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Abstract
A two-commodity inventory system with a single server is considered in this paper.
We assume that the capacity of the buffers (to store the two types of commodities)
to be finite. Customers (or demands) arrive according to a Poisson Process and the
requirement for either type or both type of commodities are modelled using certain
probabilities. Customers are lost when their demands are not met due to shortage
only at the time of service offerings as opposed to getting lost when the inventory
level is zero at the time of arrival. This is to allow the possibility of inventory being
replenished prior to offering services to those who arrive when the inventory level is
zero. A customer’s demand for both items may be met with only one item should a
situation in which there is only one type of inventory is positive and the other is zero
at the time of initiating a service occurs. The processing time for meeting the demands
are random and modelled using exponential distribution with parameters depending
on the type of demands being processed. We adopt (s, S)-type replenishment policy
which depends on the type of commodity. Assuming the lead times to be exponentially
distributed with parameters depending on the type of commodity, we employ matrix-
analytic methods to study the queueing inventory system and report interesting results
including an optimization dealing with various costs.
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1 Introduction

Inventory systems dealing with several/distinct commodities are very common, (see
for example Miller 1971, Agarwal 1984). Such systems are more complex than single
commodity system which could be attributed to the reordering procedures. Whether
the ordering policies of joint, individual or some mixed type are superior will depend
on the particular problem at hand.

For commodities which are clearly of distinct types and which are supplied by
different vendors, the individual strategies would be given top priority. The individual
order policy consists of the calculation of optimumorder quantities and/or time periods
from item to item, disregarding any economic interaction between them. This policy
has considerable flexibility in selecting the individually best inventory models for
each single item, as well as in the possibility of modifying independently any constant
entering the calculations. For this reason, believers of the concept of management by
exception and designers of computer controlled large multi-item inventory systems
seem to prefer individual order policies in applications (General Information Manual
1962).

In contrast, the joint policiesmayhave advantages in situationswhere a procurement
is made from the same suppliers/ items produced on the same machine/ items have
to be delivered using the same transport facility. In such cases, the joint ordering
policy might be superior with regard to cost efficiency. The modelling of multi-item
inventory systems is getting more attention now-a-days. In the following we will use
the terminology item or commodity interchangeably.

Balintfy (1964) compared multi-item inventory problems where joint order of sev-
eral items may significantly reduce the total set up cost. The comparisons call for the
necessity of a new policy for reorder point-triggered random output multi-item sys-
tems. This policy, the “random joint order policy” operates through the determination
of a reorder range within which several items can be ordered. The existence of an
optimum reorder range is proved, and a computational technique is demonstrated with
the help of a machine-interference type queueing model.

Federgruen et al. (1984) considered a continuous review multi-item inventory sys-
tem with compound Poisson demand processes; excess demands are backlogged and
each replenishment requires a lead time. There is a major setup cost associated with
any replenishment of the family of items, and a minor (item dependent) setup cost
when including a particular item in this replenishment. Moreover, there are holding
and penalty costs. An algorithm which searches for a simple coordinated control rule
which minimizes the long run average cost per unit time subject to a service level
constraint per item on the fraction of demand satisfied directly from on hand inven-
tory is presented. This algorithm is based on a heuristic decomposition procedure and
a specialized policy-iteration method to solve the single-item subproblems generated
by the decomposition procedure.

Two-commodity continuous review inventory system without lead time is consid-
ered by Krishnamoorthy et al. (1994) where each demand is for one unit of the first
commodity or one unit of the second commodity or one unit each of both commodities
with a pre-determined probability. Krishnamoorthy and Varghese (1994) considered a
two-commodity inventory problem without any lead time and with Markovian shift in
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demand for first commodity, second commodity and both commodities. Using results
from Markov renewal theory Sivasamy and Pandiyan (1998) derived various results
by the application of filtering techniques for the same problem.

A two-commodity continuous review inventory system with independent Poisson
demands is considered by Anbazhagan and Arivarignan (2001). Here the maximum
inventory level for i th commodity is fixed as Si , i = 1, 2 and net inventory level at
time t for the i th commodity is denoted by Ii (t), i = 1, 2. If the total net inventory
level I (t) = I1(t) + I2(t) drops to a prefixed level, s [≤ S1−2

2 or S2−2
2 ] an order is

placed for (Si −s) units of i th commodity (i = 1, 2). Here the probability distribution
for inventory level and mean reorders and shortage rates in the steady state are com-
puted. Two-commodity continuous review inventory system with renewal demands
and ordering policy as a combination of individual and joint ordering policies is con-
sidered by Sivakumar et al. (2007). Two-commodity stochastic inventory system with
lost sales, Poisson arrivals with joint and individual ordering policies is considered by
Yadavalli et al. (2004).

Two-commodity continuous review inventory system with substitutable items and
Markovian demands is considered by Anbazhagan et al. (2012). Here reordering for
supply is initiated as soon as the sum of the on-hand inventory levels of the two
commodities reaches a certain level s.

