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Abstract

In this paper, we introduce a generalized mixture distribution, so-called the binomial
mixture Lindley distribution (BMLD). The density function of this distribution is
obtained by mixing binomial probabilities with gamma distribution. BMLD have
various distributions as its special cases and posses various shapes for its hazard rate
function including increasing, decreasing, bathtub shape and upside down bathtub
shape depending on its parameters. Several mathematical, structural and statistical
properties of the new distribution is presented such as moments, moment generating
function, hazard rate function, vitality function, mean residual life function,
inequality measures, entropy and extropy etc. The parameters of the model are
estimated using the method of maximum likelihood and finally real life data sets are
considered to illustrate the relevance of the new model by comparing it with some
other lifetime models.
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1 Introduction

Numerous probability distributions are introduced in the literature by mixing,
extending and modifying well known distributions and hence provide more flexible
hazard rate function for modelling lifetime data. These distributions will then be
more suitable for fitting appropriate real data than the base models. Knowledge of
the appropriate distribution plays an important role in improving the efficiency of
any statistical inference related to data sets. Hence the researchers are more keen to
develop new distributions by extending classical distributions to increase model
flexibility and adaptability in various aspects of modelling data.

Lindley (1958) introduced in the literature one of the most discussed lifetime
distribution, the Lindley distribution, in the context of the Bayesian statistics as a
counter example of the fiducial statistics. Lindley distribution (LD) have the
probability density function (pdf),

_ 1 0 x>0,0>0 (L.1)
fl(x)—m( +x)e ™ x>0,0>0, .
which is a mixture of exponential (0) and gamma (2, 0) distributions. The corre-
sponding cumulative distribution function (cdf) has been obtained as,

0+ 1+ 0x

~Ox, 1.2
5o ¢ :x>0,0>0, (1.2)

F 1 (x) =1
where 0 is the scale parameter.

Mixture models provide a mathematical based, flexible and meaningful approach
for the wide variety of classification requirements. There are numerous fields in
which mixture models have practical applicability. Lindley itself being a mixture
model, it has gained momentum in the theoretical perspective as well as in terms of
its applications. Ghitany et al. (2008) have studied various properties of this
distribution and showed that (1.1) provides a better model for some applications
than the exponential distribution. Mazucheli and Achcar (2011) applied the Lindley
distribution to competing risk life time data. A discrete version of this distribution
has been suggested by Deniz and Ojeda (2011) having its applications in count data
related to insurance. Al-Mutairi et al. (2013) developed the inferential procedure of
the stress-strength parameter, when both stress and strength variables follow
Lindley distribution. The applicability of Lindley distribution in solving lifetime
modelling problems and modelling stress strength model made researchers to
develop many generalizations, modifications and extensions of this distribution.
Shanker et al. (2013) introduced a two parameter Lindley distribution (LD;) for
modelling waiting and survival times data with pdf,

2

m(l+ax)e_gx;x>0,0>0,oc> -0, (1.3)

fZ(x; o, 6) =

where f(x; 0, 0) is a mixture of exponential (0) and gamma (2,0) with mixing
probabilities Tia and 5%, respectively. Even though one parameter and two

parameter Lindley distributions are mixture of E(6) and G(2, 8), most of the further

@ Springer



Journal of the Indian Society for Probability and Statistics (2020) 21:437-469 439

generalizations are based on two gamma models with suitable mixtures. The gen-
eralizations that we aware of are:

Zakerzadeh and Dolati (2009) introduced a generalized Lindley distribution
(GLD) with pdf,

(0 ) o
(7 +O)T(x+1)
flx;a,0,7) is a mixture of gamma (o,6) and gamma («+ 1,6) with mixing

probablhties g and - respectively.
Ghitany et al (201 1) mtroduced a weighted Lindley distribution (WLD) with pdf,

f(x0,0,7) = x>0,0a0,y>0, (1.4)

9%+1 }
T 0T’

fa(x; 0,0) can also be expressed as a two component mixture such that

Ja(x;0,0) = pgi(x) + (1 — p)ga(x),
where p = 0+oc and g;(x) = %x““‘ze‘ex,a, 0,x > 0,j=1,2, is the pdf of the
gamma distribution with the shape parameter o+ j— 1 and scale parameter
0,j=1,2.
Elbatal et al. (2013) proposed a new generalized Lindley distribution (NGLD)
with pdf,

fa(x; 0, ) 1+ x)e ™, 0,0,x >0, (1.5)

e Qlfx/}—l
+
I'(a) r'(p)

where f5(x; o 9) is a mixture of gamma (o,6) and gamma (f,6) with mixing
probabilities 7o7 and 5 _H respectively.

Abouammoh et al. (2015) defined another new generalized Lindley distribution
(NGLDy) with pdf,

1
1+0

f5(x;0,0, ) =

]eox;x>0,oc,0>0, (1.6)

01)6“72
0+ DT ()

where f5(x; o, 0) is a mixture of gamma (o, 0) and gamma (o — 1, ) with mixing
probabilities T Yt +1 respectively.

All these generalizations play various roles in the literature both in theoretical
and applied perspectives. It can be perceived that most of the further developments
are based on these six models, which immensely motivates to propose a generalized
family, which generalizes the afore mentioned Lindley models. Hence in this work
we introduce a wider class of Lindley distribution by mixing binomial probabilities
with gamma distribution and name the distribution as binomial mixture Lindley
distribution (BMLD).

