RESEARCH ARTICLE RESEARCH ARTICLE

Normal Approximation of Posterior Distribution in *GI/G/***1 Queue**

Saroja Kumar Singh[1](http://orcid.org/0000-0003-2558-1836) · Sarat Kumar Acharya1

Accepted: 10 October 2018 / Published online: 20 October 2018 © The Indian Society for Probability and Statistics (ISPS) 2018

Abstract

The paper deals with the asymptotic joint posterior distribution of (θ, ϕ) in a $GI/G/1$ queueing system over a continuous time interval $(0, T]$ where θ and ϕ are unknown parameters of arrival process and departure process respectively and *T* is a suitable stopping time.

Keywords $GI/G/1$ queue \cdot Exponential families \cdot Maximum likelihood estimator \cdot Posterior distribution · Asymptotic normality

Mathematics Subject Classification 60K25 · 68M20 · 62F12

1 Introduction

Though statistical inference plays a major role in any use of queueing models, study of asymptotic inference problems for queueing system can be hardly traced back to the works by Basawa and Prabh[u](#page-12-0) [\(1981](#page-12-0), [1988\)](#page-12-1) where they have discussed about the maximum likelihood (ML) estimators of the parameters in single server queues. Basawa et al[.](#page-12-2) [\(1996\)](#page-12-2) have studied the consistency and asymptotic normality of the parameters in a *G I* /*G*/1 queue based on information on waiting times. Achary[a](#page-12-3) [\(1999\)](#page-12-3) has studied the rate of convergence of the distribution of the maximum likelihood estimators of the arrival and the service rates from a single server queue. Acharya and Mishr[a](#page-12-4) [\(2007](#page-12-4)) have proved the Bernstein–von Mises theorem for the arrival process in a $M/M/1$ queue.

From a Bayesian outlook, inferences about the parameter are based on its posterior distribution. The study of asymptotic posterior normality can be traced back to the

 \boxtimes Saroja Kumar Singh sarojasngh@gmail.com

> Sarat Kumar Acharya acharya_sarat@yahoo.co.in

¹ P. G. Department of Statistics, Sambalpur University, Sambalpur, Odisha, India

time of Laplace and it has attracted the attention of many authors. A conventional approach to such problems starts from a Taylor series expansion of the log-likelihood function around the maximum likelihood estimator (MLE) and proceeds from there to develop expansions that have standard normal as a leading term and hold in probability or almost surely, given the data. This type of study have not been done in queueing system. For the general set up in this direction the previous work seems to be those by Walke[r](#page-13-0) [\(1969](#page-13-0)), Johnsto[n](#page-13-1) [\(1970\)](#page-13-1) for i.i.d observations; Hyde and Johnsto[n](#page-13-2) [\(1979](#page-13-2)), Basawa and Prakasa Ra[o](#page-12-5) [\(1980\)](#page-12-5), Che[n](#page-12-6) [\(1985](#page-12-6)) and Sweeting and Adekol[a](#page-13-3) [\(1987\)](#page-13-3) for stochastic process. The most recent work was done by Ki[m](#page-13-4) [\(1998\)](#page-13-4) in which he provided a set of conditions to prove the asymptotic normality under quite general situations of possible non-stationary time series model and Weng and Tsa[i](#page-13-5) [\(2008\)](#page-13-5) where they studied asymptotic normality for multiparameter problems.

In this paper, our aim is to prove that the joint posterior distribution of (θ, ϕ) is asymptotically normal for $GI/G/1$ queueing model in the context of exponential families. In Sect. [2](#page-1-0) we introduce the model of our interest and explain some elements of maximum likelihood estimator (MLE) as well as Bayesian procedure. In Sect. [3](#page-5-0) we prove our main result. For the illustration purpose we provide an example Sect. [4.](#page-9-0) Section [5](#page-10-0) deals with the simulation study while in Sect. [6](#page-12-7) concluding remarks are given.

2 *GI/G/***1 Queueing Model**

Consider a single server queueing system in which the interarrival times $\{u_k, k \geq 1\}$ and the service times $\{v_k, k \geq 1\}$ are two independent sequences of independent and identically distributed nonnegative random variables with densities $f(u; \theta)$ and $g(v; \phi)$, respectively, where θ and ϕ are unknown parameters. Let us assume that *f* and *g* belong to the continuous exponential families given by

$$
f(u; \theta) = a_1(u) \exp{\lbrace \theta h_1(u) - k_1(\theta) \rbrace}, \tag{2.1}
$$

$$
g(v; \phi) = a_2(v) \exp{\{\phi h_2(v) - k_2(\phi)\}}.
$$
 (2.2)

and

$$
f(u; \theta) = g(v; \phi) = 0 \quad \text{on} \quad (-\infty, 0)
$$

where $\Theta_1 = {\theta > 0 : k_1(\theta) < \infty}$ and $\Theta_2 = {\phi > 0 : k_2(\phi) < \infty}$ are open subsets of R. It is easy to see that, $E_{\theta}(h_1(u)) = k'_1(\theta)$, $var_{\theta}(h_1(u)) = k''_1(\theta)$, $E_{\phi}(h_2(v)) = k'_2(\phi)$, $var_{\phi}(h_2(v)) = k''_2(\phi)$, are supposed to be finite.

