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Abstract
The paper deals with the asymptotic joint posterior distribution of (θ, φ) in a GI/G/1
queueing system over a continuous time interval (0, T ] where θ and φ are unknown
parameters of arrival process and departure process respectively and T is a suitable
stopping time.
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1 Introduction

Though statistical inference plays a major role in any use of queueing models, study
of asymptotic inference problems for queueing system can be hardly traced back to
the works by Basawa and Prabhu (1981, 1988) where they have discussed about
the maximum likelihood (ML) estimators of the parameters in single server queues.
Basawa et al. (1996) have studied the consistency and asymptotic normality of the
parameters in aGI/G/1 queue based on information onwaiting times.Acharya (1999)
has studied the rate of convergence of the distribution of the maximum likelihood
estimators of the arrival and the service rates from a single server queue. Acharya and
Mishra (2007) have proved the Bernstein–von Mises theorem for the arrival process
in a M/M/1 queue.

From a Bayesian outlook, inferences about the parameter are based on its posterior
distribution. The study of asymptotic posterior normality can be traced back to the
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time of Laplace and it has attracted the attention of many authors. A conventional
approach to such problems starts from a Taylor series expansion of the log-likelihood
function around the maximum likelihood estimator (MLE) and proceeds from there to
develop expansions that have standard normal as a leading term and hold in probability
or almost surely, given the data. This type of study have not been done in queueing
system. For the general set up in this direction the previous work seems to be those
by Walker (1969), Johnston (1970) for i.i.d observations; Hyde and Johnston (1979),
Basawa and Prakasa Rao (1980), Chen (1985) and Sweeting and Adekola (1987)
for stochastic process. The most recent work was done by Kim (1998) in which he
provided a set of conditions to prove the asymptotic normality under quite general
situations of possible non-stationary time series model and Weng and Tsai (2008)
where they studied asymptotic normality for multiparameter problems.

In this paper, our aim is to prove that the joint posterior distribution of (θ, φ) is
asymptotically normal for GI/G/1 queueing model in the context of exponential
families. In Sect. 2 we introduce the model of our interest and explain some elements
of maximum likelihood estimator (MLE) as well as Bayesian procedure. In Sect. 3
we prove our main result. For the illustration purpose we provide an example Sect. 4.
Section 5 deals with the simulation study while in Sect. 6 concluding remarks are
given.

2 GI/G/1 QueueingModel

Consider a single server queueing system in which the interarrival times {uk, k ≥ 1}
and the service times {vk, k ≥ 1} are two independent sequences of independent
and identically distributed nonnegative random variables with densities f (u; θ) and
g(v;φ), respectively, where θ and φ are unknown parameters. Let us assume that f
and g belong to the continuous exponential families given by

f (u; θ) = a1(u)exp{θh1(u) − k1(θ)}, (2.1)

g(v;φ) = a2(v)exp{φh2(v) − k2(φ)}. (2.2)

and

f (u; θ) = g(v;φ) = 0 on (−∞, 0)

where �1 = {θ > 0 : k1(θ) < ∞} and �2 = {φ > 0 : k2(φ) < ∞} are
open subsets of R. It is easy to see that, Eθ (h1(u)) = k′

1(θ), varθ (h1(u)) = k′′
1 (θ),

Eφ(h2(v)) = k′
2(φ), varφ(h2(v)) = k′′

2 (φ), are supposed to be finite.
For simplicity we assume that the initial customer arrives at time t = 0. Our

sampling scheme is to observe the system over a continuous time interval (0, T ],
where T is a suitable stopping time. The sample data consist of

{A(T ), D(T ), u1, u2, u3, . . . , uA(T ), v1, v2, . . . , vD(T )}, (2.3)
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where A(T ) is the number of arrivals and D(T ) is the number of departures during
(0, T ]. Obviously no arrivals occur during [∑A(T )

i=1 ui , T ] and no departures during

[γ (T ) + ∑D(T )
i=1 vi , T ], where γ (T ) is the total idle period in (0, T ].

