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Abstract We present a unified approach for the development and the study of discrete
and continuous Laplace-type distributions. As illustrations, we used the proposed
approach to develop and study Laplace-type versions of the generalized Pareto, the
Geometric, the Poisson and the Negative Binomial distributions.
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1 Introduction and Preliminaries

The Laplace distribution (LD) has been studied extensively in the literature. A number
of important representations of the LD are given and studied in Kotz et al. [11]. In this
paper we present and study in detail two of these representations (transformations) and
use them to present a unified approach for the development and the study of discrete
and continuous Laplace-type distributions. These transformations are defined next.

Definition 1 The Random Sign Transformation (RST). Assume X and Y are inde-
pendent rv and Y is Bernoulli(β). The RST transformation of X is given by

Z1 = (2Y − 1) X.
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Definition 2 The Random SignMixture Transformation (RSMT). Assume X1, X2,Y
are independent rv and Y is Bernoulli(β). The RSMT of X1 and X2 is given by

Z2 = Y X1 − (1 − Y ) X2.

Note that the RST is a special case of the RSMT.
The cumulative distribution function (CDF), the quantile function (QF), the prob-

ability density function (pd f ) and the moment generating function (MGF) of the
random variable V will be denoted, respectively, by FV (·), F−1

V (·), fV (·) and MV (·).
The entropy (Shannon [19]) of V is defined as H(V ) = −E {ln( fV (V )} . The relia-
bility of V relative to the random variable U is defined as R(V,U ) = P(U < V ).
For any 0 ≤ α ≤ 1, we write α = 1 − α.

Lemma 1 The following results hold for Z1 of the RST:

MZ1(t) = βMX (t) + βMX (−t), (1)

FZ1(x) = βFX (x) + β(1 − FX (−x)) and fZ1(x) = β fX (x) + β fX (−x), (2)

Z+
1 = Y X+ + (1 − Y ) X−, Z−

1 = Y X− + (1 − Y ) X+ and |Z1| d= |X | , (3)

For r = 2, 4, . . . , Zr
1

d= Xr and, obviously E(Zr
1) = E(Xr ), (4)

For r = 1, 3, 5, . . . , Zr
1

d= (2Y − 1) Xr and E(Zr
1) = (2β − 1) E(Xr ), (5)

Var(Z1) = Var(X) + 4ββ (E(X))2 , (6)

E(Z1 − E(Z1))
3 = (2β − 1) E(X − E(X))3 − 8ββ (2β − 1) E(X3) (7)

and

E(Z1 − E(Z1))
4 = E(X − E(X))4 + 16ββE(X3)E(X) − 24ββE(X2) (E(X))2

+24ββ (E(X))4
(
1 − 2ββ

)
. (8)

Proof By

MZ1(t) = E
{
et (2Y−1)X

}
= E

{
E
{
et (2Y−1)X

∣
∣∣ Y
}}

= E {MX (t (2Y − 1))}
= βMX (t) + βMX (−t)

we get (1). Similarly we get (2). For (3) we note that Z+
1 equals X+ if Y = 1 and

(−X)+ = X− if Y = 0. Similarly, Z−
1 equals X− if Y = 1 and (−X)− = X+ if

Y = 0. The proofs of (4) and (5) are straight forward. By (4) and (5) we obtain

E(Z1) = (2β − 1) E(X),

E(Z2
1) = E(X2),

E(Z3
1) = (2β − 1) E(X3)
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and

E(Z4
1) = E(X4),

Hence (6)–(8) are obtained by straightforward computation.

Lemma 2 The following results hold for Z2 of the RSMT:

MZ2(t) = βMX1(t) + βMX2(−t), (9)

FZ2(x) = βFX1(x) + β(1 − FX2(−x)) and fZ2(x) = β fX1(x) + β fX2(−x)

(10)

Z+
2 = Y X+

1 + (1 − Y ) X−
2 , Z−

2 = Y X−
1 + (1 − Y ) X+

2 and |Z2|
d= Y |X1| + (1 − Y ) |X2| (11)

Zr
2

d= Y Xr
1 + (−1)r (1 − Y ) Xr

2 and E(Zr
2) = βE(Xr

1) + (−1)rβE(Xr
2),

r = 1, 2, . . . (12)

and

Var(Z2) = βVar(X1) + βVar(X2) + ββ {E(X1) + E(X2)}2 . (13)

Proof By

MZ2(t) = E
{
et(Y X1−(1−Y )X2)

}
= E

{
E
{
et(Y X1−(1−Y )X2)

∣∣∣ Y
}}

= E
{
MX1(tY )MX2(t (1 − Y ))

}

= βMX1(t) + βMX2(−t)

we get (9). Similarly we get (10). For (11) we note that Z+
2 equals X+

1 if Y = 1 and
(−X2)

+ = X−
2 if Y = 0. Similarly, Z−

2 equals X−
1 if Y = 1 and (−X2)

− = X+
2 if

Y = 0. The proof of (12) is straight forward. By (12) we obtain (13) using

E(Z2) = βE(X1) − βE(X2) and E(Z2
2) = βE(X2

1) + βE(X2
2).

Definition 3 The difference transformation (DT). Assume X1, X2 are independent
rv. The DT of X1 and X2 is given by

Z3 = X1 − X2.

Different versions of the LD are obtained using the DT, the RST and the RSMT as
explained next (see, for example, Sections 2.2 and 3.2 of Kotz et al. [11]). The RST
when X has the exponential distribution with mean λ (X ∼ EX P(λ)), results in the
LD,
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fZ1(x) =
{

β
λ
e
x
λ , x < 0

β
λ
e− x

λ , x ≥ 0
.

