoa1
� o2 log l

ohoa2

� o2 log l

oboh
� o2 log l

ob2
� o2 log l

oboa0
� o2 log l

oboa1
� o2 log l

oboa2

� o2 log l

oa0oh
� o2 log l

oa0ob
� o2 log l

oa20
� o2 log l

oa0oa1
� o2 log l

oa0oa2

� o2 log l

oa1oh
� o2 log l

oa1ob
� o2 log l

oa1oa0
� o2 log l

oa21
� o2 log l

oa1oa2

� o2 log l

oa2oh
� o2 log l

oa2ob
� o2 log l

oa2oa0
� o2 log l

oa2oa1
� o2 log l

oa22

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

That is,

lim
n!1

1

n
J dð�H Þ ¼ Ið�H Þ:

For large n, the following approximation can be used,

J dð�H Þ ¼ nIð�H Þ

The elements of J dð�H Þ are given in APPENDIX.

4.3 Asymptotic Confidence Interval

Here we present the asymptotic confidence intervals for the parameters of BMLD.

Let c�H ¼
�bh; bb; ba0 ; ba1 ; ba2� be the maximum likelihood estimator of
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�H ¼
�
h; b; a0; a1; a2

�
. Under the usual regularity conditions and that the

parameters are in the interior of the parameter space, but not on the boundary,

we have
ffiffiffi
n

p
ð�H � c�H Þ!d N2ð0; I�1ð�H ÞÞ, where Ið�H Þ is the expected Fisher

information matrix. The asymptotic behaviour is still valid if Ið�H Þ is replaced by

the observed Fisher information matrix J dð�H Þ. The multivariate normal distribu-

tion, N5

�
0; I�1ð�H Þ

�
with mean vector 0 ¼

�
0; 0; 0; 0; 0

�s
can be used to construct

confidence interval for the parameters. The approximate 100ð1� uÞ% two-sided

confidence intervals for h; b; a0; a1; and a2 are respectively given by,bh 	 Zu
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
hh ðĥÞ

q
, bb 	 Zu

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
bb ðb̂Þ

q
; ba0 	 Zu

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
a0a0ðâ0Þ

q
; ba1 	 Zu

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
a1a1ðâ1Þ

q
and ba2 	

Zu
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
a2a2ðâ2Þ

q
, where I�1

hh ðĥÞ, I�1
bb ðb̂Þ, I�1

a0a0ðâ0Þ, I�1
a1a1ðâ1Þ, I�1

a2a2ðâ2Þ are diagonal

elements of J�1 dð�H Þ and Zu
2
is the upper u

2

th
percentile of a standard normal

distribution.

5 Simulation Study

Here we perform a simulation study to investigate the performance of maximum

likelihood estimators of parameters of BMLD. As the model is a general model, we

take g ¼ 2 in (2.1) and do the Monte Carlo Simulation. The estimates were

calculated for true values of parameters (h ¼ 1:5, b ¼ 3, a0 ¼ 0:6, a1 ¼ 1:9 and

a2 ¼ 1:7) and (h ¼ 0:5, b ¼ 0:01, a0 ¼ 1:5, a1 ¼ 1:3 and a2 ¼ 1) for N = 1000

samples of sizes 25,50,100,200,400 and 800 and the following quantities are

computed.

1. Mean of the MLEs, c�H of parameters �H ¼
�
h; b; a0; a1; a2

�
,

c�H ¼ 1

N

XN
i¼1

c�H i:

2. Average absolute bias of MLEs of parameters,

Biasð�H Þ ¼ 1

N

XN
i¼1

ðc�H i ��H Þ:

3. Root Mean Square Error (RMSE) of MLEs of parameters:

RMSEð�H Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðc�H i ��H Þ2
vuut :

The simulation results are presented in Table 1. From Table 1, one can infer that

estimates are quite stable and more precisely close to the true parameter values.
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Also the estimated biases, MSEs and RMSEs are decreasing when the sample size

n is increasing. These results reveal the consistency property of the MLEs.

6 Data Analysis

In this section we illustrate the superiority of BMLD as compared to some other

distributions using three real data sets. The first one is the lifetimes of 50 devices

provided by Aarset (1987). Second one is the strength of glass fibres of length 1.5

cm from the National Physical Laboratory in England (see, Smith and Naylor 1987).

And the final one is the survival times (in days) of 72 guinea pigs infected with

virulent tubercle bacilli, observed and reported by Bjerkedal (1960). A graphical

method based on Total Time on Test (TTT) (see, Aarset 1987) is used here to

determine the shape of hazard rate function of the datasets we considered. The

empirical TTT plot is,

G
r

n

� �
¼
Pr

i¼1 XðiÞ þ ðn� rÞXðrÞPn
i¼1 XðiÞ

; r ¼ 1; 2; :::; n;

where XðiÞ denote the ith order statistic of the sample. Figure 3 depicts the empirical

TTT plots of the three data sets that we have considered here.