The likelihood function based on data (2.3) is given by

LT (θ, φ) =
A(T )∏

i=1

f (ui , θ)

D(T )∏

i=1

f (vi , φ)

×
⎡

⎣1 − Fθ

⎡

⎣T −
A(T )∑

i=1

ui

⎤

⎦

⎤

⎦

⎡

⎣1 − Gφ

⎡

⎣T − γ (T ) −
D(T )∑

i=1

vi

⎤

⎦

⎤

⎦ ,

(2.4)

where F and G are distribution functions corresponding to the densities f and g
respectively.

The approximate likelihood L(a)
T (θ, φ) is defined as

L(a)
T (θ, φ) =

A(T )∏

i=1

f (ui , θ)

D(T )∏

i=1

f (vi , φ) = L(a)
T (θ)L(a)

T (φ), (2.5)

where

L(a)
T (θ) =

⎡

⎣
A(T )∏

i=1

a1(ui )

⎤

⎦ exp

⎧
⎨

⎩

A(T )∑

i=1

[θh1(ui ) − k1(θ)]

⎫
⎬

⎭
(2.6)

and

L(a)
T (φ) =

⎡

⎣
D(T )∏

i=1

a2(vi )

⎤

⎦ exp

⎧
⎨

⎩

D(T )∑

i=1

[φh2(vi ) − k2(φ)]

⎫
⎬

⎭
. (2.7)

The maximum likelihood estimates obtained from (2.5) are asymptotically equiv-
alent to those obtained from (2.4) provided that the following two conditions are
satisfied for T → ∞:

(A(T ))−1/2 ∂

∂θ
log

⎡

⎣1 − Fθ

⎛

⎝T −
A(T )∑

i=1

ui

⎞

⎠

⎤

⎦ p−→ 0 (2.8)

and

(D(T ))−1/2 ∂

∂φ
log

⎡

⎣1 − Gφ

⎛

⎝T − γ (T ) −
D(T )∑

i=1

vi

⎞

⎠

⎤

⎦ p−→ 0. (2.9)

The implications of these conditions have been explained by Basawa and Prabhu
(1988).
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Basawa and Prabhu (1988) have shown that the maximum likelihood estimator of
θ and φ are given by

θ̂T = η−1
1

[

(A(T ))−1
A(T )∑

i=1

h1(ui )

]

, (2.10)

φ̂T = η−1
2

[

(D(T ))−1
D(T )∑

i=1

h2(vi )

]

(2.11)

where η−1
i (.) denotes the inverse functions of ηi (.) for i = 1, 2 and

η1(θ) = Eθ (h1(u)) = k
′
1(θ)

and

η2(φ) = Eφ(h2(v)) = k
′
2(φ).

The Fisher information matrix is given by

I (θ, φ) =
[
k

′′
1(θ)E(A(T )) 0

0 k
′′
2(φ)E(D(T ))

]

=
[
I (θ) 0
0 I (φ)

]

. (2.12)

Under suitable stability conditions on stopping times, Basawa and Prabhu (1988)
have proved that the estimators θ̂T and φ̂T are consistent, i.e,

θ̂T
a.s.−→ θ0 and φ̂T

a.s.−→ φ0 as T → ∞ (2.13)

and

I
1
2 (θ0, φ0)

[
θ̂T − θ0

φ̂T − φ0

]

⇒ N

[(
0
0

)

,

(
1 0
0 1

)]

, (2.14)

where θ0 and φ0 denote the true value of θ and φ respectively, and the symbol ⇒
denotes the convergence in distribution.

From Eq. (2.5) we have the loglikelihood function

�T (θ, φ) = logL(a)
T (θ, φ) = �T (θ) + �T (φ), (2.15)

where

�T (θ) = logL(a)
T (θ) =

A(T )∑

i=1

a1(ui ) + θ

A(T )∑

i=1

h1(ui ) − A(T )k1(θ) (2.16)
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and

�T (φ) = logL(a)
T (φ) =

D(T )∑

i=1

a2(vi ) + φ

D(T )∑

i=1

h2(vi ) − D(T )k2(φ). (2.17)

Let

�
′
T (θ0) = ∂

∂θ
�T (θ, φ)

∣
∣
∣
∣
θ=θ0

= ∂

∂θ
�T (θ)

∣
∣
∣
∣
θ=θ0

,

�
′′
T (θ0) = ∂2

∂θ2
�T (θ, φ)

∣
∣
∣
∣
θ=θ0

= ∂2

∂θ2
�T (θ)

∣
∣
∣
∣
θ=θ0

.

