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Abstract
This work emphasizes the special role played by semi-stable distribution which is the
generalization of the stable distribution.Here a0, a1, . . . , an be a sequence ofmutually
independent random variables following semi-stable distribution with characteristic
function exp (− (C + cos log |t |) |t |α), 1 ≤ α ≤ 2 and C > 1 and b1, b2, . . . , bn be
positive constants. We then obtain the average number of zeros in the interval [0, 2π ]
of random trigonometric polynomial of the form Tn(θ) = ∑n

k=1

( a0
n + akbk sin kθ

)

for large n. The case when bk = kσ− 1
α , σ = − 2

3α is studied in detail. Here this average
is asymptotically equal to 2n + o(1) except for a set of measure zero as n → ∞.

Keywords Random variables · Random algebraic equations · Semi-stable
distribution · Real roots

Mathematics Subject Classification 6OAXX

1 Introduction

We first explain the motivation behind this work. Many probabilistic like Dunnage,
Das, Sambadham, Nayak and Mahanty etc. have done many works on estimation of
average number of real zeros of random polynomials where coefficients following
Cauchy, normal and stable distributions in general. But no one has considered the case
of semi-stable distribution which is the generalization of stable distribution. Shimizu
(1968, 1969, 1970) have studied a lot on the domain of partial attraction of semi-
stable distribution. On the basis of his findings, we have proceeded to the proof of
our theorems. A distribution on R+ with Laplace - Stieltjes transform φ(τ) is said to
be stable if for any α ∈ (0, 1) there exists λ > 0 such that for all τ ≥ 0, φ(τ ) �= 0
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and ln(φ(τ)) = λ ln φ(ατ). But, in case of semi-stable distribution the above relation
holds for all τ, φ(τ) for some α ∈ (0, 1) and λ > 0 . So, this can have better practical
implementations than stable distribution. This motivates us for our work.

Dunnage (1966) has considered the trigonometric polynomial
∑n

k=1 ak cos kθ when
ak’s are independent and identically distributed normal random variables and proved

that this polynomial has
2√
3

n + O(n11/3(log n)3/13) zeros in [0, 2π ] except for a

set of probability not exceeding
1

log n
. Later Das (1968) has given an estimation for

expected number of real zeros of the polynomial
∑n

k=1 bkak cos kθ in [0, 2π ] where
ak’s are independent and identically distributed normal random variables and bk’s are
constants. Assuming that bk = kσ (σ > −3/2), he proved that the average number of

zeros is

(
2σ + 1

2σ + 3

)1/2

2n+O(n) for σ ≥ −1/2 and of order n3/2+σ in the remaining

cases.
Sambandham (1976a, b) studied the same polynomial when ak’s are dependent

normal random variables and proved that the average number of zeros in [0, 2π ] is
2n√
3

+ O(n11/(13+ε)), except for a set of probability almost
1

n2ε where 0 < ε < 1/13.

Also Sambandham (1976b) studied for non-identically distributed case taking bk =
kσ (σ ≥ 0) and showed that the average number is 2

(
2σ + 1

2σ + 3

)1/2

n + O(n11+13/η)

except for a set of probability almost
1

n2η where 0 < η < 1/13. Nayak and Mohanty

(1989) studied the polynomial when an’s are random variables following proper stable
law with index α, where 1 < α ≤ 2. Mahanti (2004, 2009) studied the expected
number of real zeros of

∑
ak cos kθ and

∑
ak cosh kθ . Here we are going to study

about the expected number of zeros of Tn(θ) in (0, 2π), where random variables are
following semi-stable distribution with 1 ≤ α ≤ 2 which has not studied before and
obtained a sharp estimation.