For simplicity we assume that the initial customer arrives at time $t = 0$. Our sampling scheme is to observe the system over a continuous time interval $(0, T]$, where *T* is a suitable stopping time. The sample data consist of

$$
\{A(T), D(T), u_1, u_2, u_3, \dots, u_{A(T)}, v_1, v_2, \dots, v_{D(T)}\},\tag{2.3}
$$

where $A(T)$ is the number of arrivals and $D(T)$ is the number of departures during $(0, T]$. Obviously no arrivals occur during $[\sum_{i=1}^{A(T)} u_i, T]$ and no departures during $[\gamma(T) + \sum_{i=1}^{D(T)} v_i, T]$, where $\gamma(T)$ is the total idle period in $(0, T]$.

The likelihood function based on data (2.3) is given by

$$
L_T(\theta, \phi) = \prod_{i=1}^{A(T)} f(u_i, \theta) \prod_{i=1}^{D(T)} f(v_i, \phi)
$$

$$
\times \left[1 - F_{\theta} \left[T - \sum_{i=1}^{A(T)} u_i\right]\right] \left[1 - G_{\phi} \left[T - \gamma(T) - \sum_{i=1}^{D(T)} v_i\right]\right],
$$
(2.4)

where F and G are distribution functions corresponding to the densities f and g respectively.

The approximate likelihood $L_T^{(a)}(\theta, \phi)$ is defined as

$$
L_T^{(a)}(\theta,\phi) = \prod_{i=1}^{A(T)} f(u_i,\theta) \prod_{i=1}^{D(T)} f(v_i,\phi) = L_T^{(a)}(\theta) L_T^{(a)}(\phi),
$$
 (2.5)

where

$$
L_T^{(a)}(\theta) = \left[\prod_{i=1}^{A(T)} a_1(u_i) \right] \exp \left\{ \sum_{i=1}^{A(T)} \left[\theta h_1(u_i) - k_1(\theta) \right] \right\}
$$
 (2.6)

and

$$
L_T^{(a)}(\phi) = \left[\prod_{i=1}^{D(T)} a_2(v_i) \right] \exp \left\{ \sum_{i=1}^{D(T)} \left[\phi h_2(v_i) - k_2(\phi) \right] \right\}.
$$
 (2.7)

The maximum likelihood estimates obtained from [\(2.5\)](#page-2-0) are asymptotically equivalent to those obtained from (2.4) provided that the following two conditions are satisfied for $T \to \infty$:

$$
(A(T))^{-1/2} \frac{\partial}{\partial \theta} \log \left[1 - F_{\theta} \left(T - \sum_{i=1}^{A(T)} u_i \right) \right] \xrightarrow{p} 0 \tag{2.8}
$$

and

$$
(D(T))^{-1/2} \frac{\partial}{\partial \phi} \log \left[1 - G_{\phi} \left(T - \gamma(T) - \sum_{i=1}^{D(T)} v_i \right) \right] \stackrel{p}{\longrightarrow} 0. \tag{2.9}
$$

The implications of these conditions have been explained by Basawa and Prabh[u](#page-12-1) [\(1988\)](#page-12-1).

Basawa and Prabhu [\(1988](#page-12-1)) have shown that the maximum likelihood estimator of θ and ϕ are given by

$$
\hat{\theta}_T = \eta_1^{-1} \bigg[\left(A(T) \right)^{-1} \sum_{i=1}^{A(T)} h_1(u_i) \bigg], \tag{2.10}
$$

$$
\hat{\phi}_T = \eta_2^{-1} \bigg[(D(T))^{-1} \sum_{i=1}^{D(T)} h_2(v_i) \bigg] \tag{2.11}
$$

where η_i^{-1} (.) denotes the inverse functions of η_i (.) for $i = 1, 2$ and

$$
\eta_1(\theta) = E_{\theta}(h_1(u)) = k_1^{'}(\theta)
$$

and

$$
\eta_2(\phi) = E_{\phi}(h_2(v)) = k_2'(\phi).
$$

The Fisher information matrix is given by

$$
I(\theta,\phi) = \begin{bmatrix} k_1''(\theta)E(A(T)) & 0 \\ 0 & k_2''(\phi)E(D(T)) \end{bmatrix} = \begin{bmatrix} I(\theta) & 0 \\ 0 & I(\phi) \end{bmatrix}.
$$
 (2.12)

Under suitable stability conditions on stopping times, Basawa and Prabh[u](#page-12-1) [\(1988\)](#page-12-1) have proved that the estimators θ_T and ϕ_T are consistent, i.e,

$$
\hat{\theta}_T \xrightarrow{a.s.} \theta_0
$$
 and $\hat{\phi}_T \xrightarrow{a.s.} \phi_0$ as $T \to \infty$ (2.13)

and

$$
I^{\frac{1}{2}}(\theta_0, \phi_0) \begin{bmatrix} \hat{\theta}_T - \theta_0 \\ \hat{\phi}_T - \phi_0 \end{bmatrix} \Rightarrow N \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \tag{2.14}
$$

where θ_0 and ϕ_0 denote the true value of θ and ϕ respectively, and the symbol \Rightarrow denotes the convergence in distribution.