One of the main peculiarity of the LD is its shape of hazard rate (increasing
hazard rate) function compared to the well known exponential distribution. By

Jolx;a,0) = (x4+o0—1)e™x>00>0,0>1, (1.7)

and
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scrutinizing the flexibility of various variants of Lindley model in terms of the
hazard rate function, Lindley-Exponential distribution (Bhati et al. 2015) possess
decreasing hazard rate function, GLD possess bathtub shape hazard rate function
and inverse Lindley distribution (Sharma et al. 2015) possess upside down bathtub
shape hazard rate function. Hence another motivation of this work is to propose a
flexible extension of Lindley model which possess all the available shapes of hazard
rate function. During the initial stage of this work, we came across several recent
articles based on Lindley models. Several authors claim that their model possess
bathtub shaped hazard rate but not even a single author attempted to fit a bathtub
shaped data. Hence one motivation of this work is to propose a model and
successfully apply a well known bathtub shaped data of Aarset (1987). In addition to
Aarset data, to prove the superiority of BMLD we also took two other data sets, viz.,
strength of glass fiber data (see, Smith and Naylor 1987) and survival times of 72
guinea pigs data (see, Bjerkedal 1960) both having increasing hazard rate function.

The rest of the paper is outlined as follows. In Sect. 2 binomial mixture Lindley
distribution is defined along with its moments, model identifiability, mean, variance,
a recursive relationship for moments and moment generating function. Some of the
reliability properties of the model such as hazard rate function, vitality function,
mean residual life function, inequality measures and some uncertainty measures are
presented in Sect. 3. In Sect. 4, the parameters of the distribution are estimated
using method of maximum likelihood and thus obtained observed Fisher informa-
tion matrix and asymptotic confidence intervals. A simulation study is presented in
Sect. 5. Finally in Sect. 6, experimental results of the proposed distribution based
on real data sets are illustrated.

2 Binomial Mixture Lindley Distribution

In this section, we present definition and some important properties of the binomial
mixture Lindley distribution . Here after we use the short form BMLD for binomial
mixture Lindley distribution.

Definition 2.1 A continuous random variable X is said to follow BMLD if its pdf
f(x) has the following form,

flx) = Zpi hi(x), (2.1)

where

hilx) = lf()zz‘)

3{,‘71670X7

for 06 > 0,0, >0fori=0,1,---,g. We define the mixing weights p; such that
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OESEET e

g
fori:0,1,~--,gand2pi:l,ﬁ>0,0>0.
i=0

Special cases

(1) If g=1, op=1 and «;=1, then BMLD becomes the exponential distribution
(ED).

(2) If g=1, p=1 and ap=01=0, then BMLD becomes the gamma distribution (GD).

(3) If g=1, p=1, ap=2 and o;=1, then BMLD becomes the Lindley distribution
(LD).

(4) If g=1, 2p=2 and oy=1, then BMLD becomes the two parameter Lindley
distribution [LD, (Shanker et al. 2013)].

(5) If g=1, ap=ac+ 1 and o=c, then BMLD becomes the generalized Lindley
distribution [GLD (Zakerzadeh and Dolati 2009)].

(6) If g=1 ap =+ 1, oy = and § = a, then BMLD becomes the weighted
Lindley distribution [WLD (Ghitany et al. 2011)].

(7) If g=1 and f=1, then BMLD becomes the new generalized Lindley
distribution [NGLD (Elbatal et al. 2013)].

(8) If g=1, f=1, ap=a and op=0c — 1, then BMLD becomes new generalized
Lindley distribution [NGLD; (Abouammoh et al. 2015)].

The pdf of the distribution, for different values of parameters, is plotted in Fig. 1.

2.1 Identifiability

A set of parameters for a particular model is said to be identifiable if not any two
sets of the parameters gives same distribution for the given x.

Result 2.1 The identifiability condition for BMLD with pdf as given in (2.1) is
o; # o for each i,j € 0,1,2,...,g such that i #j .

Proof For mathematical simplicity, first we consider the case of g = 2 and let

bQBQ(x) + b1 B, (X) =+ szz()C) =0, (23)

where by, by and b, are real numbers, By(x f f(u)du, By(x) = [ g(u)du and
u=0
f h(u)du with x > 0. Also g(u) and h(u) can be obtained from flu) by

replacmg oc, by p; and o; by p; respectively. Assume that for each i =0,1,2,

% F Pi F His
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Fig. 1 The pdf of BMLD for g=2 and different values of 0, f3, o, o, op
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By(x) = /OX

ﬂ )2 0" -1 -0t 2ﬁ9 0" —1 -0t
o1, + e
(9 +5) Tl) 0+ B> T(w)

0 2 g
+—— o e 0 dr.
(9+ﬁ> (1) ]

Putting the values of By(x), By(x) and B,(x) in (2.3) , we obtain the following,

(2.6)

/ ' [b o o le=0 L p o e 0 4 p 0" o] _ﬂdt 0, (2.7)
— e - e - e =0, .
0 0 (o) : ['(py) : I(po)

/x{bo " e " b 0" - L™ 4 by —— O - ‘e‘”]dt 0 (28)
0 (o) L(py) ()

and

/X{bo o t“ﬁ‘le‘9’+b20—pzﬂ’2"e“”+b20—uzt“2"e“”]dt:0. (2.9)
0 ['(a2) I'(p2) ()

On combining Eqs. (2.7), (2.8) and (2.9), we get

Fb =0, (2.10)
f“o fl’o fllo bO 0

in which, F= |f, fo, fu |, b= by and 0= 0 and we define
So Jo, f;az b, 0

fu=L ft“’ le=0ar, f, =L fﬂ’f le=¥dt and f,, = L fﬂ‘f Le=0dt for i = 0, 1,2.

