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Abstract
Generalized Lindley, Generalized Gamma, ExponentiatedWeibull and X-Exponential
distributions are proposed for modelling lifetime data having bathtub shaped failure
rate model. These distributions have several desirable properties. In this paper, we
introduce a new distributionwhich generalizes theX-Exponential distribution. Several
properties of the distribution are derived including the hazard rate function, moments,
moment generating function etc. Moreover, we discussed the maximum likelihood
estimation of this distribution. The usefulness of the new distribution is illustrated by
means of two real data set.We hope that the new distributionwill serve as an alternative
model to bathtub models available in the literature.

Keywords Bathtub shaped failure rate · Moments · Maximum likelihood estimation ·
X-Exponential distribution

1 Introduction

In many applied sciences such as medicine, engineering and finance, amongst others,
modeling and analyzing lifetime data are crucial. Several lifetime distributions have
been used tomodel such kinds of data. For instance, the Exponential,Weibull, Gamma,
Rayleigh distributions and their generalizations (Gupta and Kundu 1999; Nadarajah
and Gupta 2007; Pal et al. 2006; Sarhana and Kundu 2009). Each distribution has
its own characteristics due specifically to the shape of the failure rate function which
may be only monotonically decreasing or increasing or constant in its behavior (Lai
et al. 2001). The Weibull distribution is more popular than Gamma and Lognormal
distribution because the survival function of the latter cannot be expressed in closed
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forms. The Weibull distribution has closed form survival and hazard rate functions
(Murthy et al. 2004). Generalized Lindley distribution has many properties, which
exhibit bathtub shape for its failure rate function. Nadarajah et al. (2011) introduced
Generalized Lindley distribution and discussed its various properties and applications.

Here we consider a new distribution having bathtub shaped failure rate function,
which generalizes theX-Exponential distribution. TheX-Exponential distributionwas
introduced by Chacko (2016). In order to get more flexibility in its failure rate, a small
change in exponential part of X-Exponential distribution is made, the resulting dis-
tribution is named as Generalized X-Exponential. The distribution can be considered
as distribution of a series system having distribution F(x) � 1− (

1 + λx2
)
e−λ

(
x2+x

)
,

x > 0, λ > 0, for its components in which, a parabolic function ax2 + bx + c is
used as exponent with a � b � λ, c � 0 whereas in X-Exponential distribution, the
parameter values were a � λ, b � 0, c � 0.

In this paper, we introduce a new distribution which generalizes the X-Exponential
distribution. Section 2 discussed the definition of the Generalization of X-Exponential
distribution. Section 3 discussed the statistical behaviors of the distribution. Section 4
discussed the distribution of maximum and minimum. The maximum likelihood esti-
mation of the parameters is determined in Sect. 5. Real data sets are analyzed in
Sect. 6 and the results are compared with existing distributions. Conclusions are given
in Sect. 7.

2 Generalized X-Exponential Distribution

Consider a life time random variable X has a cumulative distribution function (cdf)
with parameter α and λ,

F(x) �
(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α

, x > 0, λ > 0, α > 0. (2.1)

Clearly F(0) � 0, F(∞) � 1, F is non-decreasing and right continuous. More over
F is absolutely continuous. Then the probability density function (pdf) with scale
parameter λ is given by

f (x) � αe−λ
(
x2+x

)(
λ
(
1 + λx2

)
(2x + 1) − 2λx

)(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α−1
,

x > 0, α > 0, λ > 0. (2.2)

Here α and λ are shape and scale parameters. It is positively skewed distribution.
The distribution with pdf of the form (2.2) is named as Generalized X-Exponential
distribution with parameters α and λ and will be denoted by GXED(α, λ).