From Eq. [\(2.5\)](#page-2-0) we have the loglikelihood function

$$
\ell_T(\theta, \phi) = \log L_T^{(a)}(\theta, \phi) = \ell_T(\theta) + \ell_T(\phi), \tag{2.15}
$$

where

$$
\ell_T(\theta) = \log L_T^{(a)}(\theta) = \sum_{i=1}^{A(T)} a_1(u_i) + \theta \sum_{i=1}^{A(T)} h_1(u_i) - A(T)k_1(\theta)
$$
(2.16)

² Springer

and

$$
\ell_T(\phi) = \log L_T^{(a)}(\phi) = \sum_{i=1}^{D(T)} a_2(v_i) + \phi \sum_{i=1}^{D(T)} h_2(v_i) - D(T)k_2(\phi).
$$
 (2.17)

Let

$$
\ell'_T(\theta_0) = \frac{\partial}{\partial \theta} \ell_T(\theta, \phi) \Big|_{\theta = \theta_0} = \frac{\partial}{\partial \theta} \ell_T(\theta) \Big|_{\theta = \theta_0},
$$

$$
\ell''_T(\theta_0) = \frac{\partial^2}{\partial \theta^2} \ell_T(\theta, \phi) \Big|_{\theta = \theta_0} = \frac{\partial^2}{\partial \theta^2} \ell_T(\theta) \Big|_{\theta = \theta_0}.
$$

Similarly $\ell'_T(\hat{\theta}_T), \ell'_T(\hat{\phi}_T), \ell'_T(\phi_0), \ell''_T(\phi_0), \ell''_T(\hat{\theta}_T)$ and $\ell''_T(\hat{\phi}_T)$ are defined.

Let $\pi_1(\theta)$ and $\pi_2(\phi)$ be the prior distributions of θ and ϕ respectively. Let the joint prior distribution θ and ϕ be $\pi(\theta, \phi)$. Since the interarrival time and service time distributions are independent, so we have $\pi(\theta, \phi) = \pi_1(\theta) \pi_2(\phi)$. Then the joint posterior density of (θ, ϕ) is

$$
\pi(\theta, \phi | (u_i, v_i); i \ge 1) = \pi_1(\theta | u_i; i = 1, ..., A(T))\pi_2(\phi | v_i; i = 1, ..., D(T))
$$
\n(2.18)

with

$$
\pi_1(\theta|u_i; i = 1,..., A(T)) = \frac{L_T^{(a)}(\theta)\pi_1(\theta)}{\int_{\Theta_1} L_T^{(a)}(\theta)\pi_1(\theta)d\theta}
$$

$$
= \frac{\exp\left\{\sum_{i=1}^{A(T)}[\theta h_1(u_i) - k_1(\theta)]\right\}\pi_1(\theta)}{\int_{\Theta_1} \exp\left\{\sum_{i=1}^{A(T)}[\theta h_1(u_i) - k_1(\theta)]\right\}\pi_1(\theta)d\theta} (2.19)
$$

and

$$
\pi_2(\phi|v_i; i = 1, ..., D(T)) = \frac{\exp\left\{\sum_{i=1}^{D(T)}[\phi h_2(v_i) - k_2(\phi)]\right\}\pi_2(\phi)}{\int_{\Theta_2} \exp\left\{\sum_{i=1}^{D(T)}[\phi h_2(v_i) - k_2(\phi)]\right\}\pi_2(\phi)d\phi}
$$
(2.20)

the marginal posterior densities of θ and ϕ , respectively. Let θ_T and ϕ_T be Bayes estimator of θ and ϕ respectively.

In the next section we will state and prove our main result.

3 Main Result

Theorem 3.1 *Let* $(\theta_0, \phi_0) \in \Theta_1 \times \Theta_2$ *. If the prior densities* $\pi_1(\theta)$ *and* $\pi_2(\phi)$ *are continuous and positive at* θ_0 *and* ϕ_0 *respectively then, for any* α_i *,* β_i *such that* $-\infty \leq$ $\alpha_i \leq \beta_i \leq \infty$, $i = 1, 2$, the posterior probability that $(\theta_T + \alpha_1 \sigma_T \leq \theta \leq \theta_T + \theta_1 \sigma_T \leq \theta_1$ $\beta_1 \sigma_T$, $\hat{\phi}_T + \alpha_2 \tau_T \leq \phi \leq \hat{\phi}_T + \beta_2 \tau_T$, *namely*

$$
\int_{\hat{\theta}_T + \alpha_1 \sigma_T}^{\hat{\theta}_T + \beta_2 \tau_T} \int_{\hat{\theta}_T + \alpha_1 \sigma_T}^{\hat{\theta}_T + \beta_2 \tau_T} \pi(\theta, \phi | (u_i, v_i), i \ge 1) d\theta d\phi
$$

tends in $[P_{(\theta_0,\phi_0)}]$ *probability to*

$$
(2\pi)^{-1} \int_{\alpha_1}^{\beta_1} \int_{\alpha_2}^{\beta_2} e^{-\frac{1}{2}(x^2+y^2)} dx dy
$$

as $T \rightarrow \infty$, where σ_T and τ_T are the positive square roots of $[-\ell_T''(\hat{\theta}_T)]^{-1}$ and $[-\ell_T^{\prime\prime}(\hat{\phi}_T)]^{-1}$ *respectively.*