Similarly �
′
T (θ̂T ), �

′
T (φ̂T ), �

′
T (φ0), �

′′
T (φ0), �

′′
T (θ̂T ) and �

′′
T (φ̂T ) are defined.

Let π1(θ) and π2(φ) be the prior distributions of θ and φ respectively. Let the
joint prior distribution θ and φ be π(θ, φ). Since the interarrival time and service
time distributions are independent, so we have π(θ, φ) = π1(θ)π2(φ). Then the joint
posterior density of (θ, φ) is

π(θ, φ|(ui , vi ); i ≥ 1) = π1(θ |ui ; i = 1, . . . , A(T ))π2(φ|vi ; i = 1, . . . , D(T ))

(2.18)
with

π1(θ |ui ; i = 1, . . . , A(T )) = L(a)
T (θ)π1(θ)

∫
�1

L(a)
T (θ)π1(θ)dθ

= exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]}π1(θ)
∫
�1

exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]}π1(θ)dθ
(2.19)

and

π2(φ|vi ; i = 1, . . . , D(T )) = exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]}π2(φ)
∫
�2

exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]}π2(φ)dφ

(2.20)

the marginal posterior densities of θ and φ, respectively. Let θ̃T and φ̃T be Bayes
estimator of θ and φ respectively.

In the next section we will state and prove our main result.
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3 Main Result

Theorem 3.1 Let (θ0, φ0) ∈ �1 × �2. If the prior densities π1(θ) and π2(φ) are
continuous and positive at θ0 and φ0 respectively then, for any αi , βi such that −∞ ≤
αi ≤ βi ≤ ∞, i = 1, 2, the posterior probability that (θ̂T + α1σT ≤ θ ≤ θ̂T +
β1σT , φ̂T + α2τT ≤ φ ≤ φ̂T + β2τT ), namely

θ̂T +β1σT∫

θ̂T +α1σT

φ̂T +β2τT∫

φ̂T +τT σ2

π(θ, φ|(ui , vi ), i ≥ 1)dθdφ

tends in [P(θ0,φ0)] probability to

(2π)−1

β1∫

α1

β2∫

α2

e− 1
2 (x2+y2)dxdy

as T → ∞, where σT and τT are the positive square roots of [−�
′′
T (θ̂T )]−1 and

[−�
′′
T (φ̂T )]−1 respectively.

Proof of Theorem 3.1 The former integral of the above theorem can be written as the
product of the integrals of the marginal posterior densities, i.e.,

θ̂T +β1σT∫

θ̂T +α1σT

φ̂T +β2τT∫

φ̂T +α2τT

π(θ, φ|(ui , vi ), i ≥ 1)dθdφ

=
θ̂T +β1σT∫

θ̂T +α1σT

exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]
}

π1(θ)

∫
�1

exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]
}

π1(θ)dθ
dθ

×
φ̂T +β2τT∫

φ̂T +α2τT

exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]
}

π2(φ)

∫
�2

exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]
}

π2(φ)dφ
dφ (3.1)

and the convergence of both can be established separately.
For any δ > 0, let us write N (�, δ) = (� − δ, � + δ) with � ∈ �1 and JB =

∫
B L(a)

T (θ)π1(θ)dθ where B ⊆ �1. Hence,

∫ θ̂T +β1σT

θ̂T +α1σT

exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]
}

π1(θ)

∫
�1

exp
{∑A(T )

i=1 [θh1(ui ) − k1(θ)]
}

π1(θ)dθ
dθ = (J�1)

−1JN (θT ,δT )

(3.2)
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with δT = σT (β1−α1)
2 and θT = θ̂T + σT (α1+β1)

2 . Then, we want to prove that

(J�1)
−1JN (θT ,δT ) → �(β1) − �(α1) = 1√

2π

∫ β1

α1

e− x2
2 dx (3.3)

in probability [Pθ0 ], where �(z) = 1√
2π

∫ z
−∞ e− s2

2 ds.