In the present paper we consider a two-commodity queueing inventory system in
which the customer arrivals form a Poisson process, the service times are exponen-
tially distributed, and the lead times are exponentially distributed. We assume all the
underlying random variables are independent of each other. Customers demand either
one of the commodities or both with some pre-determined probabilities. The cus-
tomers’ requirements are revealed only at the time of offering services. If the item
demanded is not available, the customer leaves the system for ever. If both items are
demanded when only one of the commodity is available, the available item is served to
the customer. The model under study is always stable due to the fact that the customers
finding zero inventory at the beginning of a service are all lost (i.e., cleared) from the
system. We adopt individual replenishment policy.

The motivation for our study is as follows. Typically customers arrive to a service
area to buy one or more (distinct) items or products. Suppose that there are n different
items and that the customers shop for product i with probability, pi , 1 ≤ i ≤ n. With
probability, pi1,...,ik , where {i1, . . . , ik} is a subset of the set of integers {1, 2, . . . , n},
the customers shop for products i1, . . . , ik , for 2 ≤ k ≤ n. If the requested distinct
products are not all in stock, the customers will be served with only those in stock
among the requested ones. If a customer cannot be served with any product, then that
customer will be lost. Note that there are 2n − 1 distinct possibilities for a customer
to shop for the products. As it can be seen, the dimension of the problem grows
exponentially with n. In this paper, we will focus on the case when n = 2. The study
of a multi-server queueing-inventory problem is similar to the one studied here for the
single server case; however, the dimension of the problem increases with the number
of servers.

The rest of the paper is arranged as follows. In Sect. 2, themathematical formulation
of the problem under investigation is given. The structure of the infinitesimal generator
of the underlying continuous time Markov chain is shown to be of the GI/M/1 type.
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Section 3 investigates in detail the system stability. In Sect. 4we provide several system
performance indices. The expected loss rate of customers demanding only one of C1
and C2 or both C1 and C2 are evaluated. These are numerically illustrated in Sect. 5.
Also, analysis of cycle time of commodity Ci , i = 1, 2 is performed. An optimization
problem related to the model under investigation is presented in Sect. 6. Concluding
remarks including future work are given in Sect. 7.

2 Model Description

Consider a two-commodity inventory system with a single server. The maximum
storage capacity for the i th commodity is Si units for i = 1, 2. Demands arrive
according to a Poisson Process of rate λ and demand for each commodity is of unit
size. Customers are not allowed to join the system when inventory levels of both
commodities are zero. However, customers join the system even when the server is
busy with no excess inventory available at hand. This is with the hope that during the
current service the replenishment of the items would take place, so that at the epoch
when taken for service, the item demanded by the customer can be provided. Also
customers are lost when no item of the commodity demanded by them is available at
the time of offering service. At the time when taken for service the customer demands
item Ci with probability pi , for i = 1, 2 or both C1 and C2 with probability p3 such
that p1 + p2 + p3 = 1 . The demanded item is delivered to the customer after a
random duration of service. The service times for processing orders forC1,C2 or both
C1 and C2 are exponentially distributed with parameters μ1, μ2 and μ3 respectively.
We adopt (si , Si ) replenishment policy for commodity Ci , i = 1, 2. That is, whenever
the inventory level of commodity Ci falls to si an order is placed for that alone to
bring the inventory level back to Si , i = 1, 2 at the time of replenishment. The time
till replenishment from the epoch at which order is placed(lead time) is exponentially
distributed with parameters βi for Ci .i = 1, 2

The above problem can be modelled as a continuous time Markov chain of the
GI/M/1 type

{(N (t), I1(t), I2(t), J (t)), t ≥ 0}

where N (t) denotes the number of customers in the queue
Ii (t) denotes the excess inventory level of commodity Ci , i = 1, 2
J (t) denotes the state of the server at time t , where

J (t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if server is idle;
1 if server is busy processing C1;
2 if server is busy processing C2;
3 if server is busy processing C1 and C2.

The state space of the above process is � = ⋃∞
n=0 �(n) where �(n) denotes level

n, �(0)={(0, j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 0 ≤ r ≤ 3}
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and �(n) ={(n, j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3}, n ≥ 1 Thus, the
infinitesimal generator matrix of the Markov chain has the form

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1 B0
B2 A1 A0
B3 A2 A1 A0
B4 A3 A2 A1 A0
...

...
...

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(1)

where
Bn+1, n ≥ 0 contains transitions from �(n) to �(0),

B0 contains the transition from �(0) to �(1),
A1 contains the transitions within �(n) n ≥ 1,
A0 contains transitions from �(n) to �(n+ 1) i ≥ 1
and Ak+1 contains transitions from �(n) to �(n− k), 1 ≤ k ≤ n − 1, n ≥ 2.
Then A0, A1, A2, . . . are squarematrices of dimension a, where a = 3(S1+1)(S2+

1). B1 is a square matrix of dimension b, b = 4(S1 + 1)(S2 + 1). B0, Bi , i ≥ 2, are
of dimensions b × a, a × b, respectively.