Proof of Theorem [3.1](#page-5-1) The former integral of the above theorem can be written as the product of the integrals of the marginal posterior densities, i.e.,

$$
\hat{\theta}_{T} + \beta_{1}\sigma_{T} \hat{\phi}_{T} + \beta_{2}\tau_{T}
$$
\n
$$
\int \int \int \pi(\theta, \phi | (u_{i}, v_{i}), i \ge 1) d\theta d\phi
$$
\n
$$
\hat{\theta}_{T} + \alpha_{1}\sigma_{T} \hat{\phi}_{T} + \alpha_{2}\tau_{T}
$$
\n
$$
= \int \int \frac{\hat{\theta}_{T} + \beta_{1}\sigma_{T}}{\int \Theta_{1}} \frac{\exp \left\{ \sum_{i=1}^{A(T)} [\theta h_{1}(u_{i}) - k_{1}(\theta)] \right\} \pi_{1}(\theta)}{\hat{\theta}_{T} + \alpha_{1}\sigma_{T}} d\theta
$$
\n
$$
\times \int \frac{\hat{\phi}_{T} + \beta_{2}\tau_{T}}{\int \Theta_{2}} \frac{\exp \left\{ \sum_{i=1}^{D(T)} [\phi h_{2}(v_{i}) - k_{2}(\phi)] \right\} \pi_{2}(\phi)}{\hat{\phi}_{T} + \alpha_{2}\tau_{T}} d\phi
$$
\n
$$
\times \int \frac{\exp \left\{ \sum_{i=1}^{D(T)} [\phi h_{2}(v_{i}) - k_{2}(\phi)] \right\} \pi_{2}(\phi)}{\hat{\theta}_{T} + \alpha_{2}\tau_{T}} d\phi
$$
\n(3.1)

and the convergence of both can be established separately.

For any $\delta > 0$, let us write $\mathcal{N}(\varrho, \delta) = (\varrho - \delta, \varrho + \delta)$ with $\varrho \in \Theta_1$ and $\mathcal{J}_B =$ $\int_B L_T^{(a)}(\theta) \pi_1(\theta) d\theta$ where $B \subseteq \Theta_1$. Hence,

$$
\int_{\hat{\theta}_T + \alpha_1 \sigma_T}^{\hat{\theta}_T + \beta_1 \sigma_T} \frac{\exp\left\{\sum_{i=1}^{A(T)}[\theta h_1(u_i) - k_1(\theta)]\right\} \pi_1(\theta)}{\int_{\Theta_1} \exp\left\{\sum_{i=1}^{A(T)}[\theta h_1(u_i) - k_1(\theta)]\right\} \pi_1(\theta) d\theta} d\theta = (\mathcal{J}_{\Theta_1})^{-1} \mathcal{J}_{\mathcal{N}(\theta_T, \delta_T)}
$$
\n(3.2)

 \mathcal{D} Springer

with $\delta_T = \frac{\sigma_T(\beta_1 - \alpha_1)}{2}$ and $\theta_T = \hat{\theta}_T + \frac{\sigma_T(\alpha_1 + \beta_1)}{2}$. Then, we want to prove that

$$
(\mathcal{J}_{\Theta_1})^{-1} \mathcal{J}_{\mathcal{N}(\theta_T, \delta_T)} \to \Phi(\beta_1) - \Phi(\alpha_1) = \frac{1}{\sqrt{2\pi}} \int_{\alpha_1}^{\beta_1} e^{-\frac{x^2}{2}} dx \tag{3.3}
$$

in probability $[P_{\theta_0}]$, where $\Phi(z) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi} \int_{-\infty}^{z} e^{-\frac{s^2}{2}} ds.$

Let us split \mathcal{J}_{Θ_1} into $J_{\Theta_1\setminus\mathcal{J}_{\mathcal{N}(\theta_0,\delta)}}$ and $\mathcal{J}_{\mathcal{N}(\theta_0,\delta)}$. Then, to obtain the above result it is sufficient to prove that the following statements holds in probability $[P_{\theta_0}]$: For some $\delta > 0$,

(a)
$$
\lim_{T \to \infty} [L_T^{(a)}(\hat{\theta}_T)\sigma_T]^{-1} J_{\Theta_1 \setminus \mathcal{J}_{\mathcal{N}(\theta_0, \delta)}} = 0
$$

(b)
$$
\lim_{T \to \infty} [L_T^{(a)}(\hat{\theta}_T)\sigma_T]^{-1} \mathcal{J}_{\mathcal{N}(\theta_0, \delta)} = (2\pi)^{\frac{1}{2}} \pi_1(\theta_0)
$$

(c)
$$
\lim_{T \to \infty} [L_T^{(a)}(\hat{\theta}_T)\sigma_T]^{-1} \mathcal{J}_{\mathcal{N}(\theta_T, \delta_T)} = (2\pi)^{\frac{1}{2}} \pi_1(\theta_0) (\Phi(\beta_1) - \Phi(\alpha_1))
$$

Define

$$
r_T(\theta) = -\frac{\ell''_T(\theta) - \ell''_T(\hat{\theta}_T)}{\ell''_T(\hat{\theta}_T)} = 1 - \frac{\ell''_T(\theta)/\ell''_T(\theta_0)}{\ell''_T(\hat{\theta}_T)/\ell''_T(\theta_0)}.
$$
(3.4)