Failure rate function of GXED distribution is

h(x) �
αe−λ

(
x2+x

)(
λ
(
1 + λx2

)
(2x + 1) − 2λx

)(
1 − (

1 + λx2
)
e−λ

(
x2+x

))α−1

1 −
(
1 − (

1 + λx2
)
e−λ(x2+x)

)α ,

x > 0, α > 0, λ > 0. (2.3)

123



J Indian Soc Probab Stat (2019) 20:157–171 159

Fig. 1 Probability density function of GXED for values of parameters α � 0.5, 2, 3, 3.5, 4, 2.5, 5 and λ �
1.5, 3, 4, 5, 6, 7, 7.5 with color shapes purple, blue, plum, green, red, black and dark cyan, respectively

Considering the behavior near the change point x0, 0 < x0 and if d
dx h(x0) � 0

(i) If 0 < α < 1
2 , and 0 < λ < 1, then d

dx h(x) < 0 when 0 < x < x0 and
d
dx h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x � x0.

(ii) If 0 < α < 1
2 , and λ > 1, then d

dx h(x) < 0 when 0 < x < x0, d
dx h(x) > 0

when x > x0, d2

dx2
h(x) > 0 for x � x0.

(iii) If 1
2 < α < 1, and 0 < λ < 1, then d

dx h(x) < 0 when 0 < x < x0 and
d
dx h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x � x0.

(iv) If 1
2 < α < 1, and λ > 1, then d

dx h(x) < 0 when 0 < x < x0 and d
dx h(x) > 0

when x > x0, d2

dx2
h(x) > 0 for x � x0.

(v) If α > 1, and λ > 1, then d
dx h(x) > 0 for x > 0

The shape of Eq. (2.3) appears monotonically decreasing or to initially decrease
and then increase, a bathtub shape if α < 1. The proposed distribution allows for
monotonically decreasing, monotonically increasing and bathtub shapes for its hazard
rate function. As α decreases from 1 to 0, the graph shift above whereas if λ increases
from 1 to ∞ the shape of the graph concentrate near to 0. It is the distribution of the
failure of a series system with independent components (Figs. 1, 2, 3).
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Fig. 2 Cumulative distribution function of GXED for values of parameters α � 1.5, 2, 3.5, 4.5, 5 and λ �
2.5, 3, 4, 5, 6 with color shapes red, green, plum, dark cyan and orange respectively

Fig. 3 Failure rate function GXED for values of parameters α � 0.0001, 0.1, 0.5, 2.5, 0.475 and λ � 0.75,
5, 1.5, 7, 8 with color shapes orange, red, grey, plum and green, respectively
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3 Moments

Calculating moments of X requires the following lemma.

Lemma 2.1 For α, λ > 0, x > 0, K(α, λ, c) � ∞∫
0
xc

(
1−

(
1 + λx2

)
e
−λ

(
x2+x

)
)α−1

e
−λ

(
x2+x

)

dx

Then,

K(α, λ, c) �
α−1∑

i�0

i∑

j�0

(
α − 1
i

)(
i
j

)
(−1)iλ j

∞∫

0

x2 j+ce−λ
(
x2+x

)
dx

Proof We know that (1 − z)α−1 �
α−1∑

i�0

(
α − 1
i

)
(−1)i zi

Therefore

K(α, λ, c) �
∞∫

0

xc
(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α−1
e−λ

(
x2+x

)
dx

�
∞∫

0

xc
α−1∑

i�0

(
α − 1
i

)
(−1)i

[(
1 + λx2

)
e−λ

(
x2+x

)]i
e−λ

(
x2+x

)
dx

�
α−1∑

i�0

(
α − 1
i

)
(−1)i

∞∫

0

xc
[(

1 + λx2
)]i

e−(i+1)λ
(
x2+x

)
dx

�
α−1∑

i�0

(
α − 1
i

)
(−1)i

∞∫

0

xc
i∑

j�0

(
i
j

)(
λx2

) j
e−(i+1)λ

(
x2+x

)
dx

K(α, λ, c) �
α−1∑

i�0

i∑

j�0

(
α − 1
i

)(
i
j

)
(−1)iλ j

∞∫

0

x2 j+ce−λ
(
x2+x

)
dx

The result of the Lemma follows by the definition of the gamma function.
The moments are

E(X) � αλK(α, λ, 1) + 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3)

E(Xn) � αλK(α, λ, n) + 2αλ2K(α, λ, n + 3) + αλ2K(α, λ, n + 2)

�

3.1 Moment Generating Function

Moment generating function can be obtained from following formula
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MX (t) �
∞∫