Obv1ously det F # 0 shows that b = 0 and thereby we conclude that the distribution
functions By, By and B, are linearly independent over the set of real numbers ( see,
Titterington et al. 1985). In a similar way, the argument can be extended to the case
of any positive integer g( > 3) and thus the result follows. O

Result 2.2 The cumulative distribution function (cdf) of the BMLD given in (2.1)
has the following form,

F(x) = 2: (‘j) (ﬁ%)(ﬁ)gi«/%(w). 2.11)

Proof We have
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2( )<e+ﬁ)i($)g%<9x>’

t
where y(s,t) = [ ¥ le~*dx is the lower incomplete gamma function and

%) =53 -

Remark 2.1 The survival function of the BMLD is obtained as

Flx)=1— zg; (f’ > <9iﬁ>i(0fﬁ>g_i%(ex). (2.12)

Result 2.3 The " raw moment about origin of the BMLD has been obtained as
g i g—i
, s\( 0 \'( B ) [+ 1)
= sr=1,2,--- 2.13
=30 ) (7)) e 213

Proof By definition, we have

fli

g
Zpl F s +r71670xdx

i=

||
0\8

i@“i F(oci + I’)
F(OC,-) Hoc,-+r

1)) () s

Remark 2.2 Mean and variance of BMLD is given by

SO 6 e

<

e

I
/N

and
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n-35(0) ) )
()68 )

Result 2.4 The moments of the BMLD can be calculated recursively through the
relationship

)
> <r<’ L () () Tt r 1)

= . (2.16)

S
0% v (o) (o) T+

and

g ' y
s S G )

i=0

Coionr
Oty Z 3(ors) (7rp) T

Oins
*“rzr (()+B) (()iﬂ) Pl +r+1).

By rearranging the above equation, we get (2.16). U

Result 2.5 If X has BMLD, then the moment generating function Mx(t) has the
following form,
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mo=3(5) (%) () (55

Proof We have

Mx(t) = E(etX)

O
Remark 2.3 The characteristic function of the BMLD is ®x(t) = Mx(it), where
i = +/—1 is the unit imaginary number.
3 Certain Measures of Reliability, Inequality, Entropy and Extropy
In this section we derived expressions for some reliability measures such as hazard
rate function, reversed hazard rate function, cumulative hazard rate function, vitality

function and mean residual life function associated with BMLD. Certain inequality
measures, entropy and extropy measures are also obtained.

3.1 Reliability Properties
3.1.1 Hazard Rate Function

Let X denote a lifetime variable with cdf F(x) = Pr(X <x) and pdf f(x). Then the
hazard rate function(hrf) is given by,

h(x) = 222 (3.1)

where F(x) = 1 — F(x) is the survival function of X. That is, i(x)dx represents the
instantaneous chance that an individual will die in the interval (x, x 4 dx) given that
this individual is alive at age x.
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3.1.2 Reversed Hazard Rate Function

Let X be a non-negative random variable representing lifetimes of individuals
having absolutely continuous distribution function F(x) and pdf f(x). Then the
reversed hazard rate function is given by

r(x) =—=-—. (3.2)

3.1.3 Cumulative Hazard Rate Function

Cumulative hazard rate function is the total number of failure or deaths over an
interval of time, and it is defined as

R(x) = —log F(x), where F(x)is the survival function. (3.3)
Clearly R(x) is a non-decreasing function of x satisfying; (a) R(0) =0 and (b)
lim R(x) = oo.

X—00

Result 3.1 If X has the BMLD with density function, cumulative distribution
function and survival function given in Egs. (2.1), (2.11) and (2.12) respectively,
then

(a) Hazard rate function,

8 g B % - —Ox
Z( )(9+ﬂ) ()" e
= 8 g i g—i :
() ) )

(b) Cumulative hazard rate function,

R(x) = — log l1 - Zg;(f ) (&)i@}fﬁ)g—im(e@] . (3.5)
(c) Reversed hazard rate function,
,.i( ) () ()" e
r(x) = .
5 (8) 65) () e

(3.4)

(3.6)
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Proof By using (2.1), (2.11) and (2.12) in the equations, h(x) = %, r(x) = % and

R(x) = —log F(x), the hazard rate function, reversed hazard rate function and
cumulative hazard rate function are easily obtained.

The hazard rate function for BMLD is plotted for different values of parameters is
given in Fig. 2. U

The graphs of the hazard function for various combination of parameters show
various shapes including increasing, decreasing, bathtub shape (decreasing -stable-
increasing) and upside down bathtub shape. This attractive flexibility of the BMLD
hazard rate function highly suitable for non-monotone empirical hazard behaviours
which are more likely to be encountered in real life situations.

3.1.4 Vitality Function

If X is a non-negative random variable having an absolutely continuous distribution
function F(x) with pdf f(x). The vitality function associated with the random
variable X is defined as,

v(x) = E[X|X > x]. (3.7)

In the reliability context (3.7) can be interpreted as the average life span of com-
ponents whose age exceeds x. It may be noted that the hazard rate reflects the risk of
sudden death within a life span, where as the vitality function provides a more direct

(an]
S - : | -1, 8240052125 22=20 |
_ / /

0.04
|

0.04
|
~
0.02
|

0.00
L1
T
i

0.00
L
(

0.20
|
k
|
>

1/ N\

I I I [ I [ [ I [ I
0 50 100 150 200 50 100 200 300

0.006 0.010

Fig. 2 The hrf of BMLD for g = 2 and different values of 0, f3, ag, o, o2
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measure to describe the failure pattern in the sense that it is expressed in terms of
increased average life span.