For the data set, lifetimes of 50 devices provided by Aarset (1987), the empirical

TTT transform is convex then concave, so the hazard function is bathtub shaped.

For the other two data sets, the empirical TTT transform is concave, therefore both

have increasing hazard function.

For the three data sets we compute model adequacy measures and goodness of fit

statistic of BMLD, and compare it with that of classical distributions such as

Modified Weibull (MW) (see, Lai et al. 2003), Additive Weibull (AW) (see,

Lemonte et al. 2014), Exponentiated Lindley (EL) (see, Nadarajah et al. (2011),

Weighted Lindley (WL) (see, Ghitany et al. 2011), Generalized Lindley (GL) (see,
Zakerzadeh and Dolati 2009), Lindley Exponential (LE) (see, Bhati et al. 2015),
New Generalized Lindley (NGL) (see, Abouammoh et al. 2015), Extended

Generalized Lindley (EGL) (see,Ranjbar et al. 2019) and Exponentiated Weibull

(EW) (see, Pal et al. 2006).

The estimates of the parameters, -Log Likelihood (- log L), Akaike information

criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike informa-

tion criterion (AICc), Kolmogorov Smirnov (KS) statistic values along with the

p value are calculated for these datasets and are given in Tables 2, 3 and 4

respectively. The plots of fitted densities and cumulative densities with respective to

the given data sets are also plotted.

The best model is the one with lowest AIC, BIC, AICc and KS statistic with

largest p value. From the Tables 2,3 and 4 we can clearly observe that BMLD has

the smallest value for its model adequacy measures such as AIC, BIC and AICc.

Thus one can conclude that BMLD has the better performance compared to the other

competing models. Further the Kolmogorv Smirnov (KS) statistic is computed to

check the goodness of fit for the data set to BMLD as well as the other models. The
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value of KS statistic indicates that the BMLD has high fitting ability compared to

other models considered here.

The plots of fitted densities and cumulative densities with respective to the

datasets are given in Figs. 3, 4 and 5 respectively.

Figures 4a, 5a and 6a depicts the empirical histograms of the real data and the

fitted densities of the BMLD and other distributions considered here. The fit of

BMLD seems to be closer to the histogram of real data sets than other distributions.

Also Figs. 4b, 5b and 6b shows the empirical and fitted cumulative density functions

of BMLD and other distributions with the real data set. From these plots it is clear

that BMLD will give consistently better fits than other competitive models.

Fig. 3 Empirical TTT plots of datas of a Lifetimes of 50 devices, b Strength of glass fibres and c Survival
times of 72 guinea pigs
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7 Conclusion

In this article, we proposed a wider class of Lindley distribution called the binomial

mixture Lindley distribution (BMLD), which generalizes ED, GD, LD, LD2, WLD,
GLD, NGLD and NGLD1. Its flexibility allows increasing, decreasing, bathtub

shaped and upside-down bathtub shaped hazard rates. Owing to the attractive

Table 2 Estimates, model adequacy measures and KS statistic for the data of lifetimes of 50 devices

Model Estimates - log L AIC BIC AICc KS(p value)

BMLD ĥ ¼ 0:1989 224.5299 459.0598 468.6199 460.4235 0.1433 (0.2561)

b̂ ¼ 0:5635

â0 ¼ 14:0108

â1 ¼ 0:8606

â2 ¼ 4:5295

AW â ¼ 0:1045 235.5743 479.1486 486.7966 480.0374 0.1987 (0.0386)

b̂ ¼ 0:3433

ĉ ¼ 0:0030

d̂ ¼ 1:3966

EGL ĥ ¼ 0:0003 229.0514 466.1028 473.7509 466.9917 0.1585 (0.1623)

b̂ ¼ 1:9759

â ¼ 0:2254

ĉ ¼ 0:0005

MW ĥ ¼ 0:0186 239.4842 484.9684 490.7045 485.4902 0.1943 (0.0459)

â ¼ 0:0404

b̂ ¼ 0:3730

GL ĥ ¼ 0:0263 236.9578 479.9156 485.6517 480.4373 0.1793 (0.0804)

â ¼ 0:5282

b̂ ¼ 0:0534

NGL ĥ ¼ 1:1463 241.399 486.798 490.6221 487.0534 0.1888 (0.0566)

â ¼ 0:02458

EW ĥ ¼ 6:8267 250.7883 505.5765 509.4006 505.8319 0.2287 (0.0107)

â ¼ 0:2761

LE ĥ ¼ 1:0409 242.0492 488.0983 491.9224 488.3537 0.2109 (0.0233)

â ¼ 0:5282

WL ĥ ¼ 0:0254 239.4157 482.8314 486.6554 483.0867 0.1846 (0.0662)

â ¼ 0:2500

EL ĥ ¼ 0:02785 238.9909 481.9817 485.8058 482.2371 0.1937 (0.0469)

â ¼ 0:4548
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feature of hazard rate function of BMLD it can be used to model any type of failure

data sets. The estimation of parameters was explored by MLE method and the

statistical properties of the estimators are investigated using a simulation study.