0

etxα
(
λ + λx2 + 2λ2x3

)[
1 −

(
1 + λx2

)
e−λ

(
x2+x

)]α−1
e−λ

(
x2+x

)
dx

MX (t) �
∞∫

0

α
(
λ + λx2 + 2λ2x3

)[
1 −

(
1 + λx2

)
e−λ

(
x2+x

)]α−1
e−λ

(
x2+x

)
+t x dx

3.2 Characteristic Function

Characteristic function can be obtained from following formula

ϕX (t) �
∞∫

0

eitxα
(
λ + λx2 + 2λ2x3

)[
1 −

(
1 + λx2

)
e−λ

(
x2+x

)]α−1
e−λ

(
x2+x

)
dx

ϕX (t) �
∞∫

0

α
(
λ + λx2 + 2λ2x3

)[
1 −

(
1 + λx2

)
e−λ

(
x2+x

)]α−1
e−λ

(
x2+x

)
+i t x dx

3.3 Mean Deviation About Mean

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. Mean deviation about the mean
defined by

MD(Mean) � 2μF(μ) − 2μ + 2

∞∫

μ

x f (x)dx

MD(Mean) � 2 μF(μ) − 2μ

+ 2
(
2αλ2L(α, λ, 4, μ) + αλ2L(α, λ, 3, μ) + αλL(α, λ, 2, μ)

)

where

L(α, λ, c, μ) �
∞∫

μ

xc
[
1 −

(
1 + λx2

)
e−λ

(
x2+x

)]α−1
e−λ

(
x2+x

)
dx

�
α−1∑

i�0

Cα−1
i (−1)iλ j

⎛

⎝
∞∫

μ

x2 j+c+1e−( j+1)λ
(
x2+x

)
dx

⎞

⎠.

Mean deviation about the Median defined by

MD(Median) � −M + 2

∞∫

M

x f (x)dx

123



J Indian Soc Probab Stat (2019) 20:157–171 163

MD(Mean) � −M + 2
(
2αλ2L(α, λ, 4, M) + αλ2L(α, λ, 3, M) + αλL(α, λ, 2, M)

)

4 Distribution of Maximum andMinimum

Series, Parallel, Series–Parallel and Parallel–Series systems are general system struc-
ture of many engineering systems. The theory of order statistics provides a use-full
tool for analysing life time data of such systems. Let X1, X2, . . . , Xn be a simple
random sample fromGeneralized X-Exponential with cdf and pdf as in (2.1) and (2.2),
respectively. Let X(1), X(2), . . . , X(n) denote the order statistics obtained from this
sample. The pdf of rth order statistics X(r ) is given by,

fr :n(x) � 1

B(r , n − r + 1)
[F(x ;α, λ)]r−1[1 − F(x ;α, λ)]n−r f (x ;α, λ)

where F(x ;α, λ) and f (x ;α, λ) are the cdf and pdf given by (2.1) and (2.2), respec-
tively.

fr :n(x) � 1

B(r , n − r + 1)

[(
1 − (

1 + λx2
)
e−λ

(
x2+x

))α]r−1[
1 −

(
1 − (

1 + λx2
)
e−λ

(
x2+x

))α]n−r

αe−λ
(
x2+x

)(
λ
(
1 + λx2

)
(2x + 1) − 2λx

)(
1 − (

1 + λx2
)
e−λ

(
x2+x

))α−1
(4.1)

Then the pdf of the smallest and largest order statistics X(1) and X(n) are respectively
given by:

f1(x) � 1

B(1, n)

[
1 −

(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α]n−1

αe−λ
(
x2+x

)(
λ
(
1 + λx2

)
(2x + 1) − 2λx

)(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α−1

fn(x) � 1

B(n, 1)

[(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α]n−1

αe−λ
(
x2+x

)(
λ
(
1 + λx2

)
(2x + 1) − 2λx

)(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α−1

The cdf of X(r ) is given by,

Fr :n(x) �
n∑

j�r

(
n
j

)
F j (x)[1 − F(x)]n− j

Fr :n(x) �
n∑

j�r

(
n
j

)[(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α] j[
1 −

(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α]n− j

(4.2)

Then the cdf of the smallest and largest order statistics X(1) and X(n) is respectively
given by:

F1(x) � 1 −
[
1 −

(
1 −

(
1 + λx2

)
e−λ

(
x2+x

))α]n
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Fn(x) �
[(

1 −
(
1 + λx2

)
e−λ

(
x2+x

))α]n
.