Result 3.2 The vitality function of BMLD has the following form,

OE(8) () ) araen

N e ) (3.8)
1— 0 (A7) 7y, (6
§)<i)(0+ﬁ) () vl
Proof The Eq. (3.7) can also be written as,
W) = — /OO if (t)dt (3.9
X)) ==——
() )
Now
/tf(t)dt—/tzg:pl e~y
x X =0 r(%)
I~ A 3.10
=3 o) [(o; + 1,0x) (3.10)

r
8 0 \'/ B \**
i=0 ( i ) <9—|—/3> <9+/3> ;L 11(0x),

where I'(s,7) = [ x*'e™*dx is the upper incomplete gamma function and T';(r) =

Yy Substituting (3.10) and (2.12) in (3.9), we get the required result. O

it
I'(s)

3.1.5 Mean Residual Life Function

Mean residual life function or remaining life expectancy function at age x is defined
to be the expected remaining life given survival to age x. For a continuous random
variable X, with E(X) < oo, then the mean residual life function (MRLF) is defined
as the Borel measurable function,

m(x) = E[X — x|X > x]

o0

1 _ (3.11)
= F(x)/ F(t)dt.

X

MRLF is sometimes considered as a superior measure to describe the failure pattern
as compared to hazard rate function since the former focuses attention on the
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average lifetime over a period of time while the latter on instantaneous failure at a
point of time. Also MRLF can be expressed in terms of vitality function. That is,
Eq. (3.9) can also be written as

v(x) ==

17
) x/ F(t)dt +x

(3.12)
=m(x) + x.

Result 3.3 The mean residual life function of BMLD has the following form,

() () (@) e

m(x) /g p - —X. (3.13)
1- ) (L (0
Z()( ; ) (#5) (#5)" 709
Proof Substituting (3.8) in (3.12), we get (3.13). O

3.2 Inequality Measures

Lorenz and Bonferroni curves are income inequality measures that are widely useful
and applicable to some other areas including reliability, demography, medicine and
insurance (see, Bonferroni 1930). Also Zenga curve introduced by Zenga (2007) is
another widely used inequality measure. In this section, we will derive Lorenz,
Bonferroni and Zenga curves for the BMLD. The Lorenz, Bonferroni and Zenga
curves are respectively given as

[owar [orwar " [
Lp(x) = gz Br(x) = gz and Ap(x) = 1 — s, where 57 (x) = 2
S
) — &
and put(x) = y2F)

Result 3.4 If X has the BMLD with density function, cumulative distribution
function and survival function given in Egs. (2.1), (2.11) and (2.12) respectively,
then

(a) Lorenz curve,

(3.14)
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(b) Bonferroni curve,

(1) @) )

Brl¥) =77% e (3 o . (3.15)
{’Z%( i ) (Wa» <Wﬂﬂ> OQ}{io( i) (WH/J <ﬁ> W/%(Ox)}
(¢c) Zenga curve,
Z<g> (v45) (ot5)” o (09
AF()C) =1- . /g i -
£ () ) ) oo
(3.16)
g 14 —1
(-5(5) @) @) o)
X
5 (%)) () o0
Proof
(a) By definition
[0y
Lr() = g (3.17)
Now
/ qla)dr = %28: P 0 1102
' - (3.18)

£ o2 ()

By using (3.18) and (2.14) in (3.17), we get (3.14)
(b) By definition

Sl

By using (3.18), (2.14) and (2.11), we get (3.15)

@ Springer



452 Journal of the Indian Society for Probability and Statistics (2020) 21:437-469

(c) By definition

1 (x)
Alx) =1-— 3.19
=128 (3.19)
%tf(t)dt
By using (3.18) and (2.11), we get u~ (x) and by definition " (x) = *=——— = v(x).

F(X)
which is given in (3.8). Substituting u~ (x) and u*(x) in (3.19), we get (3.16). O

3.3 Entropy

Here we derive the expressions for Rényi Entropy and Havrda-Charvdt-Tsallis
(HCT) entropy. We are also deriving the expression for a recently developed
uncertainty measure, namely extropy and its residual version. For mathematical
simplicity these results are derived for g = 2.

The concept of entropy was introduced and extensively studied by Shannon
(1948). Let X be a non-negative random variable admitting an absolutely continuous
cdf F(x) and with pdf f(x). Then the Shannon’s entropy associated with X is defined

as H(X) = — [ f(x) logf(x) dx. It gives the expected uncertainty contained in
0

f(x) about the predictability of an outcome of X.

Several generalizations of Shannon’s entropy have been put forward by
researchers. A generalization which has received much attention subsequently is
due to Rényi (1959). The Rényi’s entropy of order v is defined as

o0

log/fv(x) dx, forv>0,v#£ 1.

0

H'(X) =

1—v
Another important generalization of Shannon’s entropy is the Havrda-Charvadt-
Tsallis (HCT) entropy. It was introduced by Havrda and Charvdt (1967) and further
developed by Tsallis (1988) and is given by,

Hé(X):ﬁ 1—/f5(x)dx , for £ >0,&# 1.
0

Result 3.5 The R ényi entropy function for BMLD has the following form,
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, 1 AT Y AT Y AN YCO
H‘(x):l log _PO 3 D < T ( 2)>
-V (04 B)T(x)) =\J) =0 \k (o)
(912a0+2r(a0)>j
T (22)
y I (o0 — o)k + (02 — o9)j + (0 — 1)v + 1)
(V(L))(%l—dz)k+(“2—0€o)./+(ao—1)"‘H ’
(3.20)
Proof Using the definition of Rényi entropy, we have
1 T 1\ (Pt
H'(x) = 1
W=y °g0/ ((9+ﬁ)2> e
203{|+1'onq—lr(a2)+90¢2+2x12711—~(a1) v e
’ F() D) poras
1 1 ﬁze*ﬂ)” (v
= lo
(1=v) g{(0+ﬁ)2“(F(uo) ,Z;(,)
0 20“17%+1F(O€0)X°‘17“° 0“27%4&1—‘((10)){“27% ./'( . .
2=y, —vlx g
e e R

k

0
B 1 ﬁZGuO vy v J j 290{]—12711—(0(2)
S l°g{ <<e+ﬁ>2r<ao>> Z(x) kz(k> )

—ag+2 Jj
(0“2/;01—‘( F()OCO)> / x(ylaz)k+(uzyg)j+(1gl)vev()xdx}
2
0

o Fo NS\ S (20 T)\ | (0 P ()
=T g{<(0+ﬁ)zr(o¢0)> ;(1);<k>< (o) ) ( BT (22) )