However, we for the first time estimated the average number of real zeros of a
random trigonometric polynomial given by

Tn(θ) =
n∑

k=1

(a0
n

+ akbk sin kθ
)

(1.1)

where a0, a1, . . . , an be a sequence ofmutually independent random variables follow-
ing semi-stable distribution with characteristic function exp (−(C + cos log |t |)|t |α),
1 ≤ α ≤ 2 and C > 1. Let b1, b2, . . . , bn be positive constants and Nn(β, γ ) be the
number of real zeros of the random trigonometric polynomial Tn(θ) in the interval
(β, γ ) with multiple zeros counted only once and E Nn(β, γ ) its expected value. Here

we only consider the case when bk = kσ− 1
α , σ = − 2

3α
. A characteristic function

φ(t) corresponding to distribution function F(x) is said to be semi-stable if for some
constants b ≥ d > 1, ϕ(t) = φ(d−1t) for every t .
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2 Main Results

Theorem 2.1 Let Tn(θ) =
∑

k=1

(a0
n

+ akbk sin kθ
)

be a random trigonometric

polynomial where ak’s are random variables following semi-stable distribution with
characteristic function

exp
(−(C + cos log |t |)|t |α)

, 1 ≤ α ≤ 2, C > 1.

Let b1, b2, . . . , bk form a set of positive constants and P(a0 = 0) = 0. Then the
average number of real zeros E N [0, 2π ] of Tn(θ) in [0, 2π ] is asymptotically equal

to 2n + o(1), bk = kσ−1/α, σ = − 2

3α
except for a set of measure tending to zero as

n → ∞.

Before proving our main result, we first partition the interval [0, 2π ] into two types
of intervals, namely

T ype (I ) :
(
ε,

π

k
− ε

) n⋃

k=2

(
π

k
+ ε,

π

(k − 1)
− ε

)

n⋃

k=2

(

π − π

(k − 1)
+ ε, π − π

k − 1
− ε

)

n⋃

k=2

(
π − π

k
+ ε, π + π

k
− ε

) n⋃

k=2

(

π + π

k
+ ε, π + π

(k − 1)
− ε

)

n⋃

k=2

(

2π − π

(k − 1)
+ ε, 2π − π

k
− ε

) n⋃

k=2

(
2π − π

k
+ ε, 2π − ε

)
= λ(say).

T ype (I I ) : [0, ε]
n⋃

k=1

[π

k
− ε,

π

k
+ ε

] n⋃

k=1

[
π − π

k
− ε, π − π

k
+ ε

]

n⋃

k=1

[
π + π

k
− ε, π + π

k
+ ε

] n⋃

k=1

[

π − π

(k − 1)
− ε, π + π

(k − 1)
+ ε

]

n⋃

k=1

[
2π − π

k
− ε, 2π − π

k
+ ε

] n⋃

k=1

[2π − ε, 2π ] = λprime(say).

Let us take ε = π

2n
which is less than one half of the smallest interval. Also for

this value of ε, all the intervals of type (I) and type (II) are well-defined and no two
intervals of any type overlap. Let us denote Mn(λ) as average number of zeros in
subintervals of type (I) and M Prime

n (λ) as average number of zeros in subintervals of
type (II). We denote Mn(β, γ ) is the average number of zeros in the subinterval (β, γ )

of type (I). The next lemma will be useful to prove the main result.
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Lemma 2.1 Let Mn(β, γ ) be the average number of zeros in the subinterval (β, γ )

of type-I, i.e., of the partition of interval [0, 2π ] such that sec θ is defined in each
subinterval. Then

Mn (β, γ ) = 1

π

∫ γ

β

(
4X Z − Y 2

X2

)1/2

dθ

where X = ∑
S2

k , Y = ∑
SkCk, Z = ∑

C2
k , Ck = Skk cot kθ − Sk and S2

k =
|bk sin kθ |α .

Proof According to Kac (1959), we have

Mn(β, γ ) =
∫ γ

β

dθ

∫ ∞

−∞
|y|p(0, y)dy, (2.1)

where p(x, y) being probability density function of joint variables (Tn(θ), T Prime
n (θ))

with

Tn(θ) =
n∑

k=1

akbk sin kθ = X (2.2)

and

T Prime
n (θ) = −

n∑

k=1

kbkak cos kθ = Y . (2.3)

The joint characteristic function of X and Y is given by

G(z, w) = exp
(
−(C − 1)

∑
|bk sin kθ z − kbk cos kθw|α

)
.