Reliability of a series system having n componentswith independent and identically
distributed (iid) GXED distribution is

R(x) �
((

1 −
(
1 + λx2

)
e−λ

(
x2+x

))α)n

Reliability of a parallel system having n components with iid GXED distribution is

R(x) � 1 −
((

1 −
(
1 + λx2

)
e−λ

(
x2+x

))α)n

Both the reliability functions can be used in various reliability calculations.

5 Estimation

In this section, point estimation of the unknown parameters of the GXED by using the
method of moments and method of maximum likelihood based on a complete sample
data, is explained.

Let X1, X2, . . . , Xn are random sample taken from GXED. Let m1 � 1
n

∑n
i�1 xi ,

m2 � 1
n

∑n
i�1 x

2
i . Equating sample moments to population moments we get moment

estimators for parameters.

m1 � 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3) + αλK(α, λ, 1)

m2 � 2αλ2K(α, λ, 5) + αλ2K(α, λ, 4) + αλK(α, λ, 2)

The solution of these equations are moment estimators.
To find maximum likelihood estimator, consider likelihood function as,

L(α, λ) �
n∏

i�1

f (xi )

L(α, λ) �
n∏

i�1

αe−λ(x2i +xi )
(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)(
1 − (

1 + λx2i
)
e
(−λ(x2i +xi

))α−1

L(α, λ) � (α)ne
−λ

n∑

i�1
(x2i +xi )

n∏

i�1

(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

) n∏

i�1

(
1 − (

1 + λx2i
)
e−λ

(
x2i +xi

))α−1

log L(α, λ) � nlogα − λ

n∑

i�1

(
x2i + xi

)
+

n∑

i�1

log
(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)

+ (α − 1)
n∑

i�1

log
(
1 − (

1 + λx2i
)
e−λ

(
x2i +xi

))
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The first partial derivatives of the log-likelihood function with respect to the two-
parameters are

∂

∂α
log L(α, λ) � n

α
+

n∑

i�1

log
(
1 −

(
1 + λx2i

)
e−λ

(
x2i +xi

))

∂

∂α
log L(α, λ) � 0 implies α̂ � −1

n

n∑

i�1

log
(
1 −

(
1 + λx2i

)
e−λ

(
x2i +xi

))
(5.1)

and

∂

∂λ
log L(α, λ) � −

n∑

i�1

(
x2i + xi

)
+

n∑

i�1

(
(2xi + 1)

(
1 + 2λx2i

) − 2xi
)

(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)

+ (α − 1)
n∑

i�1

(
1 + λx2i

)
e−λ

(
x2i +xi

)(
x2i + xi

) − e−λ
(
x2i +xi

)
x2i(

1 − (
1 + λx2i

)
e−λ

(
x2i +xi

))

∂

∂λ
log L(α, λ) � 0 implies

n∑

i�1

(
x2i + xi

)
�

n∑

i�1

(
(2xi + 1)

(
1 + 2λx2i

) − 2xi
)

(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)

+ (α − 1)
n∑

i�1

(
1 + λx2i

)
e−λ

(
x2i +xi

)(
x2i + xi

) − e−λ
(
x2i +xi

)
x2i(

1 − (
1 + λx2i

)
e−λ

(
x2i +xi

)) (5.2)

Solving this system in α and λ gives the maximum likelihood estimates (MLE) of
α and λ. It can be obtain estimates using R software by numerical methods. The initial
values have been chosen arbitrarily. Parameter estimation is done using the non-linear
method in R software.