T((og — o)k + (o0 —00)j + (g — 1)v + 1)
(ve)(oc] — o )k—+ (002 —otg ) j+ (ot —1) v+1 :

Remark 3.1 When v — 1 in (3.20), it reduces to Shannon entropy.

Result 3.6 The Havrda-Charvdt-Tsallis entropy of order p, for BMLD has the
following form,
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N T PR A B R A AT EN
H()_(é—l)1 <(0+ﬁ)2r<ao>> ;(),;(k)( (o) )

072 (o) \ T (o1 — o)k + (o2 — 20)j + (ct0 — 1)E + 1)
ﬁzr(az) (59)(“1—“2)k+(0¢2—0€0)j+(“0—1)§+1 :

(3.21)

Proof Proof is similar to that of Result 3.5 and hence omitted. O
3.4 Extropy

Recently, Lad et al. (2015) defined statistically the term extropy as a potential
measure of uncertainty, an alternative measure of Shannon entropy. For a random
variable X, its extropy is defined as

J(X) = —% / 2 (x)dx. (3.22)

In statistical point of view, the term extropy is used to score the forecasting dis-
tributions under the total log scoring rule.

A serious difficulty involved in the application of Shannon’s entropy is that, it is
not applicable to a system which has survived for some units of time. In this
situation, Ebrahimi (1996) proposed the concept of residual entropy. As in the
scenario of introducing the concept of residual entropy, Qiu and Jia (2018)
introduced residual extropy to measure the residual uncertainty of a random
variable. For a random variable X, its residual extropy is defined as (see, Qiu and Jia
2018)

oo

! 2 X)ax
J(f31) _zfz(r)/f (x)dx, (3.23)

Result 3.7 The extropy function for BMLD has the following form,

—1 I'(20 — 1 I'(20; — 1
J(X) :2 { (20 )ﬁ402172a0 + ( 2‘1 )ﬁ2032372o<1

O+p)* | (o) (o)
Lo = 1) psp120, D001 = 1) g3003 0,0
I(a2) rr I (eto) T (011 o (24

+ F(CXI + 0 — 1) ﬁ0423—o¢1—a2 4 F(O(() + o — 1) ﬁ29322—c{0—o¢2}.

(o) (02) I(e0) (o)
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Proof By definition of J(X),

00 2
1 ‘82910)(_0(071 2ﬁ01|+1xo¢]71 912+2xa271 0
J(X) = / + + e Mdx
( 2(6+ﬁ)40{ Meo) | Te) | T(w)

1 0210 x 0 4ﬁ 0211+2 x 0
. / 210—26—2 X dx + 2 . / x2a| _26‘_2 X dx
2(9 + ﬁ F O(() F O(]
0 0

00 00
9212+ 90!0+0€1+1

/ x2a2726729xdx + / xxn+oq 726729xdx

0 0

4[j()“l+°‘2+3 /Oo bap2. 20 2520a¢o+m2+2/oo
ntn 2oy 4 T8 —____ [ yrtn2," 200 8
F(OC())F(OQ)
0 0
(3.25)
By simplifying (3.25), we get (3.24). U
Result 3.8 The residual extropy function for BMLD has the following form,

-1 {F(2a0 —1,200)
2 (2 i —i ’ rz(“))
2(1-£() ) @) o et

=l

ﬁ4 021—2060

J(f;1) =

(20 — 1,200)
(o)
T'(og + o — 1,201)
I (00) T (o11)
(o + 0p — 1,20r)
I (00) T (02)

(20 — 1,200)
()
(o + o — 1,200)
(o) T (02)

/))20323729(1 =+ 0521729(2

539223—%—11 4 ﬁ9423—o¢1—a2

ﬁ20322“°“2}7 for g =2.

(3.26)

Proof Proof is similar to that of Result 3.7 and hence omitted. |

4 Estimation and Inference

Estimation of unknown parameters of a distribution is essential in all areas of
statistics. In this section, first we obtain the maximum likelihood estimates (MLEs)
of the parameters of BMLD for a given random sample. The Fisher information
matrix is also computed in this section for the interval estimation. For mathematical
simplicity all these inferences are made for g = 2.
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4.1 Maximum Likelihood Estimation

The method of maximum likelihood is the most frequently used technique for
parameter estimation. It’s success stems from its many desirable properties
including consistency, asymptotic efficiency, invariance property as well as intuitive
appeal.