Let us splitJ�1 into J�1\JN (θ0,δ)
and JN (θ0,δ). Then, to obtain the above result it is

sufficient to prove that the following statements holds in probability [Pθ0 ] : For some
δ > 0,

(a) lim
T→∞[L(a)

T (θ̂T )σT ]−1 J�1\JN (θ0,δ)
= 0

(b) lim
T→∞[L(a)

T (θ̂T )σT ]−1JN (θ0,δ) = (2π)
1
2 π1(θ0)

(c) lim
T→∞[L(a)

T (θ̂T )σT ]−1JN (θT ,δT ) = (2π)
1
2 π1(θ0)(�(β1) − �(α1))

Define

rT (θ) = −�′′
T (θ) − �′′

T (θ̂T )

�′′
T (θ̂T )

= 1 − �′′
T (θ)/�′′

T (θ0)

�′′
T (θ̂T )/�′′

T (θ0)
. (3.4)

If θ belongs toN (θ0, δ) for some δ > 0, �′′
T (θ)/�′′

T (θ0) is close enough to 1 and, since
θ̂T → θ0 almost surely, �′′

T (θ̂T )/�′′
T (θ0) is almost surely close to 1 for T sufficiently

large. Therefore we can deduce that for given ε > 0, we can take δ such that, if T is
large enough,

sup
θ∈N (θ0,δ)

|rT (θ)| < ε [Pθ0 ]. (3.5)

Consider also

qT (θ) = −�T (θ) − �T (θ̂T )

�′′
T (θ0)

= (θ − θ̂T )
∑A(T )

i=1 h1(ui ) − A(T )(k1(θ) − k1(θ̂T ))

A(T )k′′
1 (θ0)

.

Since �T (.) has a strict maximum at θ̂T , it is obvious that qT (.) is negative on �1 \
N (θ0, δ) for T large enough. Moreover, since θ̂T → θ0 almost surely, it can be shown
that there exists a positive constant κ(δ) such that

sup
θ∈�1\N (θ0,δ)

qT < −κ(δ) [Pθ0 ]. (3.6)

Now,

[L(a)
T (θ̂T )σT ]−1J�1\N (θ0,δ)

= [L(a)
T (θ̂T )σT ]−1

∫

�1\N (θ0,δ)

L(a)
T (θ)π1(θ)dθ

= [L(a)
T (θ̂T )σT ]−1L(a)

T (θ̂T )

∫

�1\N (θ0,δ)

π1(θ)exp{�T (θ) − �T (θ̂T )}dθ
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= (−�′′
T (θ̂T ))

1
2

∫

�1\N (θ0,δ)

π1(θ)exp{qT (θ)(−�′′
T (θ0))}dθ

≤ (−�′′
T (θ̂T ))

1
2 exp{−κ(δ)(−�′′

T (θ0))} (using Eq. 3.6)

= (−�′′
T (θ̂T ))

1
2

(−�′′
T (θ0))

1
2

(−�′′
T (θ0))

1
2 exp{−κ(δ)(−�′′

T (θ0))} [Pθ0 ].

We have −�′′
T (θ0) = A(T )σ 2(θ0) diverges to ∞ almost surely as T → ∞. So, in the

above expression

(−�′′
T (θ0))

1
2 exp{−κ(δ)(−�′′

T (θ0))} → 0

in probability and, using Eq. (3.5), for some constant M and T large enough

(−�′′
T (θ̂T ))

1
2

(−�′′
T (θ0))

1
2

=
(

1

1 − rT (θ0)

) 1
2

< M

in probability and, consequently (a) holds.
Let us prove (b). Write

L(a)
T (θ) = L(a)

T (θ̂T )exp{�T (θ) − �T (θ̂T )}. (3.7)

Using Taylor expansion around θ̂T ,

�T (θ) = �T (θ̂T ) + 1

2
(θ − θ̂T )2�′′

T (θ̄T ) (3.8)

for θ̄T = θ + ξ(θ̂T − θ) with 0 < ξ < 1. Thus letting

RT = RT (θ) = σ 2
T {�′′

T (θ̄T ) − �′′
T (θ̂T )},

we have

− 1 − RT

σ 2
T

= �′′
T (θ̄T ). (3.9)