If θ belongs to $\mathcal{N}(\theta_0, \delta)$ for some $\delta > 0$, $\ell''_T(\theta)/\ell''_T(\theta_0)$ is close enough to 1 and, since $\theta_T \to \theta_0$ almost surely, $\ell_T''(\theta_T)/\ell_T''(\theta_0)$ is almost surely close to 1 for *T* sufficiently large. Therefore we can deduce that for given $\varepsilon > 0$, we can take δ such that, if *T* is large enough,

$$
\sup_{\theta \in \mathcal{N}(\theta_0, \delta)} |r_T(\theta)| < \varepsilon \quad [P_{\theta_0}].\tag{3.5}
$$

Consider also

$$
q_T(\theta) = -\frac{\ell_T(\theta) - \ell_T(\hat{\theta}_T)}{\ell''_T(\theta_0)} = \frac{(\theta - \hat{\theta}_T) \sum_{i=1}^{A(T)} h_1(u_i) - A(T)(k_1(\theta) - k_1(\hat{\theta}_T))}{A(T)k''_1(\theta_0)}.
$$

Since ℓ_T (.) has a strict maximum at θ_T , it is obvious that q_T (.) is negative on $\Theta_1 \setminus \mathbb{R}$ $\mathcal{N}(\theta_0, \delta)$ for *T* large enough. Moreover, since $\theta_T \to \theta_0$ almost surely, it can be shown that there exists a positive constant $\kappa(\delta)$ such that

$$
\sup_{\theta \in \Theta_1 \setminus \mathcal{N}(\theta_0, \delta)} q_T < -\kappa(\delta) \left[P_{\theta_0} \right]. \tag{3.6}
$$

Now,

$$
\begin{split} [L_{T}^{(a)}(\hat{\theta}_{T})\sigma_{T}]^{-1} \mathcal{J}_{\Theta_{1}\backslash \mathcal{N}(\theta_{0},\delta)} \\ &= [L_{T}^{(a)}(\hat{\theta}_{T})\sigma_{T}]^{-1} \int_{\Theta_{1}\backslash \mathcal{N}(\theta_{0},\delta)} L_{T}^{(a)}(\theta)\pi_{1}(\theta)d\theta \\ &= [L_{T}^{(a)}(\hat{\theta}_{T})\sigma_{T}]^{-1} L_{T}^{(a)}(\hat{\theta}_{T}) \int_{\Theta_{1}\backslash \mathcal{N}(\theta_{0},\delta)} \pi_{1}(\theta)\exp\{\ell_{T}(\theta) - \ell_{T}(\hat{\theta}_{T})\}d\theta \end{split}
$$

 \mathcal{D} Springer

$$
= (-\ell''_T(\hat{\theta}_T))^{\frac{1}{2}} \int_{\Theta_1 \backslash \mathcal{N}(\theta_0, \delta)} \pi_1(\theta) \exp\{q_T(\theta) (-\ell''_T(\theta_0))\} d\theta
$$

\n
$$
\leq (-\ell''_T(\hat{\theta}_T))^{\frac{1}{2}} \exp\{-\kappa(\delta) (-\ell''_T(\theta_0))\} \text{ (using Eq. 3.6)}
$$

\n
$$
= \frac{(-\ell''_T(\hat{\theta}_T))^{\frac{1}{2}}}{(-\ell''_T(\theta_0))^{\frac{1}{2}}} (-\ell''_T(\theta_0))^{\frac{1}{2}} \exp\{-\kappa(\delta) (-\ell''_T(\theta_0))\} [P_{\theta_0}].
$$

We have $-\ell_T''(\theta_0) = A(T)\sigma^2(\theta_0)$ diverges to ∞ almost surely as $T \to \infty$. So, in the above expression

$$
(-\ell''_T(\theta_0))^{\frac{1}{2}} \exp\{-\kappa(\delta)(-\ell''_T(\theta_0))\} \to 0
$$

in probability and, using Eq. (3.5) , for some constant *M* and *T* large enough

$$
\frac{(-\ell_T''(\hat{\theta}_T))^{\frac{1}{2}}}{(-\ell_T''(\theta_0))^{\frac{1}{2}}} = \left(\frac{1}{1 - r_T(\theta_0)}\right)^{\frac{1}{2}} < M
$$

in probability and, consequently (a) holds.

Let us prove (b). Write

$$
L_T^{(a)}(\theta) = L_T^{(a)}(\hat{\theta}_T) \exp{\{\ell_T(\theta) - \ell_T(\hat{\theta}_T)\}}.
$$
\n(3.7)