Finally to establish the potentiality of this model, we use three real data sets in

which one among them has bathtub shaped hazard rate and the other two have

increasing hazard rate. For all these data sets BMLD performs better when compared

Table 3 Estimates, model adequacy measures and KS statistic for the data of strength of glass fibres

Model Estimates - log L AIC BIC AICc KS(p value)

BMLD ĥ ¼ 34:5379 10.5395 31.0789 41.7946 32.1316 0.0997 (0.5586)

b̂ ¼ 64:0653

â0 ¼ 55:2549

â1 ¼ 55:2558

â2 ¼ 29:1012

AW â ¼ 0:0621 13.7401 35.4802 44.0528 36.1699 0.1213 (0.3117)

b̂ ¼ 2:6426

ĉ ¼ 0:0193

d̂ ¼ 7:3790

EGL ĥ ¼ 0:0585 13.0681 34.1362 42.7087 34.8258 0.1135 (0.3918)

b̂ ¼ 6:2133

â ¼ 0:495

d̂ ¼ 0:1768

MW ĥ ¼ 0:0309 14.8947 35.7894 42.2188 36.1962 0.1333 (0.2131)

â ¼ 0:0408

b̂ ¼ 6:3768

GL ĥ ¼ 11:7214 23.8833 53.7665 60.1959 54.1733 0.2161 (0.0056)

â ¼ 16:9727

b̂ ¼ 26:0137

NGL ĥ ¼ 18:4314 23.9494 51.8987 56.185 52.0987 0.2164 (0.0055)

â ¼ 11:6209

EW ĥ ¼ 5:8269 23.8711 51.7421 56.0284 51.9421 0.2313 (0.0024)

â ¼ 2:051

LE ĥ ¼ 32:2974 31.4079 66.8159 71.1022 67.0159 0.2293 (0.0027)

â ¼ 2:6118

WL ĥ ¼ 11:7389 23.8878 51.7756 56.0619 51.9756 0.2161 (0.0056)

â ¼ 17:0957

EL ĥ ¼ 2:9900 30.6199 65.2397 69.5259 65.4397 0.2264 (0.0031)

â ¼ 26:1719
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to other competing models. Summing up, the BMLD provides a better model for

fitting the wide spectrum of positive data sets arising in engineering, survival

analysis, hydrology, economics, physics as well as numerous other fields of

scientific investigation.

Table 4 Estimates, model adequacy measures and KS statistic for the data of survival times of 72 guinea

pigs

Model Estimates - log L AIC BIC AICc KS(p value)

BMLD ĥ ¼ 0:0658 385.8537 781.7074 793.0907 782.6165 0.0843 (0.6851)

b̂ ¼ 0:0386

â0 ¼ 18:1939

â1 ¼ 5:5223

â2 ¼ 3:8266

AW â ¼ 0:01 399.057 806.114 815.2207 806.711 0.1627 (0.0443)

b̂ ¼ 0:1032

ĉ ¼ 0:0032

d̂ ¼ 1:2354

EGL ĥ ¼ 1:05� 10�5 402.1303 812.2606 821.3673 812.8576 0.1964 (0.0078)

b̂ ¼ 2:1984

â ¼ 0:5006

ĉ ¼ 1:67� 10�9

MW ĥ ¼ 0:0101 404.1817 814.3634 821.1934 814.7163 0.2178 (0.0022)

â ¼ 0:01

b̂ ¼ 0:0099

GL ĥ ¼ 0:021 394.3466 794.6931 801.5231 795.0461 0.1388 (0.1246)

â ¼ 1:1058

b̂ ¼ 2:0004

EW ĥ ¼ 65:5435 390.3485 784.697 789.2504 784.871 0.109 (0.3599)

â ¼ 0:3518

NGL ĥ ¼ 0:0212 394.4382 792.8765 797.4298 793.0504 0.1401 (0.1185)

â ¼ 2:1353

LE ĥ ¼ 2:9562 392.567 789.134 793.6873 789.3079 0.127 (0.1956)

â ¼ 0:0163

WL ĥ ¼ 0:0213 394.4176 792.8351 797.3885 793.009 0.1403 (0.1176)