Using Eqs. (3.8) and (3.9) in Eq. (3.7) and, for some δ > 0 and T large enough such
that θ̂T ∈ N (θ0, δ), we have, for every θ ∈ N (θ0, δ)

L(a)
T (θ) = L(a)

T (θ̂T )exp

{

− (θ − θ̂T )2

2σ 2
T

(1 − RT )

}

[Pθ0 ] (3.10)

and consequently,

[L(a)
T (θ̂T )π1(θ0)]−1JN (θ0,δ) =

∫

N (θ0,δ)

π1(θ)

π1(θ0)
exp

{

− (θ − θ̂T )2

2σ 2
T

(1− RT )

}

dθ [Pθ0 ]
(3.11)

123



J Indian Soc Probab Stat (2019) 20:51–64 59

Since π1(θ) is continuous and positive at θ = θ0, then for given 0 < ε < 1, we can
choose δ small enough so that

1 − ε < inf
θ∈N (θ0,δ)

π1(θ)

π1(θ0)
< sup

θ∈N (θ0,δ)

π1(θ)

π1(θ0)
< 1 + ε. (3.12)

Denote

J̃B =
∫

B
exp

{

− (θ − θ̂T )2

2σ 2
T

(1 − RT )

}

dθ, B ⊆ �1.

Then from Eq. (3.12) we get that

(1 − ε)J̃N (θ0,δ) < [L(a)
T (θ̂T )π1(θ0)]−1JN (θ0,δ) < (1 + ε)J̃N (θ0,δ). (3.13)

If supθ∈N (θ0,δ)
|RT | < ε < 1, then

∫

N (θ0,δ)

exp

{

− (θ − θ̂T )2

2σ 2
T

(1 + ε)

}

dθ

< J̃N (θ0,δ) <

∫

N (θ0,δ)

exp

{

− (θ − θ̂T )2

2σ 2
T

(1 − ε)

}

dθ

and for η = +ε or −ε, making a change of variable,

∫

N (θ0,δ)

exp

{

− (θ − θ̂T )2

2σ 2
T

(1 + η)

}

dθ

= σT

(1 + η)
1
2

∫ (θ0+δ−θ̂T )(1+η)
1
2 σ−1

T

(θ0−δ−θ̂T )(1+η)
1
2 σ−1

T

e− x2
2 dx

= (2π)
1
2 σT (1 + η)−

1
2

[

�
{
σ−1
T (θ0 + δ − θ̂T )(1 + η)

1
2
}

− �
{
σ−1
T (θ0 − δ − θ̂T )(1 + η)

1
2
}
]

. (3.14)

Since σ−1
T → ∞ and θ̂T → θ0 almost surely, it is deduced that the limits (θ0 −

δ − θ̂T )(1 + η)
1
2 σ−1

T and (θ0 + δ − θ̂T )(1 + η)
1
2 σ−1

T of the integrals in the above
equation converges to−∞ and∞ respectively. Therefore, the term in square brackets
in Eq. (3.14) converges to 1. Thus, using an appropriate bound on RT it follows that,

(2π)
1
2 (1 + ε)−

1
2 < σ−1

T J̃N (θ0,δ) < (2π)
1
2 (1 − ε)−

1
2
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in probability as T → ∞ and, using the above expression with the Eq. (3.13) we have
the following bounds for JN (θ0,δ):

(1 + ε)−
1
2 (1 − ε) <

[
LT (θ̂T )π1(θ0)(2π)

1
2 σT

]−1JN (θ0,δ) < (1 − ε)−
1
2 (1 + ε) [Pθ0 ]

Hence (b) holds.
Finally, let us show (c). Using the same arguments and notations above, given ε > 0,

there exists δ such that if N (θT , δT ) ⊆ N (θ0, δ) for T large enough then

(1 − ε)J̃N (θT ,δT ) < [L(a)
T (θ̂T )π1(θ0)]−1JN (θT ,δT ) < (1 + ε)J̃N (θT ,δT ) [Pθ0 ]

While the last term in Eq. (3.14) becomes

(2π)
1
2 σT (1 + η)−

1
2

[
�(β1(1 + η)

1
2 ) − �(α1(1 + η)

1
2 )

]
.