Let X, X5, ..., X,, be observed values from the BMLD with unknown parameter

vector @ = (0, B, oo, ocl,ocz). The likelihood function is given by

@)= ﬁfi (X; 0, B, oo, 011, ozz)
i=1

- | ne_");x’ n ([32910)6?071 N 2ﬁ911+1xlg¢171 N 012+2x?c271 )
0+ p)* L1\ Do) T(o) T(w) /'

The partial derivatives of log/ (@ ) with respect to the parameters are given by

dlogl _ 2n 72 l+02<fon + (o0 + 1)B-+(a2+2)a)’

00 0+p < Ai+Bi+C
o O0+p BS\A+Bi+GC
dlogl < [(Ai(log(0x) — ¥(0)) (4.1)
ouy = A+ B; +C; ’
dlogl o ((Bi( log(6x) = y(n))
0oy N pry Ai+ B+ C;
and
n_ [ Ci{ log(6x;) — ¥(x2)
dlogl _ ( ) ’ 42)
6“2 i=1 Ai + Bi + Ci
_ P o apg! g2
where A; = o Bi = ) and C; = (12)

The MLE of the parameters H = (9 B, oo, o1, ocz) are obtained by solving the

Ologl _ Ologl _

equations “5F = 0, g = 0 dlogl _ (y dlogl _ ¢ alogz

> Qalg > Qo
only be achieved by numerical optimization techmque such as the Newton-Raphson
method and Fisher’s scoring algorithm using mathematical packages like R,
Mathematica etc. To avoid local minima problem, we first obtain the moment
estimators of the parameters of BMLD and setting these estimators as the initial
values to obtain MLEs of the parameters of BMLD.

= 0 simultaneously. This can
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4.2 Fisher Information Matrix

In order to determine the confidence interval for the parameters of BMLD, we need
to find the expected Fisher information matrix I((H ). The expected Fisher
information matrix of BMLD is given by,

_E % log! _E D log! _E D log! _E logl _E log!

o0? 000p 0000 0000 0000,

_E *log! _E D log! _E D log! _E P log! _E log!

0po0 op? 000y 0p0u, 0p00,

% log! *log! & log! logl log!

I =] = _ _ — _

(CB ) E( 6&066 > E( adoaﬁ> E( 6&3 > E (@aoale) E (adoaﬁt2>
_E % log! _E D log! _E D log! _E logl _E log!

00100 Rl Qo Dot Qo Qo Dot
_E % log ! _E D log! _E P logl _E P logl 7E(6210gl)

606269 6126/3 alzaa() 6&28051 aoc%

The expected Fisher information can be approximated by the observed Fisher

—

information matrix J((H ) given by,

% logl D logl % logl % log! % logl
o> 0008 000wy 0000,  00da,
D logl log! D logl *log! D logl
© B0 9pr  0fdwy  0Bdx;  OPdxy
J(Q/j\): _azlogl _azlogl _6210gl _azlogl _Gzlogl
Qoy00 Rlaeli Qo2 QotgOary 0oy Oaty
D logl log! D?log!l *log! logl
© 0000 0040 dwdoy 02 Owdo
D logl log! D log!l % log! logl

00300 Qmp0f  Ompduy  Oopdey; Q0B

That is,

lim 2 J(@) = 1(@ ).

n—oon

For large n, the following approximation can be used,

—

J(@) =n(@)

The elements of J((H ) are given in APPENDIX.

4.3 Asymptotic Confidence Interval

Here we present the asymptotic confidence intervals for the parameters of BMLD.

Let (/g\ = (5,?,@,0@,@) be the maximum likelihood estimator of
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| = (0, ﬁ,ocmocl,ocz). Under the usual regularity conditions and that the
parameters are in the interior of the parameter space, but not on the boundary,

we have /n(@ — @)iNg(Q,I’I(@ )), where I(H ) is the expected Fisher
information matrix. The asymptotic behaviour is still valid if 7((H ) is replaced by

the observed Fisher information matrix J (Q/i\) The multivariate normal distribu-
T
tion, Ns (Q, ! (@3 )) with mean vector 0 = (O, 0,0,0, 0) can be used to construct

confidence interval for the parameters. The approximate 100(1 — @)% two-sided
confidence intervals for 0,f, 09,09, and op are respectively given by,

0 £ Zo\[ 15 (0), B £ Zor /15 (B), o £ Zoy /1), (30), o1 £ Zgy /1) (1) and & +
Zy\ 1L, (82)  where Io)'(0), Ip)(B), L.} (%), I} (), I}, (42) are diagonal
elements of J’l(Q/j\) and Zy is the upper %’h percentile of a standard normal
distribution.

5 Simulation Study

Here we perform a simulation study to investigate the performance of maximum
likelihood estimators of parameters of BMLD. As the model is a general model, we
take g =2 in (2.1) and do the Monte Carlo Simulation. The estimates were
calculated for true values of parameters (0 = 1.5, f =3, 09 = 0.6, oy = 1.9 and
oy =1.7) and (6§ =0.5, f =0.01, 0p = 1.5, oy = 1.3 and o, = 1) for N = 1000
samples of sizes 25,50,100,200,400 and 800 and the following quantities are
computed.

1. Mean of the MLEs, (/ﬁ of parameters H = (0, B, oo, ocl,ocz) ,
— 1L~
8 = NZ G
=1

2. Average absolute bias of MLEs of parameters,

N

Bias(@) =4 > (B, ~ @),

i=1

3. Root Mean Square Error (RMSE) of MLEs of parameters:

1 N

RMSE(®) = |y > (B~ @)

i=1

The simulation results are presented in Table 1. From Table 1, one can infer that
estimates are quite stable and more precisely close to the true parameter values.
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Also the estimated biases, MSEs and RMSEs are decreasing when the sample size
n is increasing. These results reveal the consistency property of the MLEs.