Transitions in the Markov chain and the corresponding rates are described below:
The matrix B1 governs,

1. (0, j1, j2, r) → (0, j1, j2, 0) with rate μr for 1 ≤ r ≤ 3, 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤
S2

2. (0, j1, j2, r) → (0, S1, j2, r)with rateβ1 for 0 ≤ r ≤ 3 0 ≤ j1 ≤ s1, 0 ≤ j2 ≤ S2
3. (0, j1, j2, r) → (0, j1, S2, r)with rateβ2 for 0 ≤ r ≤ 3 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ s2
4. (0, 0, 0, r) → (1, 0, 0, r) with rate λ for 1 ≤ r ≤ 3
5. (0, 0, j2, 0) → (0, 0, j2 − 1, 2) with rate λ(p2 + p3) for 1 ≤ j2 ≤ S2
6. (0, j1, 0, 0) → (0, j1 − 1, 0, 1) with rate λ(p1 + p3) for 1 ≤ j1 ≤ S1
7. (0, j1, j2, 0) → (0, j1 − 1, j2, 1) with rate λp1 for 1 ≤ j1 ≤ S1, 1 ≤ j2 ≤ S2
8. (0, j1, j2, 0) → (0, j1, j2 − 1, 2) with rate λp2 for 1 ≤ j1 ≤ S1, 1 ≤ j2 ≤ S2
9. (0, j1, j2, 0) → (0, j1 − 1, j2 − 1, 3) with rate λp3 for 1 ≤ j1 ≤ S1, 1 ≤ j2 ≤ S2

The matrix, Bn+1, n ≥ 1, governs

1. (n, 0, 0, r) → (0, 0, 0, 0) with rate μr for 1 ≤ r ≤ 3
2. (n, 0, j2, r) → (0, 0, j2, 0) with rate μr pn1 for 1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3
3. (n, 0, j2, r) → (0, 0, , j2 − 1, 2) with rate μr p

n−1
1 (p2 + p3) for 1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
4. (n, j1, 0, r) → (0, j1, 0, 0) with rate μr pn2 for 1 ≤ j1 ≤ S1,1 ≤ r ≤ 3
5. (n, j1, 0, r) → (0, j1 − 1, 0, 1) with rate μr p

n−1
2 (p1 + p3) for 1 ≤ j1 ≤ S1,

1 ≤ r ≤ 3
6. (1, j1, j2, r) → (0, j1 − 1, j2, 1) with rate μr p1 for 1 ≤ j1 ≤ S1,1 ≤ j2 ≤

S2,1 ≤ r ≤ 3
7. (1, j1, j2, r) → (0, j1, j2 − 1, 2) with rate μr p2 for 1 ≤ j1 ≤ S1,1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
8. (1, j1, j2, r) → (0, j1−1, j2−1, 3)with rateμr p3 for 1 ≤ j1 ≤ S1,1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
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The matrix, Ak+1, 1 ≤ k ≤ n − 1, n ≥ 3, governs

1. (n, 0, j2, r) → (n − k, 0, j2 − 1, 2) with rate μr p
k−1
1 (p2 + p3) for 1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
2. (n, j1, 0, r) → (n − k, j1 − 1, 0, 1) with rate μr p

k−1
2 (p1 + p3) for 1 ≤ j1 ≤ S1,

1 ≤ r ≤ 3
3. (n, j1, j2, r) → (n−1, j1−1, j2, 1)with rateμr p1 for 1 ≤ j1 ≤ S1, 1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
4. (n, j1, j2, r) → (n−1, j1, j2−1, 2)with rateμr p2 for 1 ≤ j1 ≤ S1, 1 ≤ j2 ≤ S2,

1 ≤ r ≤ 3
5. (n, j1, j2, r) → (n − 1, j1 − 1, j2 − 1, 3) with rate μr p3 for 1 ≤ j1 ≤ S1,

1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

The entries of matrix, A1 are:

1. (n, j1, j2, r) → (n, S1, j2, r) with rate β1 for 0 ≤ j1 ≤ s1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤
3

2. (n, j1, j2, r) → (n, j1, S2, r) with rate β2 for 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ s2, 1 ≤ r ≤
3

Thus, the elements of the matrices can be described as

B0(n, i1, i2, r; m, j1, j2, l)

=
⎧
⎨

⎩

λ, m = n + 1, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, r = l = 1, 2, 3;
j1 = i1, j2 = i2, l = r;

0, otherwise.

B2(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μr , m = n − 1, i1 = i2 = j1 = j2 = 0, r = 1, 2, 3, l = 0;
μr (p2 + p3), m = n − 1, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2 − 1, r = 1, 2, 3, l = 2;
μr p1, m = n − 1, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2, r = 1, 2, 3, l = 0;
μr (p1 + p3), m = n − 1, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

j1 = i1 − 1, r = 1, 2, 3, l = 1;
μr p2, m = n − 1, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

j1 = i1, r = 1, 2, 3, l = 0;
μr p1, m = n − 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, r = 1, 2, 3, l = 1;
μr p2, m = n − 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2;
μr p3, m = n − 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, j2 = i2 − 1, r = 1, 2, 3, l = 3;
0, otherwise.