Therefore, we obtain that

[L(a)
T (θ̂T )π1(θ0)]−1JN (θT ,δT ) → (2π)

1
2 π1(θ0)[�(β1) − �(α1)] [Pθ0 ]

and now (3.3) is established.
Similarly, using the same arguments as in the above, it can be shown that

φ̂T +β2τT∫

φ̂T +α2τT

exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]
}

π2(φ)

∫
�2

exp
{∑D(T )

i=1 [φh2(vi ) − k2(φ)]
}

π2(φ)dφ
dφ → 1√

2π

∫ β2

α2

e− y2

2

in probability [Pφ0 ] and the proof is completed. ��

4 Example

Let us consider a M/M/1 queueing system. Under the Markovian set-up we have

f (u; θ) = θe−θu and g(v;φ) = φe−φv.

So, the loglikelihood function is written as

�T (θ, φ) = A(T )logθ − θ

A(T )∑

i=1

ui + D(T )logφ − φ

D(T )∑

i=1

vi

and the MLEs are given by

θ̂T =
[∑A(T )

i=1 ui
A(T )

]−1

and φ̂T =
[∑D(T )

i=1 vi

D(T )

]−1

.
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Here σT =
[
−�

′′
T (θ̂T )

]− 1
2 =

∑A(T )
i=1 ui√
A(T )

and τT =
[
−�

′′
T (φ̂T )

]− 1
2 =

∑D(T )
i=1 vi√
D(T )

.

Let us assume that the conjugate prior distributions of θ and φ are gamma distri-
butions with hyper-parameters (a1, b1) and (a2, b2), that is

π1(θ) = ba11
�(a1)

θa1−1e−b1θ and π2(φ) = ba22
�(a2)

φa2−1e−b2φ

where ai , bi > 0 for i = 1, 2.
Then, the posterior distribution of θ can be computed as:

π1(θ |ui ; i = 1, 2, . . . , A(T ))

= La
T (θ)π1(θ)

∫
�1

La
Tπ1(θ)dθ

= θ A(T )+a1−1e
−
(∑A(T )

i=1 ui+b1
)
θ

∫ ∞
0 θ A(T )+a1−1e

−
(∑A(T )

i=1 ui+b1
)
θ
dθ

=
(∑A(T )

i=1 ui + b1
)A(T )+a1

� (A(T ) + a1)
θ A(T )+a1−1e

−
(∑A(T )

i=1 ui+b1
)
θ
.

Similarly,

π2(φ|vi ; i = 1, 2, . . . , D(T ))

=
(∑D(T )

i=1 vi + b2
)D(T )+a2

� (D(T ) + a2)
φD(T )+a2−1e

−
(∑D(T )

i=1 vi+b2
)
φ
.

It is easy to see that

θ̃T = A(T ) + a1
∑A(T )

i=1 ui + b1
and φ̃T = D(T ) + a2

∑D(T )
i=1 vi + b2

.

Here, the posterior distributions of θ and φ are seen to be gamma distributions
[Gamma(A(T )+a1,

∑A(T )
i=1 ui+b1) andGamma(D(T )+a2,

∑D(T )
i=1 vi+b2)]. Hence,

by Central Limit Theorem (CLT), the joint posterior distribution converges to normal
distribution as T → ∞.

5 Simulation

For the feasibility of the main result discussed in Sect. 3, simulation was conducted for
M/M/1 queueing system. For given values of true parameters θ0 andφ0 MLEs (θ̂T and
φ̂T ) are computed at different time interval (0, T ]. Also by choosing different values of
hyper-parameters of gamma distributionwe compute theBayes estimators (θ̃T and φ̃T )
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Table 1 For (θ0, φ0) = (1, 2),
(a1, b1) = (1.5, 2.5) and
(a2, b2) = (3, 3.5) calculation
of MLEs, Bayes estimators and
their statndard errors

(0, T ] θ̂T , φ̂T θ̃T , φ̃T

(0, 10] 1.1093, 2.1080 1.0392, 2.0640

(0.0119, 0.0116) (0.0015, 0.0041)

(0, 20] 1.0507, 2.0584 1.0917, 2.1175

(0.0025, 0.0034) (0.0084, 0.0138)

(0, 30] 1.0414, 2.0149 1.0938, 1.9102

(0.0017, 0.0002) (0.0087, 0.0081)