6 Asymptotic Confidence bounds

In this section, we derive the asymptotic confidence intervals of these parameters when
α > 0 and λ > 0, since the MLEs of the unknown parameters α > 0 and λ > 0
cannot be obtained in closed forms, by using variance covariance matrix I−1, where
I−1 is the inverse of the observed information matrix which is defined as follows

I−1 �
(

− ∂2L
∂α2 − ∂2L

∂α∂λ

− ∂2L
∂λ∂α

− ∂2L
∂λ2

)

�
(

var (α̂) cov(α̂, λ̂)
cov(λ̂, α̂) var (λ̂)

)
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The second partial derivatives are as follows

∂2L

∂α2 � − n

α2

∂2L

∂λ2
�

n∑

i�1

(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)[
2x2i (2xi + 1)

] − (
(2xi + 1)

(
1 + 2λx2i

) − 2xi
)2

(
λ
(
1 + λx2i

)
(2xi + 1) − 2λxi

)2

+
n∑

i�1

(
1 − (

1 + λx2i
)
e−λ

(
x2i +xi

))[(
e−λ

(
x2i +xi

)
x2i − (

1 + λx2i
)
e−λ

(
x2i +xi

)(
x2i + xi

))
+ e−λ

(
x2i +xi

)(
x2i + xi

)]

(
1 − (

1 + λx2i
)
e−λ

(
x2i +xi

))2

−
n∑

i�1

((
1 + λx2i

)
e−λ

(
x2i +xi

)(
x2i + xi

) − e−λ
(
x2i +xi

)
x2i

)2

(
1 − (

1 + λx2i
)
e−λ

(
x2i +xi

))2

∂2L

∂α∂λ
�

n∑

i�1

(
1 + λx2i

)
e−λ

(
x2i +xi

)(
x2i + xi

) − e−λ
(
x2i +xi

)
x2i(

1 − (
1 + λx2i

)
e−λ

(
x2i +xi

))

We can derive the (1 − δ)100% confidence intervals of the parameters α and λ by
using variance matrix as in the following forms

α̂ ± Z δ
2

√
var (α̂) and λ̂ ± Z δ

2

√
var (λ̂)

where Z δ
2
is the upper

(
δ
2

)
th percentile of the standard normal distribution.

7 Simulation

We assess the performance of the maximum likelihood estimators given by (5.1) and
(5.2) with respect to sample size n. The assessment was based on a simulation study:

(i) Generate hundred samples of size n from (2.2). The inversion method was used
to generate samples, i.e., values of the GXED distribution random variable are
generated using

(
1 + λx2

)
e−λ

(
x2+x

)
� 1 −U

1
α

where U ∼ U (0, 1) is a uniform variate on the unit interval.
(ii) Compute themaximum likelihood estimates for the hundred samples, say (αi , λi )

for i � 1, 2, . . . , 100.

(iii) Compute the biases and mean squared errors using biash(n) � 1
100

100∑

i�1

(
ĥi − h

)

and MSEh(n) � 1
100

100∑

i�1

(
ĥi − h

)2
for h � (α, λ). We repeated these steps for

n � 10, 20, …, 100 with different values of parameters, for computing biash(n)
and MSEh(n) for n � 10, 20, …, 100.
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α λ

Bias MSE Bias MSE

(α � 0.5, λ � 0.001)N

10 0.022574 0.005095843 0.0001423755 2.027078×10−07

50 0.0028631 0.0004098582 3.40494×10−06 5.796808×10−10

100 0.0017267 0.0002981372 1.29409×10−06 1.674669×10−10

(α � 1, λ � 0.5) N

10 − 0.00351507 0.0001235572 − 0.00721473 0.0005205233

50 0.001504456 0.0001131694 0.001179188 6.952422×10−05

100 0.001201623 0.0001443898 0.000886022 7.85035×10−05

(α � 1.5, λ � 1) N

10 0.03376 0.011398 − 0.00575 0.000331

50 0.002923 0.000427 − 0.000568 1.61136×10−05

100 0.0005311 2.820577×10−05 0.0001264 1.59848×10−06

8 Application

In this section, we present the analysis of a real data set using the GXED(α, λ) model
and compare it with the other fitted model Generalized Lindley distribution (GLD)
(Nadarajah et al. 2011) using Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC) and Kolmogorov–Smirnov (K–S) statistic. We considered the
Survival data for psychiatric inpatients (Klein and Moesch Berger 1997) to estimate
the parameter values. The data are given below.