A0(n, i1, i2, r; m, j1, j2, l)

=
⎧
⎨

⎩

λ, m = n + 1, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, r = 1, 2, 3,
j1 = i1, j2 = i2, l = r;

0, otherwise.
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For 1 ≤ k ≤ i − 1, i ≥ 3,

Ak+1(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μr p
k−1
1 (p2 + p3), m = i − k, 1 ≤ i2 ≤ S2,

i1 = j1 = 0, r = 1, 2, 3, l = 2;
μr p

k−1
2 (p1 + p3), m = i − k, 1 ≤ i1 ≤ S1,

i2 = j2 = 0, r = 1, 2, 3, l = 1;
0, otherwise.

B1(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (β1 + β2), n = m = 0, i1 = i2 = j1 = j2 = 0, k = l = 0;
μr , n = m = 0, 0 ≤ i1, j1 ≤ S1,

0 ≤ i2, j2 ≤ S2, r = 1, 2, 3, l = 0;
β2, n = m = 0, 0 ≤ i1, j1 ≤ S1,

0 ≤ i2 ≤ s2, j2 = S2, r = l = 0, 1, 2, 3;
β1, n = m = 0, 0 ≤ i1 ≤ s1, j1 = S1,

0 ≤ i2, j1 ≤ 1, 2, . . . S2, r = l = 0, 1, 2, 3;
λ(p2 + p3) n = m = 0, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2 − 1, r = 0, l = 2;
λ(p1 + p3) n = m = 0, 1 ≤ i1 ≤ S1, j1 = i1 − 1,

i2 = j2 = 0, r = 0, l = 1;
λp1 n = m = 0, 1 ≤ i1 ≤ S1, j1 = i1 − 1,

1 ≤ i2, j2 ≤ S2, r = 0, l = 1;
λp2 n = m = 0, 1 ≤ i1, j1 ≤ S1,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 0, l = 2;
λp3 n = m = 0, 1 ≤ i1 ≤ S1, 1 ≤ i2 ≤ S2,

j1 = i1 − 1, j2 = i2 − 1, r = 0, l = 3;
− (λ + μr + β1 + β2) n = m = 0, 0 ≤ i1, j1 ≤ s1,

0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;
− (λ(p2 + p3) + β1 + β2) n = m = 0, i1 = j1 = 0,

0 ≤ i2, j2 ≤ s2, r = l = 0;
− (λ(p1 + p3) + β1 + β2) n = m = 0, i2 = j2 = 0,

0 ≤ i1, j1 ≤ s2, r = l = 0;
− (λ + β1 + β2) n = m = 0, 1 ≤ i1, j1 ≤ s1,

1 ≤ i2, j2 ≤ s2, r = l = 0;
− (λ + μr + β1) n = m = 0, 1 ≤ i1 ≤ s1,

s2 + 1 ≤ i2 ≤ S2, r = l = 1, 2, 3;
− (λ + μr + β2) n = m = 0, s1 + 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ s2, r = l = 1, 2, 3;
−(λ + β2) n = m = 0, s1 + 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ s2, r = l = 0;
− (λ + β1) n = m = 0, 1 ≤ i1 ≤ s1,

s2 + 1 ≤ i2 ≤ S2, r = 0;
− λ n = m = 0, s1 + 1 ≤ i1 ≤ S1, j1 = i1,

s2 + 1 ≤ i2 ≤ S2, j2 = i2, r = 0 = l;
0, otherwise.
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For i ≥ 2

Bi+1(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μr , m = 0, i1 = i2 = j1 = j2 = 0, r = 1, 2, 3, l = 0;
μr pi1, m = 0, i1 = j1 = 0,

1 ≤ i2, j2 ≤ S2, r = 1, 2, 3, l = 0;
μr p

i−1
1 (p2 + p3), m = 0, i1 = j1 = 0,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2;
μr p

i−1
2 (p1 + p3), m = 0, 1 ≤ i1 ≤ S1,

j1 = i1 − 1, i2 = j2 = 0, r = 1, 2, 3, l = 1;
μr pi2 m = 0, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

r = 1, 2, 3, l = 0;
0, otherwise.

A2(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μr (p2 + p3), m = n − 1, i1 = 0, 1 ≤ i2 ≤ S2,
j2 = i2 − 1, r = 1, 2, 3, l = 2;

μr (p1 + p3), m = n − 1, 1 ≤ i1 ≤ S1,
i2 = 0, j1 = i1 − 1, r = 1, 2, 3, l = 1;

μr p1, m = n − 1, 1 ≤ i1 ≤ S1,
1 ≤ i2 ≤ S2, j1 = i1 − 1, r = 1, 2, 3, l = 1;

μr p2, m = n − 1, 1 ≤ i1 ≤ S1,
1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2;

μr p3, m = n − 1, 1 ≤ i1 ≤ S1,
1 ≤ i2 ≤ S2, j1 = i1 − 1, j2 = i2 − 1, r = 1, 2, 3, l = 3;

0, otherwise.