(0, 40] 1.0148, 2.0304 1.0502, 1.9866

(0.0087, 0.0002) (0.0025, 0.0002)

(0, 50] 1.0144, 2.0239 1.0722, 2.0243

(0.0002, 0.0006) (0.0052, 0.0006)

(0, 60] 1.0146, 2.0199 1.1026, 2.0856

(0.0002, 0.0004) (0.0111, 0.0073)

(0, 70] 1.0081, 2.0181 1.0563, 2.0965

(0.0001, 0.0003) (0.0031, 0.0093)

(0, 80] 1.0090, 2.0173 1.1066, 2.0206

(0.0001, 0.0003) (0.0001, 0.0004)

Table 2 For (θ0, φ0) = (2, 3),
(a1, b1) = (1.5, 2.5) and
(a2, b2) = (3, 3.5) calculation
of MLEs, and their standard
errors

(0, T ] θ̂T , φ̂T θ̃T , φ̃T

(0, 10] 2.1267, 3.0669 1.9663, 3.0188

(0.0161, 0.0044) (0.0012, 0.0004)

(0, 20] 2.0663, 3.0271 2.0351, 2.8563

(0.0043, 0.0007) (0.0012, 0.0207)

(0, 30] 2.0513, 3.0262 1.9825, 3.0906

(0.0026, 0.0007) (0.0003, 0.0082)

(0, 40] 2.0158, 3.0152 1.9966, 3.1323

(0.0003, 0.0002) (0.0001, 0.0175)

(0, 50] 2.0200, 3.0240 1.9671, 2.9936

(0.0004, 0.0006) (0.0010, 0.0001)

(0, 60] 2.0072, 3.0104 1.9643, 2.9299

(0.0001, 0.0002) (0.0013, 0.0049)

(0, 70] 2.0119, 2.9944 2.0410, 2.9256

(0.0002, 0.0001) (0.0017, 0.0055)

(0, 80] 2.0198, 3.0088 2.0941, 3.0678

(0.0004, 0.0001) (0.0088, 0.0046)

of θ andφ. Here,we consider two pair of true value of parameters θ0 andφ0 as (1, 2) and
(2, 3). For the hyper-parameters we have taken as: (a1, b1) = (1.5, 2.5), (a2, b2) =
(3, 3.5) and (a1, b1) = (3, 5), (a2, b2) = (4, 5.5). The simulation procedure are
repeated 10000 time to estimate the parameters. The computed values of estimators

123



J Indian Soc Probab Stat (2019) 20:51–64 63

Table 3 For (θ0, φ0) = (1, 2),
(a1, b1) = (3, 5) and
(a2, b2) = (4, 5.5) calculation
of MLEs, Bayes estimators and
standard errors

(0, T ] θ̂T , φ̂T θ̃T , φ̃T

(0, 10] 1.0171, 2.1420 1.0164, 2.0274

(0.0002, 0.0201) (0.0003, 0.0007)

(0, 20] 1.0616, 2.0595 1.0566, 1.9658

(0.0037, 0.0035) (0.0032, 0.0012)

(0, 30] 1.0462, 2.0415 1.1018, 2.0134

(0.0021, 0.0017) (0.0104, 0.0002)

(0, 40] 1.0134, 2.0216 1.0536, 2.0560

(0.0002, 0.0005) (0.0029, 0.0031)

(0, 50] 1.0162, 2.0220 0.9989, 2.1331

(0.0002, 0.0005) (0.0029, 0.0031)

(0, 60] 1.0153, 2.0163 1.0809, 2.0087

(0.0002, 0.0002) (0.0065, 0.0001)

(0, 70] 1.0135, 2.0172 0.9642, 1.9908

(0.0001, 0.0003) (0.0012, 0.0001)

(0, 80] 1.0182, 2.0120 1.0099 1.9962

(0.0117, 0.0001) (0.0001, 0.0001)

and their respective standard errors are presented in Tables 1, 2 and 3. The values in
the parenthesis indicate the standard errors.

6 Concluding Remarks

In simulation study we present the estimates by proposed methods. It is clear that the
estimators are quite closer to the true parameter values and their standard errors are
negligible.
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