Using Taylor expansion around θ_T ,

$$
\ell_T(\theta) = \ell_T(\hat{\theta}_T) + \frac{1}{2}(\theta - \hat{\theta}_T)^2 \ell_T''(\bar{\theta}_T)
$$
\n(3.8)

for $\theta_T = \theta + \xi(\theta_T - \theta)$ with $0 < \xi < 1$. Thus letting

$$
R_T = R_T(\theta) = \sigma_T^2 \{ \ell''_T(\bar{\theta}_T) - \ell''_T(\hat{\theta}_T) \},
$$

we have

$$
-\frac{1 - R_T}{\sigma_T^2} = \ell_T''(\bar{\theta}_T). \tag{3.9}
$$

Using Eqs. [\(3.8\)](#page-7-0) and [\(3.9\)](#page-7-1) in Eq. [\(3.7\)](#page-7-2) and, for some $\delta > 0$ and *T* large enough such that $\theta_T \in \mathcal{N}(\theta_0, \delta)$, we have, for every $\theta \in \mathcal{N}(\theta_0, \delta)$

$$
L_T^{(a)}(\theta) = L_T^{(a)}(\hat{\theta}_T) \exp\left\{-\frac{(\theta - \hat{\theta}_T)^2}{2\sigma_T^2}(1 - R_T)\right\} [P_{\theta_0}]
$$
 (3.10)

and consequently,

$$
[L_T^{(a)}(\hat{\theta}_T)\pi_1(\theta_0)]^{-1}\mathcal{J}_{\mathcal{N}(\theta_0,\delta)} = \int_{\mathcal{N}(\theta_0,\delta)} \frac{\pi_1(\theta)}{\pi_1(\theta_0)} \exp\left\{-\frac{(\theta - \hat{\theta}_T)^2}{2\sigma_T^2}(1 - R_T)\right\} d\theta \quad [P_{\theta_0}]
$$
\n(3.11)

Since $\pi_1(\theta)$ is continuous and positive at $\theta = \theta_0$, then for given $0 < \varepsilon < 1$, we can choose δ small enough so that

$$
1 - \varepsilon < \inf_{\theta \in \mathcal{N}(\theta_0, \delta)} \frac{\pi_1(\theta)}{\pi_1(\theta_0)} < \sup_{\theta \in \mathcal{N}(\theta_0, \delta)} \frac{\pi_1(\theta)}{\pi_1(\theta_0)} < 1 + \varepsilon. \tag{3.12}
$$

Denote

$$
\tilde{\mathcal{J}}_B = \int_B \exp\bigg\{-\frac{(\theta - \hat{\theta}_T)^2}{2\sigma_T^2}(1 - R_T)\bigg\}d\theta, \quad B \subseteq \Theta_1.
$$

Then from Eq. [\(3.12\)](#page-8-0) we get that

$$
(1 - \varepsilon)\tilde{\mathcal{J}}_{\mathcal{N}(\theta_0, \delta)} < \left[L_T^{(a)}(\hat{\theta}_T)\pi_1(\theta_0)\right]^{-1}\mathcal{J}_{\mathcal{N}(\theta_0, \delta)} < (1 + \varepsilon)\tilde{\mathcal{J}}_{\mathcal{N}(\theta_0, \delta)}.\tag{3.13}
$$

If $\sup_{\theta \in \mathcal{N}(\theta_0, \delta)} |R_T| < \varepsilon < 1$, then

$$
\int_{\mathcal{N}(\theta_0,\delta)} \exp\bigg\{-\frac{(\theta - \hat{\theta}_T)^2}{2\sigma_T^2}(1+\varepsilon)\bigg\}d\theta
$$
\n
$$
<\tilde{\mathcal{J}}_{\mathcal{N}(\theta_0,\delta)} < \int_{\mathcal{N}(\theta_0,\delta)} \exp\bigg\{-\frac{(\theta - \hat{\theta}_T)^2}{2\sigma_T^2}(1-\varepsilon)\bigg\}d\theta
$$

and for $\eta = +\varepsilon$ or $-\varepsilon$, making a change of variable,

$$
\int_{\mathcal{N}(\theta_0,\delta)} \exp\bigg\{-\frac{(\theta-\hat{\theta}_T)^2}{2\sigma_T^2}(1+\eta)\bigg\}d\theta
$$
\n
$$
=\frac{\sigma_T}{(1+\eta)^{\frac{1}{2}}} \int_{(\theta_0-\delta-\hat{\theta}_T)(1+\eta)^{\frac{1}{2}}\sigma_T^{-1}}^{(\theta_0+\delta-\hat{\theta}_T)(1+\eta)^{\frac{1}{2}}\sigma_T^{-1}} e^{-\frac{x^2}{2}}dx
$$
\n
$$
=(2\pi)^{\frac{1}{2}}\sigma_T(1+\eta)^{-\frac{1}{2}} \bigg[\Phi\big\{\sigma_T^{-1}(\theta_0+\delta-\hat{\theta}_T)(1+\eta)^{\frac{1}{2}}\big\}
$$
\n
$$
-\Phi\big\{\sigma_T^{-1}(\theta_0-\delta-\hat{\theta}_T)(1+\eta)^{\frac{1}{2}}\big\}\bigg].
$$
\n(3.14)

Since $\sigma_T^{-1} \to \infty$ and $\hat{\theta}_T \to \theta_0$ almost surely, it is deduced that the limits (θ_0 – $\delta - \hat{\theta}_T (1 + \eta)^{\frac{1}{2}} \sigma_T^{-1}$ and $(\theta_0 + \delta - \hat{\theta}_T)(1 + \eta)^{\frac{1}{2}} \sigma_T^{-1}$ of the integrals in the above equation converges to $-\infty$ and ∞ respectively. Therefore, the term in square brackets in Eq. (3.14) converges to 1. Thus, using an appropriate bound on R_T it follows that,

$$
(2\pi)^{\frac{1}{2}}(1+\varepsilon)^{-\frac{1}{2}} < \sigma_T^{-1}\tilde{\mathcal{J}}_{\mathcal{N}(\theta_0,\delta)} < (2\pi)^{\frac{1}{2}}(1-\varepsilon)^{-\frac{1}{2}}
$$