A1(n, i1, i2, r; m, j1, j2, l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2, n = m, 0 ≤ i1, j1 ≤ S1,
0 ≤ i2 ≤ s2, j2 = S2, r = l = 1, 2, 3;

β1, n = m, 0 ≤ i1 ≤ s1, j1 = S1,
0 ≤ i2, j2 ≤ 1, 2, . . . S2, r = l = 0, 1, 2, 3;

− (λ + μr + β1 + β2) n = m, 0 ≤ i1, j1 ≤ s1,
0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;

− (λ + μr + β1) n = m, 0 ≤ i1, j1 ≤ s1,
s2 + 1 ≤ i2, j2 ≤ S2, r = l = 1, 2, 3;

− (λ + μr + β2) n = m, s1 + 1 ≤ i1, j1 ≤ S1,
0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;

− (λ + μr ) n = m, s1 + 1 ≤ i1, j1 ≤ S1,
s2 + 1 ≤ i2, j2 ≤ S2, r = 1, 2, 3;

0, otherwise.
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3 Steady-State Analysis

A necessary condition forQ to be irreducible is B1 and A1 are nonsingular. Consider
the matrix A = ∑∞

k=0 Ak . Let the unique stationary distribution of A be π . Under the
condition (Neuts (1981)),

π A0e <

∞∑

k=2

(k − 1)π Ake,

an irreducible Markov chain with generator Q possesss a unique stationary solution
vector x = (x0, x1, x2, . . .) satisfying

xQ = 0, xe = 1.

Partitioning x as x = (x0, x1, x2, . . .) where

x0 = (x0( j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 0 ≤ r ≤ 3),

xi = (xi ( j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3), for i ≥ 1,

where x0 is of dimension 1 × b and xi for i ≥ 1, is of dimension 1 × a Then x is
obtained from

xi = x1Ri−1, i ≥ 2

where R is the minimal non negative solution of the matrix equation
∑∞

k=0 X
k Ak = 0.

The boundary equations are given by

∞∑

r=0

xr Br+1 = 0

x0B0 +
∞∑

r=1

xr Ar = 0

The normalizing condition xe = 1 gives

x0e + x1[I − R]−1e = 1

R matrix is obtained using the algorithm:

R(0) = 0

R(n + 1) = −A0A
−1
1 − R2(n)A2A

−1
1 − R3(n)A3A

−1
1 − . . . , n ≥ 0
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Theorem 3.1 The Markov chain with infinitesimal generatorQ given in (1) is always
stable.

Proof Consider a service completion epoch at which stock of both commodities or at
least one commodity drops to zero. Suppose n customers are waiting in the queue at
this epoch. When both the inventory becomes zero, then all the customers waiting in
the queue will be lost. Suppose that, if one inventory is positive and the other one is
empty. If all of them ask for the same commodity which is not available in stock then
all these customers leave the system instantly. Otherwise, the service will be offered
to a waiting customer (after removing, if any, all those customers who request the item
for which the inventory level is zero) and we repeat this process. Thus, we can think
of this queueing-inventory model as some kind of a catastrophic model in which all
waiting customers will be cleared. Thus, from any level the queue size may drop to
zero with positive probability, however small(as n becomes very large), in a very short
time following a service completion. ��

4 System Characteristics

Next we proceed to compute measures that are indications of the system performance.

• Expected number of customers in the system, EN =
∑∞

n=1
n

∑S1

j1=0

∑S2

j2=0
∑3

r=1
xn( j1, j2, r).

• Expected number of customers demanding C1 alone, EC1 = p1EN .

• Expected number of customers demanding C2 alone, EC2 = p2EN .

• Expected number of customers demanding both C1 and C2, EC12 = p3EN .

• Expected number of item C1 in the system, EI1 =
∑∞

n=0

∑S1

j1=1

∑S2

j2=0
∑3

r=0
j1xn( j1, j2, r).

• Expected number of item C2 in the system, EI2 =
∑∞

n=0

∑S1

j1=0

∑S2

j2=1
∑3

r=0
j2xn( j1, j2, r).

• Probability that server is busy processing a demand for C1 alone,

PC1 =
∑∞

n=1

∑S1

j1=0

∑S2

j2=0
xn( j1, j2, 1).

• Probability that server is busy processing a demand for C2 alone,

PC2 =
∑∞

n=1

∑S1

j1=0

∑S2

j2=0
xn( j1, j2, 2).

• Probability that server is busy processing a demand for both C1 and C2,

PC12 =
∑∞

n=1

∑S1

j1=0

∑S2

j2=0
xn( j1, j2, 3).

• Probability that server is busy, Pbusy =
∑∞

n=1

∑S1

j1=0

∑S2

j2=1

∑3

r=1

xn( j1, j2, r) +
∑∞

n=1

∑S1

j1=1

∑3

r=1
xn( j1, 0, r).

• Probability that inventory C1 alone is zero,

PC10 =
∑∞

n=0

∑S2

j2=0

∑3

r=0
xn(0, j2, r).
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• Probability that inventory C2 alone is zero,

PC20 =
∑∞

n=0

∑S1

j1=0

∑3

r=0
xn( j1, 0, r).

• Probability that both inventory C1 and C2 equal to zero,

P00 =
∑∞

n=0

∑3

r=0
xn(0, 0, r).