6 Data Analysis

In this section we illustrate the superiority of BMLD as compared to some other
distributions using three real data sets. The first one is the lifetimes of 50 devices
provided by Aarset (1987). Second one is the strength of glass fibres of length 1.5
cm from the National Physical Laboratory in England (see, Smith and Naylor 1987).
And the final one is the survival times (in days) of 72 guinea pigs infected with
virulent tubercle bacilli, observed and reported by Bjerkedal (1960). A graphical
method based on Total Time on Test (TTT) (see, Aarset 1987) is used here to
determine the shape of hazard rate function of the datasets we considered. The
empirical TTT plot is,

n,

G(£> - Zf:l X(l> ’T (n - r)X(r> ) r= 1727 ey
n Zi:l X

where X(;) denote the ith order statistic of the sample. Figure 3 depicts the empirical
TTT plots of the three data sets that we have considered here.

For the data set, lifetimes of 50 devices provided by Aarset (1987), the empirical
TTT transform is convex then concave, so the hazard function is bathtub shaped.
For the other two data sets, the empirical TTT transform is concave, therefore both
have increasing hazard function.

For the three data sets we compute model adequacy measures and goodness of fit
statistic of BMLD, and compare it with that of classical distributions such as
Modified Weibull (MW) (see, Lai et al. 2003), Additive Weibull (AW) (see,
Lemonte et al. 2014), Exponentiated Lindley (EL) (see, Nadarajah et al. (2011),
Weighted Lindley (WL) (see, Ghitany et al. 2011), Generalized Lindley (GL) (see,
Zakerzadeh and Dolati 2009), Lindley Exponential (LE) (see, Bhati et al. 2015),
New Generalized Lindley (NGL) (see, Abouammoh et al. 2015), Extended
Generalized Lindley (EGL) (see,Ranjbar et al. 2019) and Exponentiated Weibull
(EW) (see, Pal et al. 2006).

The estimates of the parameters, -Log Likelihood (— log L), Akaike information
criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike informa-
tion criterion (AICc), Kolmogorov Smirnov (KS) statistic values along with the
p value are calculated for these datasets and are given in Tables 2, 3 and 4
respectively. The plots of fitted densities and cumulative densities with respective to
the given data sets are also plotted.

The best model is the one with lowest AIC, BIC, AICc and KS statistic with
largest p value. From the Tables 2,3 and 4 we can clearly observe that BMLD has
the smallest value for its model adequacy measures such as AIC, BIC and AICc.
Thus one can conclude that BMLD has the better performance compared to the other
competing models. Further the Kolmogorv Smirnov (KS) statistic is computed to
check the goodness of fit for the data set to BMLD as well as the other models. The
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Fig. 3 Empirical TTT plots of datas of a Lifetimes of 50 devices, b Strength of glass fibres and ¢ Survival
times of 72 guinea pigs

value of KS statistic indicates that the BMLD has high fitting ability compared to
other models considered here.

The plots of fitted densities and cumulative densities with respective to the
datasets are given in Figs. 3, 4 and 5 respectively.

Figures 4a, 5a and 6a depicts the empirical histograms of the real data and the
fitted densities of the BMLD and other distributions considered here. The fit of
BMLD seems to be closer to the histogram of real data sets than other distributions.
Also Figs. 4b, 5b and 6b shows the empirical and fitted cumulative density functions
of BMLD and other distributions with the real data set. From these plots it is clear
that BMLD will give consistently better fits than other competitive models.
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Table 2 Estimates, model adequacy measures and KS statistic for the data of lifetimes of 50 devices

Model Estimates —logL AIC BIC AlCc KS(p value)

BMLD ) —(.1989 2245299  459.0598  468.6199 4604235  0.1433 (0.2561)
B =0.5635
oy = 14.0108
o) = 0.8606
o = 4.5295

AW é 2355743 479.1486  486.7966  480.0374  0.1987 (0.0386)
B
5 = 0.0030
5 =1.3966

EGL 0 = 0.0003 2290514  466.1028 4737509  466.9917  0.1585 (0.1623)
B =1.9759
6=
«{?:

MW 6= 239.4842  484.9684  490.7045 4854902  0.1943 (0.0459)
4=0.
B =0.3730

GL 0= 236.9578  479.9156  485.6517 4804373  0.1793 (0.0804)
g =
B =0.0534

NGL 0= 241.399 486.798 490.6221  487.0534  0.1888 (0.0566)
g =

EW 0= 250.7883  505.5765  509.4006  505.8319  0.2287 (0.0107)
o=

LE 0= 2420492  488.0983 4919224 4883537  0.2109 (0.0233)
g

WL 0 239.4157  482.8314  486.6554  483.0867  0.1846 (0.0662)
o=

EL 0= 238.9909  481.9817  485.8058  482.2371  0.1937 (0.0469)

7 Conclusion

In this article, we proposed a wider class of Lindley distribution called the binomial
mixture Lindley distribution (BMLD), which generalizes ED, GD, LD, LD,, WLD,
GLD, NGLD and NGLD,. Its flexibility allows increasing, decreasing, bathtub
shaped and upside-down bathtub shaped hazard rates. Owing to the attractive
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Table 3 Estimates, model adequacy measures and KS statistic for the data of strength of glass fibres

Model Estimates —logL AIC BIC AlCc KS(p value)

BMLD 4 — 34.5379 10.5395 31.0789 41.7946 32.1316 0.0997 (0.5586)
B = 64.0653
oy = 55.2549
o = 55.2558
o = 29.1012