Since sin kθ is bounded in (β, γ ) of type-I. So we have,
1

n
+ |bk sin kθ |α ∼

|bk sin kθ |α . Here ak’s are random variables with characteristic function exp (−(C+
cos log |t |)|t |α), C > 1 and 1 ≤ α ≤ 2. By Fourier inversion formula, we have

∫ ∞

−∞
|y|e−ε|y| p(0, y)dy = 1

π2

∫ ∞

0

(ε2 − w2)

(ε2 + w2)2

×
∫ ∞

−∞
exp

(
−(C − 1)

∑
|bk sin kθ z − kbk cos kθw|α

)
dwdz, (2.4)

where
∫ ∞
−∞ |y|e−ε|y|e−iywdy = 2

(ε2 − w2)

(ε2 + w2)2
.

Let bk sin kθ , kbk cos kθ to be arbitrary non-zero constants then the joint probability
density function p(x, y) corresponding to joint variable

(
X , Y

)
where X = Tn(θ) =
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AX ,Y = T ′
n(θ) = BY , (A,Bbeing arbitrary constants) are zero as (X , Y )degenerates.

Then the result corresponding to Eq. (2.4) will be

0 = 1

π2

∫ ∞

0

(ε2 − w2)

(ε2 + w2)2
dw

∫ ∞

−∞
e−(C−1)|Az−Bw|α dz. (2.5)

Then from (2.4) and (2.5), as ε → 0 we have

∫ ∞

−∞
|y|e−ε|y| p(0, y)dy = 1

π2
∫ ∞

0

∫ ∞

−∞
e−(C−1)|Az−Bw|α − [e−(C−1)

∑|A1z−B1w|α ]/w2dzdw. (2.6)

where A1 = bk sin kθ , B1 = kbk cos kθ . Putting z = uw, w is fixed. Then we have

∫ ∞

−∞
|y|p(0, y)dy = 1

π2

∫ ∞

−∞
log

(∑ |A1u − B1|α
|Au − B|α

)

dwdu. (2.7)

Let us make a choice of A and B as |A|α = |B|α =
n∑

k=1
|bk sin kθ |α . Set φk(θ) =

|bk sin kθ |α
n∑

k=1

|bk sin kθ |α
. Then

∫ ∞

−∞
|y|p(0, y)dy = 1

π2 I , (2.8)

where I = ∫ ∞
−∞ log

(∑|u−kcotkθ |α
|u−1|α φk(θ)

)
du.

Let

S2
k = |bk sin kθ |α . (2.9)

Putting u − 1 = v

I =
∫ ∞

−∞
log

(∑
(vSk − Ck)

2
∑

(vSk)2

)

dv, (2.10)

where Ck = −Sk + Skk cot kθ . Putting t = η2 and vη = ξ , we have

I = π

∫ ∞

−∞
Rn(ξ, θ)dξ, (2.11)
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where Rn(ξ, θ) = 1

π2

∫ ∞

−∞
e−Xξ2 − e−Xξ2+Yηξ−Zη2

η2
dη. Writing X = A/2, Y = B,

Z = C/2. Then

Rn(ξ, θ) = 1

π

∫ ∞

−∞
e−1/2Aξ2 − e−Aξ2+Bηξ−1/2Cη2

η2
dη. (2.12)

Das (1968) has evaluated this integral subject to the condition AC − B2 > 0. Then
restricting ourselves to the case 4X Z − Y 2 > 0, following the result of Das (1968)

∫ ∞

−∞
|y|p(0, y)dy = 1

π

(4X Z − Y 2)1/2

X
. (2.13)

Therefore, from Eq. (2.1), we have

Mn (β, γ ) = 1

π

∫ γ

β

(4X Z − Y 2)1/2

X
dθ. (2.14)

It is true for any subinterval (β, γ ) of type-I.

X(θ) =
∑

S2
k =

∑
|bk sin kθ |α (2.15)

Y (θ) = 2
∑

SkCk = 2
∑

|bk sin kθ |α |k cot kθ − 1| (2.16)

Z(θ) = S2
k |k cot kθ − 1| =

∑
|bk sin kθ |α |k cot kθ − 1|2 . (2.17)

��
Now let us estimate the expected number of zeros of Tn(θ) in any subinterval of

type-II. Following lemma is necessary for estimate Mn (ω − ε, ω + ε).