• Probability that customer demanding C1 alone is lost,

PC1lost = p1
∑∞

n=1

∑S2

j2=0

∑3

r=1
μr xn(0, j2, r).

• Probability that customer demanding C2 alone is lost,

PC2lost = p2
∑∞

n=1

∑S1

j1=0

∑3

r=1
μr xn( j1, 0, r).

• Probability that customer demanding both C1 and C2 is lost, PC12lost =
p3

∑∞
n=1

∑3

r=1
μr xn(0, 0, r).

• Probability that customer demanding both C1 and C2 is met with C1,

PC121 = p3
∑∞

n=1

∑S1

j1=1

∑3

r=1
μr xn( j1, 0, r).

• Probability that customer demanding both C1 and C2 is met with C2,

PC122 = p3
∑∞

n=1

∑S2

j2=1

∑3

r=1
μr xn(0, j2, r).

• Expected rate of replenishments for item C1,ERC1 = β1

∑∞
n=0

∑s1

j1=0

∑S2

j2=0
∑3

r=0
xn( j1, j2, r).

• Expected rate of replenishments for item C2, ERC2 = β2

∑∞
n=0

∑S1

j1=0

∑s2

j2=0
∑3

r=0
xn( j1, j2, r).

• Expected reorder rate of commodity C1,ER1 = μ1

∑∞
n=0

∑S2

j2=0
xn(s1 +

1, j2, 1).

• Expected reorder rate of commodity C2,ER2 = μ2

∑∞
n=0

∑S1

j1=0
xn( j1, s2 +

1, 2).
• Expected reorder rate of commodityC1 andC2,ER12 = μ3

∑∞
n=0

xn(s1+1, s2+
1, 3).

We now look for additional information needed to optimally design the system.

4.1 Expected Loss Rate of Customers in the Queue Demanding C1 Alone

In order to compute the expected loss rate of customers in the queue demanding C1
alone, consider the Markov chain

{(N (t), I1(t), I2(t), J (t)), t ≥ 0}

where N (t), I1(t), I2(t),J (t)) were as defined in Sect. 2. The state space of the above
process is {(n, 0, j2, r) : 1 ≤ n ≤ K , 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3} ⋃ {�} where {�} is
the absorbing state which represents the state that number of customers in the queue
becomes zero and K ( the size of the queue). It is the maximum value to which the
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queue size can grow. Thus we have a finite state space Markov chain. The possible
transitions and corresponding rates are:

• (n, 0, 0, r) → (0, 0, 0, 0) at the rate μr for r = 1, 2, 3
• (n, 0, j2, r) → (0, 0, j2, 0) at the rate μr pn1 for r = 1, 2, 3
• (n, 0, j2, r) → (n + 1, 0, j2, r) at the rate λ for r = 1, 2, 3
• (n, 0, j2, r) → (n, 0, S2, r) at the rate β2 for r = 1, 2, 3

The infinitesimal generator G of the above Markov chain is of the form

G1 =
[
T1 T 0

1
0 0

]

with initial probability vector

α = (cx1(0, j2, r), cx2(0, j2, r), . . . , cxK (0, j2, r) : 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3),

where

c =
⎧
⎨

⎩

K∑

n=1

S2∑

j2=0

3∑

r=1

xn(0, j2, r)

⎫
⎬

⎭

−1

;

T1 is a matrix of order 3K (S2 + 1) and T 0
1 is a column vector of order 3K (S2 + 1)

such that T1e + T 0
1 = 0.

Hence we arrive at

Theorem 4.1 The expected loss rate of customers in the queue demanding C1 alone
is,

EL1 =
{
−αT−1

1 e
}−1

On similar lines we can compute the expected loss rate of customers in the queue
demanding C2 alone and both C1 and C2. The following results are arrived at, the
details of which are omitted.

Theorem 4.2 The expected loss rate of customers in the queue demanding C2 alone
is

EL1 = {−α1T
−1
2 e}−1

where initial probability vector

α1 = (cx1( j1, 0, r), cx2( j1, 0, r), . . . , cxK ( j1, 0, r) : 0 ≤ j1 ≤ S1, 1 ≤ r ≤ 3),
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and

c =
⎧
⎨

⎩

K∑

n=1

S1∑

j1=0

3∑

r=1

xn( j1, 0, r)

⎫
⎬

⎭

−1

;

and T2 is a matrix of order 3K (S1+1) and T 0
2 is a column vector of order 3K (S1+1)

such that T2e + T 0
2 = 0.

Theorem 4.3 The expected loss rate of customers demanding both C1 and C2 is,

EL12 = {−α2T
−1
3 e}−1 ×

K∑

n=1

3∑

r=1

xn(0, 0, r)

with initial probability vector

α2 = (cx1(0, 0, r), cx2(0, 0, r), . . . , cxK (0, 0, r) : 1 ≤ r ≤ 3),

c =
{

K∑

n=1

3∑

r=1

xn(0, 0, r)

}−1

;

T3 is a matrix of order 3K and T 0
3 is a column vector of order 3K such that T3e+T 0

3 =
0.