1 1 2 22 30 28 32 11 14 36 31 33 33 37 35 25 31 22 26 24 35 34 30 35 40 39

Table 1 provides the parameter estimates, standard errors obtained by inverting the
observed information matrix and log-likelihood values. Table 2 provides values of
AIC, BIC, and p values based on the KS statistic. The corresponding probability plots
are shown in Fig. 4. We can see that the GXED distribution gives the smallest AIC

Table 1 MLEs of parameters, SE
and Log-likelihood

Model ML estimates Standard error Log L

GXED α̂ � 0.6967 0.03312696 − 99.36048

λ̂ � 0.00184 7.852131×10−5

GLD α̂ � 1.0691 0.05636717 − 107.6572

λ̂ � 0.07547 0.002741764

Table 2 AIC, BIC, KS Statistic
and p value of the model

Model AIC BIC KS Statistic p value

GXED 202.721 205.2371 0.21127 0.1962

GLD 219.3145 221.8307 0.30109 0.01794
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Table 3 MLEs of parameters, SE
and Log-likelihood

Model ML estimates Standard error Log L

GXED α̂ � 0.3181 0.00715 − 231.6088

λ̂ � 0.000302 1.045224×10−5

GLD α̂ � 0.4547 0.01123 − 238.9909

λ̂ � 0.0278 0.000691

value, the smallest BIC value, the largest p value based on the KS statistic. Hence, the
GXED distribution provides the best fit based on the AIC values, BIC values, p values
based on the KS statistic. The Failure rate and probability plots again show that the
GXED distribution provides the best fit.

The variance covariance matrix I−1 of the MLEs under the Gener-
alized X-Exponential distribution for the data set 1 is computed as(
2.853228 × 10−2 3.981029 × 10−5

3.981029 × 10−5 1.603055 × 10−7

)

Thus, the variances of theMLE of α and λ is var (α̂)� 2.853228×10−2 and var (λ̂)
� 1.603055 × 10−7. Therefore, 95% confidence intervals for α and λ are [0.64168,
0.750658] and [0.001710366, 0.001968678] respectively.

8.1 Data Set 2

The data consist of the lifetimes of 50 devices, Aarset (1987) and it is provided below.

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36 40 45 46 47

50 55 60 63 63 67 67 67 67 72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

The parameter estimates, standard errors and the various measures are given in
Table 3. The corresponding probability plots are shown in Fig. 5. We can see again
that the GXED distribution gives the smallest AIC value, the smallest BIC value, and
largest p value based on the KS statistic, see Table 4. Hence, the GXED distribution
again provides the best fit based on the AIC values, BIC values, p values based on
the KS statistic. The Failure rate and probability plots again show that the GXED
distribution provides the better fit.

The variance covariance matrix I−1 of the MLEs under the Gener-
alized X-Exponential distribution for the data set 2 is computed as(
2.559555 × 10−3 1.707983 × 10−6

1.707983 × 10−6 5.462464 × 10−9

)
.

Thus, the variances of the MLE of α and λ is var
(
α̂
) � 2.559555 × 10−3 and

var
(
λ̂
)

� 5.462464 × 10−9. Therefore, 95% confidence intervals for α and λ are

[0.3063695, 0.3299066] and [0.0002845985, 0.0003189833] respectively.
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Table 4 AIC, BIC, KS Statistic
and p value of the model

Model AIC BIC KS statistic p value

GXED 467.2176 471.0417 0.15546 0.1783

GLD 481.9817 485.8058 0.19356 0.04719

9 Conclusion

Herewe introduced a new distribution having bathtub shaped failure rate, which gener-
alizes the X-Exponential distribution. Several properties of the distribution are derived
including the hazard rate function, moments, moment generating function etc. Also
we studied the maximum likelihood estimation of this distribution. The usefulness of
the new distribution is illustrated by means of two real data set. The first data set pro-
vides GXED distribution has smallest AIC value, the smallest BIC value, the largest
p value based on the KS statistic, compared to GLD distribution. And also the second
data set provides GXED distribution has smallest AIC value, the smallest BIC value,
the largest p value based on the KS statistic, compared to GLD distribution. It shows
that the proposed distribution is a better alternative among bathtub shaped failure rate
models.
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