² Springer

in probability as $T \to \infty$ and, using the above expression with the Eq. [\(3.13\)](#page-8-2) we have the following bounds for $\mathcal{J}_{\mathcal{N}(\theta_0,\delta)}$:

$$
(1+\varepsilon)^{-\frac{1}{2}}(1-\varepsilon) < [L_T(\hat{\theta}_T)\pi_1(\theta_0)(2\pi)^{\frac{1}{2}}\sigma_T]^{-1} \mathcal{J}_{\mathcal{N}(\theta_0,\delta)} < (1-\varepsilon)^{-\frac{1}{2}}(1+\varepsilon) [P_{\theta_0}]
$$

Hence (b) holds.

Finally, let us show (c). Using the same arguments and notations above, given $\varepsilon > 0$, there exists δ such that if $\mathcal{N}(\theta_T, \delta_T) \subseteq \mathcal{N}(\theta_0, \delta)$ for *T* large enough then

$$
(1 - \varepsilon)\tilde{\mathcal{J}}_{\mathcal{N}(\theta_T, \delta_T)} < [L_T^{(a)}(\hat{\theta}_T)\pi_1(\theta_0)]^{-1}\mathcal{J}_{\mathcal{N}(\theta_T, \delta_T)} < (1 + \varepsilon)\tilde{\mathcal{J}}_{\mathcal{N}(\theta_T, \delta_T)} [P_{\theta_0}]
$$

While the last term in Eq. (3.14) becomes

$$
(2\pi)^{\frac{1}{2}}\sigma_T(1+\eta)^{-\frac{1}{2}}\left[\Phi(\beta_1(1+\eta)^{\frac{1}{2}})-\Phi(\alpha_1(1+\eta)^{\frac{1}{2}})\right].
$$

Therefore, we obtain that

$$
[L_T^{(a)}(\hat{\theta}_T)\pi_1(\theta_0)]^{-1}\mathcal{J}_{\mathcal{N}(\theta_T,\delta_T)} \to (2\pi)^{\frac{1}{2}}\pi_1(\theta_0)[\Phi(\beta_1) - \Phi(\alpha_1)] [P_{\theta_0}]
$$

and now [\(3.3\)](#page-6-2) is established.

Similarly, using the same arguments as in the above, it can be shown that

$$
\int_{\hat{\phi}_T + \alpha_2 \tau_T}^{\hat{\phi}_T + \beta_2 \tau_T} \frac{\exp \left\{ \sum_{i=1}^{D(T)} [\phi h_2(v_i) - k_2(\phi)] \right\} \pi_2(\phi)}{\int_{\hat{\phi}_T + \alpha_2 \tau_T} \int_{\alpha_2}^{\beta_2} \exp \left\{ \sum_{i=1}^{D(T)} [\phi h_2(v_i) - k_2(\phi)] \right\} \pi_2(\phi) d\phi} d\phi \to \frac{1}{\sqrt{2\pi}} \int_{\alpha_2}^{\beta_2} e^{-\frac{y^2}{2}}
$$

in probability $[P_{\phi_0}]$ and the proof is completed.

4 Example

Let us consider a *M*/*M*/1 queueing system. Under the Markovian set-up we have

$$
f(u; \theta) = \theta e^{-\theta u}
$$
 and $g(v; \phi) = \phi e^{-\phi v}$.

So, the loglikelihood function is written as

$$
\ell_T(\theta, \phi) = A(T) \log \theta - \theta \sum_{i=1}^{A(T)} u_i + D(T) \log \phi - \phi \sum_{i=1}^{D(T)} v_i
$$

and the MLEs are given by

$$
\hat{\theta}_T = \left[\frac{\sum_{i=1}^{A(T)} u_i}{A(T)}\right]^{-1} \quad \text{and} \quad \hat{\phi}_T = \left[\frac{\sum_{i=1}^{D(T)} v_i}{D(T)}\right]^{-1}.
$$

² Springer

$$
\overline{}
$$

Here
$$
\sigma_T = \left[-\ell''_T(\hat{\theta}_T) \right]^{-\frac{1}{2}} = \frac{\sum_{i=1}^{A(T)} u_i}{\sqrt{A(T)}}
$$
 and $\tau_T = \left[-\ell''_T(\hat{\phi}_T) \right]^{-\frac{1}{2}} = \frac{\sum_{i=1}^{D(T)} v_i}{\sqrt{D(T)}}.$
Let us assume that the coniusate prior distributions of θ and ϕ are gamma.

Let us assume that the conjugate prior distributions of θ and ϕ are gamma distributions with hyper-parameters (a_1, b_1) and (a_2, b_2) , that is

$$
\pi_1(\theta) = \frac{b_1^{a_1}}{\Gamma(a_1)} \theta^{a_1 - 1} e^{-b_1 \theta} \text{ and } \pi_2(\phi) = \frac{b_2^{a_2}}{\Gamma(a_2)} \phi^{a_2 - 1} e^{-b_2 \phi}
$$

where a_i , $b_i > 0$ for $i = 1, 2$.