4.2 Analysis of C1 Cycle Time

The cycle time of item C1 is defined as the time interval between two consecutive
instants at which its inventory level hits S1 due to replenishment. We assume that
with at most M demands the first return to S1 of C1 takes place. Let us consider a
Markov chain {(N (t), I1(t), I2(t), J (t), D(t)), t ≥ 0}where D(t) denotes the type of
the demand of the commodity; the rest of the notations are as defined in Sect. 2. The
state space of the above process is {(n, j1, j2, r , d) : 0 ≤ n ≤ K , 0 ≤ i1 ≤ S1, 0 ≤
j2 ≤ S2, 1 ≤ r ≤ 3, 1 ≤ d ≤ M} ⋃ {�} where {�} is the absorbing state which
represents the state that level of C1 returns to S1 and K , the maximum size the queue
can grow up. Thus we have a finite state space Markov chain. The possible transitions
and corresponding rates are:

• (n, S1, j2, r , d) → (n − 1, S1 − 1, j2, 1, d) with rate μr p1
• (n, 0, j2, r , d) → (0, 0, j2, 0, d) with rate μr pn1 or (0, 0, , j2 − 1, 2, d) with rate

μr p
n−1
1 (p2 + p3)

• (n, j1, 0, r , d) → (0, j1, 0, 0, d) with rate μr pn2 or (0, j1 − 1, 0, 1, d) with rate
μr p

n−1
2 (p1 + p3)
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• (n, j1, j2, r , d) → (n − 1, j1 − 1, j2, 1, d) with rate μr p1, or to (n − 1, j1, j2 −
1, 2, d) with rate μr p2 or to (n − 1, j1 − 1, j2 − 1, 3, d) with rate μr p3

• (n, 0, j2, r , d) → (n − k, 0, j2 − 1, 2, d) with rate μr p
k−1
1 (p2 + p3)

• (n, j1, 0, r , d) → (n − k, j1 − 1, 0, 1, d) with rate μr p
k−1
2 (p1 + p3)

• (n, j1, j2, r , d) → (n, S1, j2, r , d) with rate β1 for 0 ≤ j1 ≤ s1, 0 ≤ j2 ≤
S2, 1 ≤ r ≤ 3

• (n, j1, j2, r , d) → (n+1, j1, j2, r , d)with rate λ for 0 ≤ n ≤ K−1 for 0 ≤ j1S1,
0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3, 1 ≤ d ≤ M

The infinitesimal generator C of the above Markov chain is of the form

C =
[
D D0

0 0

]

with initial probability vector

γ = (cx0(S1, j2, r), cx1(S1, j2, r), . . . , cxK (S1, j2, r), 0, 0, . . .) : 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3),

where

c =
⎧
⎨

⎩

K∑

n=0

S2∑

j2=0

3∑

r=1

xn(S1, j2, r)

⎫
⎬

⎭

−1

;

D is a matrix of order 3(K + 1)(S1 + 1)(S2 + 1) and D0 is a column vector of order
3(K + 1)(S1 + 1)(S2 + 1) such that De+ D0 = 0. Hence, the expected cycle length
is

{−γ D−1e}.

Similarly the cycle time of item C2 has expected value

{−γ1D
−1
1 e}

where

γ1 = (cx0( j1, S2, r), cx1( j1, S2, r), . . . , cxK ( j1, S2, r), 0, 0, . . .) : 0 ≤ j1 ≤ S1, 1 ≤ r ≤ 3),

where

c =
⎧
⎨

⎩

K∑

n=0

S1∑

j1=0

3∑

r=1

xn( j1, S2, r)

⎫
⎬

⎭

−1

;

D1 is a matrix of order 3(K + 1)(S1 + 1)(S2 + 1).
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5 Numerical Illustration

In this section we provide numerical illustration of the system performance with vari-
ation in values of underlying parameters.

Effect of � onVarious PerformanceMeasures

Table 1 indicates that increase in λ value results in increase in expected number of
customers in the queue, expected loss rate of customers demandingC1 alone,C2 alone,
both C1 and C2. As λ increases there is a decrease in the expected number of items in
the inventory. Also, as λ increases reorder rates for C1 alone, C2 alone, both C1 and
C2 also increase. These are all natural consequences of increase in arrival rate.

Effect of�1 onVarious PerformanceMeasures

Table 2 indicates that increase in service rateμ1 for processing commodity 1, makes
decrease in expected number of customers in the system. As μ1 increases there is
a slight decrease initially in the expected number of C1, then it shows increasing
tendency. There is increase in expected loss rate of customers demanding C1 alone
initially and then remains constant and then it increases. Reorder rates forC1 alone,C2
alone, for bothC1 andC2 remains constant. Expected value ofC2 decreases. Expected
loss rate of customers demanding C2 alone increases and loss rate demanding both C1
and C2 decreases.
Similarly we can see the effect of μ2 and μ3 on various performance measures.