â ¼ 1:1447

EL ĥ ¼ 0:0212 394.2822 792.5644 797.1178 792.7383 0.1431 (0.1047)

â ¼ 1:1389
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Fig. 4 Fitted densities (a) and cumulative densities (b) of data of lifetimes of 50 devices

Fig. 5 Fitted densities (a) and cumulative densities (b) of data of strength of glass fibres

Fig. 6 Fitted densities (a) and cumulative densities (b) of data of survival times of 72 guinea pigs
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Appendix

The second partial and cross derivatives with respect to the parameters are derived

as,

o2 log l

oh2
¼ 2n

ðhþ bÞ2
þ 1

h2
Xn
i¼1

1

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

��
a0ða0 � 1ÞAi

þ ða1 þ 1Þa1Bi þ ða2 þ 2Þða2 þ 1ÞCi

�

�
�
a0Ai þ ða1 þ 1ÞBi þ ða2 þ 2ÞCi

�2�
;

o2 log l

ohob
¼ 2n

ðhþ bÞ2
þ 1

hb

Xn
i¼1

1

ðAi þ Bi þ CiÞ2
�
ða0 � a1 � 1ÞAiBi

þ 2ða0 � a2 � 2ÞAiCi þ ða1 � a2 � 1ÞBiCi

�
;

o2 log l

ohoa0
¼ 1

h

Xn
i¼1

Ai

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

��
1þ a0

�
logðhxiÞ � wða0Þ

��

�
�
a0Ai þ ða1 þ 1ÞBi þ ða2 þ 2ÞCi

��
logðhxiÞ � wða0Þ

��
;

o2 log l

ohoa1
¼ 1

h

Xn
i¼1

Bi

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

��
1þ ða1 þ 1Þ

�
logðhxiÞ � wða1Þ

��

�
�
a0Ai þ ða1 þ 1ÞBi þ ða2 þ 2ÞCi

��
logðhxiÞ � wða1Þ

��
;

o2 log l

ohoa2
¼ 1

h

Xn
i¼1

Ci

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

��
1þ ða2 þ 2Þ

�
logðhxiÞ � wða2Þ

��

�
�
a0Ai þ ða1 þ 1ÞBi þ ða2 þ 2ÞCi

��
logðhxiÞ � wða2Þ

��
;

o2 log l

ob2
¼ 2n

ðhþ bÞ2
þ 1

b2
Xn
i¼1

1

ðAi þ Bi þ CiÞ2
�
2AiðAi þ Bi þ CiÞ � ð2Ai þ BiÞ2

�
;

o2 log l

oboa0
¼ 1

b

Xn
i¼1

Ai

ðAi þ Bi þ CiÞ2
��

logðhxiÞ � wða0Þ
��

Bi þ 2Ci

��
;
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o2 log l

oboa1
¼ 1

b

Xn
i¼1

Bi

ðAi þ Bi þ CiÞ2
��

logðhxiÞ � wða1Þ
��

Ci � Ai

��
;

o2 log l

oboa2
¼ 1

b

Xn
i¼1

Ci

ðAi þ Bi þ CiÞ2
�
�
�
logðhxiÞ � wða2Þ

��
2Ai þ Bi

��
;

o2 log l

oa20
¼
Xn
i¼1

Ai

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

���
logðhxiÞ � wða0Þ

�2
� w

0 ða0Þ
�

� Ai

�
logðhxiÞ � wða0Þ

�2�
;
o2 log l

oa0oa1

¼
Xn
i¼1

1

ðAi þ Bi þ CiÞ2
�
� AiBi

�
logðhxiÞ � wða0Þ

��
logðhxiÞ � wða1Þ

��
;

o2 log l

oa0oa2
¼
Xn
i¼1

1

ðAi þ Bi þ CiÞ2
�
� AiCi

�
logðhxiÞ � wða0Þ

��
logðhxiÞ

� wða2Þ
��

;

o2 log l

oa21
¼
Xn
i¼1

Bi

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

���
logðhxiÞ � wða1Þ

�2
� w

0 ða1Þ
�

� Bi

�
logðhxiÞ � wða1Þ

�2�
;

o2 log l

oa1oa2
¼
Xn
i¼1

1

ðAi þ Bi þ CiÞ2
�
� BiCi

�
logðhxiÞ � wða1Þ

��
logðhxiÞ

� wða2Þ
��

and

o2 log l

oa22
¼
Xn
i¼1

Ci

ðAi þ Bi þ CiÞ2
��

Ai þ Bi þ Ci

���
logðhxiÞ � wða2Þ

�2
� w

0 ða2Þ
�

� Ci

�
logðhxiÞ � wða2Þ

�2�
:
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