AW 6 = 0.0621 13.7401 35.4802 44.0528 36.1699 0.1213 (0.3117)
B =2.6426
5 =0.0193
5 =17.3790

EGL 0 = 0.0585 13.0681 34.1362 427087 34.8258 0.1135 (0.3918)
B =6.2133
G = 0.495
5=10.1768

MW 4 = 0.0309 14.8947 35.7894 422188 36.1962 0.1333 (0.2131)
G = 0.0408
B = 6.3768

GL 6=117214 23.8833 53.7665 60.1959 54.1733 0.2161 (0.0056)
G =16.9727
B =26.0137

NGL 0= 18.4314 23.9494 51.8987 56.185 52.0987 0.2164 (0.0055)
G = 11.6209

EW 0 = 5.8269 23.8711 51.7421 56.0284 51.9421 0.2313 (0.0024)
G =2.051

LE 0 = 32.2974 31.4079 66.8159 71.1022 67.0159 0.2293 (0.0027)
G =126118

WL 0= 11.7389 23.8878 51.7756 56.0619 51.9756 0.2161 (0.0056)
G = 17.0957

EL i = 2.9900 30.6199 65.2397 69.5259 65.4397 0.2264 (0.0031)
G =26.1719

feature of hazard rate function of BMLD it can be used to model any type of failure
data sets. The estimation of parameters was explored by MLE method and the
statistical properties of the estimators are investigated using a simulation study.
Finally to establish the potentiality of this model, we use three real data sets in
which one among them has bathtub shaped hazard rate and the other two have
increasing hazard rate. For all these data sets BMLD performs better when compared
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Table 4 Estimates, model adequacy measures and KS statistic for the data of survival times of 72 guinea

pigs

Model

Estimates

—log L

AIC

BIC

AlCc

KS(p value)

BMLD

AW

EGL

MW

GL

EW

NGL

LE

WL

EL

0 = 0.0658
B =0.0386
oy = 18.1939
oy = 5.5223
o = 3.8266

6=1.2354
=1.05% 1075

=12.1984
& = 0.5006
7=1.67x107°

= >

385.8537

399.057

402.1303

404.1817

394.3466

390.3485

394.4382

392.567

394.4176

394.2822

781.7074

806.114

812.2606

814.3634

794.6931

784.697

792.8765

789.134

792.8351

792.5644

793.0907

815.2207

821.3673

821.1934

801.5231

789.2504

797.4298

793.6873

797.3885

797.1178

782.6165

806.711

812.8576

814.7163

795.0461

784.871

793.0504

789.3079

793.009

792.7383

0.0843 (0.6851)

0.1627 (0.0443)

0.1964 (0.0078)

0.2178 (0.0022)

0.1388 (0.1246)

0.109 (0.3599)

0.1401 (0.1185)

0.127 (0.1956)

0.1403 (0.1176)

0.1431 (0.1047)

to other competing models. Summing up, the BMLD provides a better model for
fitting the wide spectrum of positive data sets arising in engineering, survival
analysis, hydrology, economics, physics as well as numerous other fields of

scientific investigation.
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Fig. 4 Fitted densities (a) and cumulative densities (b) of data of lifetimes of 50 devices
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Fig. 5 Fitted densities (a) and cumulative densities (b) of data of strength of glass fibres
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Fig. 6 Fitted densities (a) and cumulative densities (b) of data of survival times of 72 guinea pigs
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Appendix

The second partial and cross derivatives with respect to the parameters are derived
as,
0* logl  2n { (
= A,-+B,~+C,)(a o0 — DA;
07 (0+p) 022 Ai + B; +C) oloo = 1)

+ (o + DouBi+ (02 +2) (a2 + 1)c,-)

_ (ocOAl- (01 +1)B; + (a2+2)C)2},

6210gl 2n Z
300 (0+ )’ (Ai +B; + C;

- {(ozo—ocl — 1AB;

+ 2(0(0 — 0y — Z)A,‘C,‘ + (O(] — 0y — 1)B,'C,'},

logl 1L A

_ (aoA,- (o1 + 1)B; + (oc2+2)C)(log(9x,-) - l//(ao))},

a;()lTj)fll ; " A 1B, +C) {(Ai+3i+ci)<1+(oc1+l)(10g(9xl')_'//(o¢1))>

(ocoA 4 (o + 1)Bi + (oc2+2)C)<log(9x,~) —w(al))},

%elgle ei A+ B+ C) { (ai+ B+ c) <1 + (o2 +2) (log(0s) - lp(m))

(%A + (o + 1B+ (o + 2)c) <log(9xi) - w(az)) }

azlogl 2n Z
B 0+’ B A+B+C)

% ;ZTW { (log(QXi) - ‘//(“0)) (B,- + 2C,~) }

{ZAI(A, + B; + C,) — (2A, —+ B,‘)Z},
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2 n
%[;gfll IZ (A; + B; —|—C) {<log(0xi) ﬂp(al)) (C"_A")}’

%/;gle ;Zm{ - <log(0x,») - w(cm) (ZA,- + B,») }
2

Dlogl & A;
o ; (Ai + Bi + C)’ { (4r+8i+c) ((1og(0x,-) )

- !//’(OC()))
- i(to0x) —wia) 5 1!
_ Zm{ — 4B (Tog(0x) — () ) (Tog(0x;) — Y(m)) }

logl & 1 {
= — A;Ci( log(0x;) — (a log(0x;
Ganos ~ 2 A 1 B, 5 CF (108(0x) — (o0)) (Tos(0x)

~ o)) .

az@l;gl B Z (A; + 15; G’ { (4i+ B+ ) <(log(0xi) - 'p(o”))z
- l///(dl))

— Bi(log(ﬁxi) - lﬁ(on))z},

Dlogl & 1 {
= 7BiCi lo le' — x lo Hxi
o ;<A,-+B,»+ci>2 (102(0x:) — (o)) (Tog(0x)

- lﬁ(fxz))}

and

azalo(c)%gl - Z; (A + BC,~i+ ) { (4 + B+ C) ((log(exi) B W(“Z))Z - Wl(az))

_ C,-(log(@x,-) - x//(ocz))z}.
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