Table 1 Effect of λ: Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, μ1 = 2, μ2 = 3, μ3 = 4, β1 = 2, β2 =
3, p1 = 0.1, p2 = 0.1, p3 = 0.8

λ EC EC1 EC2 EL1 EL2 EL12 RC1 RC2 RC12

1 0.1202 6.7153 9.8163 0.0063 0.0064 1.5765 × 10−6 0.0135 0.0090 0.0095

2 0.7984 6.4346 9.6441 0.0109 0.0111 1.0875 × 10−4 0.0256 0.0189 0.0173

2.5 1.8468 6.3055 9.5655 0.0133 0.0136 4.0599 × 10−4 0.0313 0.0247 0.0205

Table 2 Effect of μ1: Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, μ2 = 2, μ3 = 3, β1 = 2, β2 =
3, p1 = 0.1, p2 = 0.1, p3 = 0.8

μ1 EC EC1 EC2 EL1 EL2 EL12 RC1 RC2 RC12

1 0.3669 6.7168 9.8208 0.0057 0.0058 3.6197 × 10−6 0.0135 0.0090 0.0095

1.5 0.2570 6.7131 9.8145 0.0059 0.0059 2.1050 × 10−6 0.0135 0.0090 0.0095

2 0.2196 6.7123 9.8119 0.0059 0.0061 1.7035 × 10−6 0.0135 0.0090 0.0095

2.5 0.2022 6.7123 9.8107 0.0059 0.0061 1.5593 × 10−6 0.0135 0.0090 0.0095

3 0.1926 6.7126 9.8110 0.0060 0.0062 1.4964 × 10−6 0.0135 0.0090 0.0095
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Effect ofˇ1 onVarious PerformanceMeasures

Table 3 indicates that as the replenishment rate for the first commodity increases
expected number of customers in the queue increases and then remains constant.
Expected number of itemsC1 increases but that ofC2 remains constant. Expected loss
rate of customers demanding C1 alone is constant, but those for C2 alone and both
C1 and C2 decrease. Reorder rates for C1 alone and both C1 and C2 increases and
for C2 alone decreases and then remains constant. Similarly effect of β2 on various
performance measures can be seen.

6 Optimization Problem

We now construct an optimization problem involving costs for holding, procurement
and due to loss of demands when the item asked for is not available. Consider the cost
function,

hEC + c1EI1 + c2EI2 + c3EL1 + c4EL2 + c5EL12 + c6ER1 + c7ER2 + c8ER12

where
h : holding cost per customer per unit time,
ci : per unit holding cost of Ci per unit time,for i = 1, 2,
ci , for i = 3, 4, 5: cost due to loss of customer demanding C1 alone, C2 alone and

both C1 and C2 respectively,
ci for i = 6, 7, 8: fixed procurement cost for C1, C2, and both C1 and C2 respec-

tively.

Table 3 Effect of β1: Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, μ1 = 2, μ2 = 3, μ3 = 3, β2 =
3, p1 = 0.1, p2 = 0.1, p3 = 0.8

β1 EC EC1 EC2 EL1 EL2 EL12 RC1 RC2 RC12

1 0.1917 6.4335 9.8120 0.0061 0.0064 4.3735 × 10−6 0.0127 0.0097 0.0090

1.5 0.1921 6.6183 9.8120 0.0061 0.0062 2.5750 × 10−6 0.0132 0.0091 0.0093

2 0.1922 6.7103 9.8120 0.0061 0.0061 1.6445 × 10−6 0.0135 0.0090 0.0095

2.5 0.1923 6.7652 9.8120 0.0061 0.0061 1.1078 × 10−6 0.0137 0.0089 0.0097

3 0.1923 6.8018 9.8120 0.0061 0.0060 7.7633 × 10−7 0.0138 0.0089 0.0098

Table 4 Value of cost function for various (S1, S2): Fix s1 = 4, s2 = 5, h = 3, c1 = 5, c2 = 8, c3 =
15, c4 = 20, c5 = 10, c6 = 100, c7 = 150, c8 = 200

(S1, S2) (9,10) (10,11) (11,12) (12,13)

Cost 108.9064 112.8852 117.7741 123.1719
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In the absence of analytical expressions for system state distribution, discussions
on global optimum is impossible. However, cost for various (si , Si ) for i = 1, 2 is
given below (Table 4):

7 Conclusion

We analyzed a two-commodity queueing inventory problem with Poisson arrival of
demands.Customers reveal their requirement at the timewhen taken for service. If item
demanded is not available, the customer leaves the system forever. If both items are
demanded when taken for service and only one item is available, then the customer is
served that item. Service times are exponentially distributedwith parameter depending
on the type of demand. The lead times for i th commodity is exponentially distributed
with parameter βi , 1 = 1, 2. The continuous time Markov chain is seen to be of
GI/M/1 type. The system is shown to be stable. Several system performance indices
are derived and numerical illustration provided. An optimization problem is set up and
its numerical investigation is carried out.

Extension of the model discussed to n− commodity systemwithMAP and PH type
service time with representation depending on the commodity served is proposed. If
’emergency purchase’ is made whenever inventory level of an item drops to zero
without cancelling replenishment order seems to produce product form solution. This
is also proposed to be investigated.
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