Lemma 2.2 P

(

n(ε) > 1 + 2n(αn3 + 1)ε + log Dn

log 2

)

<
μ3

eαn4ε
, for some constant

μ, where n(ε) denote the number of zeros of Tn(θ) in |z| ≤ ε.

Proof By following Sambandham and Renganathan (1984) for the function Tn(θ), we
have

n(ε) ≤ 1

2π log 2

∫ 2π

0
log

∣
∣
∣
∣
Tn(2εeiθ )

Tn(0)

∣
∣
∣
∣dθ, (2.18)

provided Tn(θ) �= 0. We have Tn(0) = a0. This implies P(Tn(0) = 0) = 0, a0 �= 0.
Also Tn(θ) is a continuous probability distribution for every set {a0, a1, . . . , an}.
So Eq.(2.15) holds with probability one. If F(x) and φ(t) denote respectively the
distribution function and the characteristic function of the random variable ak , then
by Gnedenko and Kolmogorov (1954).

P ({|ak | > n}) = 1 − {F(n) − F(−n)} <
μ

nα
(2.19)
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for some constant μ. If max1≤k≤n|ak | = hn , then from (2.16) we have

P
(

hn ≤ eαn4ε
)

≥ 1 − μ

en4α2ε
. (2.20)

Since
∣
∣sin (2kεeiθ )

∣
∣ ≤ 2e2kε ,

P

(∣
∣
∣
∣
Tn(2εeiθ )

Tn(0)

∣
∣
∣
∣ ≤ 2eαn4ε+2nεDn + eαn4ε

e−αn4ε

)

> 1 − μ2

eαn4ε
, (2.21)

where hn = eαn4ε and Dn = ∑ |bk |. Then from Eqs. (2.15) and (2.18), we have

P

(

n(ε) >

(

1 + 2nε(αn3 + 1) + log Dn

log 2

)

2n4αε

)

≤ μ′n
eαn4ε

. (2.22)

��
Proof of Theorem 2.1 As there are 4n disjoint interval in type-II like [ω − ε, ω + ε],
[0, ε], [2π − ε, 2π ] and ε = π

2n
, we have

P

⎧
⎨

⎩
Mn(λ)′ > 4n2απ +

4n2απ
(
αnπ + π

n2

)
+ log Dn

log 2

⎫
⎬

⎭
<

μ2

eαn4ε
. (2.23)

So

Mn(λ′) = O

(
4μ′n4απ

eαnπ/2

(
1

n
+ απ + π/n2 + log Dn

n

log 2

))

(2.24)

which tends to zero as n tends to ∞. So Mn(λ′) = o(1) as n tends to ∞. So when
n become larger and larger Mn(λ′) does not contribute substantially to Mn(0, 2π).
From Eq. (2.12), (2.13) and (2.14) X, Y, Z are periodic function with period π . Also
in any subinterval of type-I the maximum value of | csc kθ | is < 2n. Let us take

bk = kσ− 1
α (σ > 0), we have

X =
n∑

k=1

|bk sin kθ |α = nασ+1

ασ + 1

(

1 + O

(
1

n

))

, (2.25)

Y = 4
nασ+1

ασ + 1

[

1 + O

(
1

n

)]

, (2.26)

Z = 22−α nασ−α+4

ασ + 2

[

1 + O

(
1

n

)]

, (2.27)

∣
∣
∣
∣
4X Z − Y 2

X2

∣
∣
∣
∣ = 16

(
ασ + 1

ασ + 2

)2

n2. (2.28)
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Therefore, we have

Mn(λ) = 1

π

∫ 2π

0

(4X Z − Y 2)1/2

X
dθ

= 1

π

∫ 2π

0
4

(
ασ + 1

ασ + 2

)

ndθ

= 8

(
ασ + 1

ασ + 2

)

n = 2n.

where σ = − 2

3α
, 1 ≤ α ≤ 2. So, we have

E Nn[0, 2π ] ∼ 2n + o(1), 1 ≤ α ≤ 2.
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