Then, the posterior distribution of θ can be computed as:

$$
\pi_1(\theta|u_i; i = 1, 2, ..., A(T))
$$
\n
$$
= \frac{L_T^a(\theta)\pi_1(\theta)}{\int_{\Theta_1} L_T^a \pi_1(\theta)d\theta}
$$
\n
$$
= \frac{\theta^{A(T)+a_1-1}e^{-\left(\sum_{i=1}^{A(T)} u_i + b_1\right)\theta}}{\int_0^\infty \theta^{A(T)+a_1-1}e^{-\left(\sum_{i=1}^{A(T)} u_i + b_1\right)\theta}d\theta}
$$
\n
$$
= \frac{\left(\sum_{i=1}^{A(T)} u_i + b_1\right)^{A(T)+a_1}}{\Gamma(A(T)+a_1)}\theta^{A(T)+a_1-1}e^{-\left(\sum_{i=1}^{A(T)} u_i + b_1\right)\theta}.
$$

Similarly,

$$
\pi_2(\phi|v_i; i = 1, 2, ..., D(T))
$$

=
$$
\frac{\left(\sum_{i=1}^{D(T)} v_i + b_2\right)^{D(T)+a_2}}{\Gamma(D(T)+a_2)} \phi^{D(T)+a_2-1} e^{-\left(\sum_{i=1}^{D(T)} v_i + b_2\right)\phi}.
$$

It is easy to see that

$$
\tilde{\theta}_T = \frac{A(T) + a_1}{\sum_{i=1}^{A(T)} u_i + b_1}
$$
 and $\tilde{\phi}_T = \frac{D(T) + a_2}{\sum_{i=1}^{D(T)} v_i + b_2}$.

Here, the posterior distributions of θ and ϕ are seen to be gamma distributions $[Gamma(A(T) + a_1, \sum_{i=1}^{A(T)} u_i + b_1)$ and $Gamma(D(T) + a_2, \sum_{i=1}^{D(T)} v_i + b_2)]$. Hence, by Central Limit Theorem (CLT), the joint posterior distribution converges to normal distribution as $T \to \infty$.

5 Simulation

For the feasibility of the main result discussed in Sect. [3,](#page-5-0) simulation was conducted for $M/M/1$ queueing system. For given values of true parameters θ_0 and ϕ_0 MLEs ($\hat{\theta}_T$ and $\hat{\phi}_T$) are computed at different time interval (0, *T*]. Also by choosing different values of hyper-parameters of gamma distribution we compute the Bayes estimators $(\theta_T$ and ϕ_T)

of θ and ϕ . Here, we consider two pair of true value of parameters θ_0 and ϕ_0 as (1, 2) and (2, 3). For the hyper-parameters we have taken as: $(a_1, b_1) = (1.5, 2.5), (a_2, b_2) =$ $(3, 3.5)$ and $(a_1, b_1) = (3, 5), (a_2, b_2) = (4, 5.5)$. The simulation procedure are repeated 10000 time to estimate the parameters. The computed values of estimators

(0, 80] 2.0198, 3.0088 2.0941, 3.0678

(0.0004, 0.0001) (0.0088, 0.0046)

errors

and their respective standard errors are presented in Tables [1,](#page-11-0) [2](#page-11-1) and [3.](#page-12-8) The values in the parenthesis indicate the standard errors.

6 Concluding Remarks

In simulation study we present the estimates by proposed methods. It is clear that the estimators are quite closer to the true parameter values and their standard errors are negligible.

Acknowledgements The authors are thankful to the referees for their comments and useful suggestions.

References

- Acharya SK (1999) On normal approximation for maximum likelihood estimation from single server queues. Queueing Syst 31:207–216
- Acharya SK, Mishra MN (2007) Bernstein–von Mises theorem for *M*|*M*|1 queue. Commun Stat Theory Methods 36:207–209
- Basawa IV, Prabhu NU (1981) Estimation in single server queues. Naval Res Logist Q 28:475–487
- Basawa IV, Prabhu NU (1988) Large sample inference from single server queues. Queueing Syst 3(4):289– 304
- Basawa IV, Prakasa Rao BLS (1980) Statistical inference for stochastic processes. Academic, London
- Basawa IV, Prabhu NU, Lund R (1996) Maximum likelihood estimation for single server queues from waiting time data. Queueing Syst 24:155–167
- Chen CF (1985) On asymptotic normality of limiting density functions with Bayesian implications. J R Stat Soc Ser B 47:540–546

Hyde CC, Johnston IM (1979) On asymptotic posterior normality for stochastic process. J R Stat Soc Ser B 41:184–189

Johnston R (1970) Asymptotic expansion associated with posterior distributions. Ann Math Stat 41:851–864

- Kim JY (1998) Large sample properties of posterior densities, Bayesian information criterion and the likelihood principle in nonstationary time series models. Econometrica 66(2):359–380
- Sweeting TJ, Adekola AO (1987) Asymptotic posterior normality for stochastic process revisted. J R Stat Soc Ser B 49:215–222

Walker AM (1969) On the asymptotic behaviour of posterior distributions. J R Stat Soc Ser B 31:80–88

Weng RC, Tsai WC (2008) Asymptotic posterior normality for multiparameter problems. J Stat Plan Inference 138:4068–4080