The RSMT, Z2 = Y X1 − (1 − Y ) X2, with Xi ∼ EX P(λi ), i = 1, 2 and X1, X2 and
Y are independent, results in the LD,

fZ2(x) =
{

β
λ2
e

x
λ2 , x < 0

β
λ1
e
− x

λ1 , x ≥ 0
. (14)

TheDT, Z3 = X1−X2,with Xi ∼ EX P(λi ), i = 1, 2 and X1 and X2 are independent
results in the LD,

fZ3(x) = 1

λ1 + λ2

{
e

x
λ2 , x < 0

e
− x

λ1 , x ≥ 0
.

Note that taking β = λ1
λ1+λ2

in (14) results in Z2
d= Z3.

In general, the RSMT and the DT result in two different distributions. For example,
when X1 and X2 are i id uniform rv on (0, 1), the DT results in

fZ3(z) = 1 − |z| ,−1 ≤ z ≤ 1

while the RSMT results in

fZ2(z) =
{

β, −1 ≤ z < 0
β, 0 ≤ z ≤ 1

.

Another more general example is as follows. Let X1 and X2 be independent rv with
E(Xi ) = μi and Var(Xi ) = σ 2

i , i = 1, 2. In this case the DT results in E(Z3) =
μ1 − μ2 and Var(Z3) = σ 2

1 + σ 2
2 , whereas the RSMT with β = μ1

μ1+μ2
results in

E(Z2) = μ1 − μ2 and Var(Z2) = 1
μ1+μ2

{
μ1σ

2
1 + μ2σ

2
2 + μ1μ2 (μ1 + μ2)

}
.

The RST, RSMT and DT are most useful when applied to nonnegative rv to create
new rv with negative and positive values. In this paper we will focus our attention on
the RST and RSMT when applied to nonnegative rv

In Sects. 2 and 3 we study in details the RST and the RSMT of nonnegative rv.
In Sect. 4 we introduce and study the Double Generalized Pareto distributions. In
Sect. 5 we introduce and study new double discrete distributions based on the discrete
Generalized Pareto, the Geometric, the Poisson, the Binomial and the Negative Bino-
mial distributions. In Sect. 6 we consider the distributions of sums of independent rv
obtained using the RST and the RSMT of nonnegative rv. In Sect. 7 we apply the
Double Poisson distribution to two real data sets.
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2 The RST of a Nonnegative rv

We assume in this section that X ≥ 0 in the RST.

Lemma 3 In addition to Lemma 1, the following results hold

1. Z+
1 = Y X, Z−

1 = (1 − Y ) X and |Z1| d= X
2. E

(|Z1|r
) = E(Xr ), for r = 1, 2, 3, . . .

3.

FZ1(x) =
{

β(1 − FX (|x |)), x < 0
β + βFX (x), x ≥ 0

, (15)

fZ1(x) =
{

β fX (|x |), x < 0
β fX (x), x ≥ 0

(16)

and

F−1
Z1

(t) =
⎧
⎨

⎩

−F−1
X (1 − t

β
), 0 < t ≤ β

F−1
X

(
t−β
β

)
, β ≤ t < 1

.

Lemma 4 The entropy of Z1 is given by

H(Z1) = H(Y ) + H(X),

if X is continuous and

H(Z1) = (1 − fX (0)) H(Y ) + H(X)

if X is discrete, where

H(Y ) = −β ln β − β ln β. (17)

We will not give a proof of Lemma 4 because it follows from Lemma 7 as a special
case.

Lemma 5 For i = 1, 2, assume that Yi ∼ Bernoulli(βi ), Xi > 0 is continuous and
Z1,i = (2Yi − 1)Xi , where Y1,Y2, X1 and X2 are independent. Then,

R(Z1,1, Z1,2) = β2 + (β1 + β2 − 1) R(X1, X2). (18)

Proof Note that (18) follows from (15), (16) and

R(Z1,1, Z1,2) =
∫ ∞

−∞
FZ1,2(x) fZ1,1(x)dx

=
∫ 0

−∞
β2
(
1 − FX2(−x)

)
β1 fX1(−x)dx +

∫ ∞

0

(
β2
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+β2FX2(x)
)
β1 fX1(x)dx

= β1β2

∫ 0

−∞
fX1(−x)dx − β1β2

∫ 0

−∞
FX2(−x) fX1(−x)dx

+ β1β2

∫ ∞

0
fX1(x)dx + β1β2

∫ ∞

0
FX2(x) fX1(x)dx

= β1β2 − β1β2R(X1, X2) + β1β2 + β1β2R(X1, X2).

Theorem 1 Assume that T (X) is the MLE of θ based on a random sample
from fX (x; θ) and let IX (θ) be the corresponding Fisher information Matrix. Let
Z1,1, Z1,2, . . . , Z1,n be a random sample from

fZ1(z; θ, β) =
{

β fX
(|z| ; θ

)
, z < 0

β fX (z; θ), z ≥ 0
.

Assume that 0 < n1 =∑ I (z1,i ≥ 0) < n. Let β̂ and θ̂ be the MLE of β and θ . Then,

1.

θ̂ = T (
∣∣Z1,1

∣∣ ,
∣∣Z1,2

∣∣ , . . . ,
∣∣Z1,n

∣∣) (19)

2. If X is continuous

β̂ = n1
n

. (20)

3. If X is discrete with fX (0; θ) > 0

β̂ =
∑

I (z1,i > 0)
∑

I (z1,i > 0) +∑ I (z1,i < 0)
. (21)

4.

√
n

(
β̂ − β

θ̂ − θ

)
d−→ N

(
0,

[
β (1 − β) 0

0 I−1
X (θ)

])
. (22)

Proof For simplicity, we will prove the results when X is continuous and θ has dimen-
sion 1. The LF of the sample is given by

L(θ, β; z1) = βn1 (1 − β)n−n1
∏n

i=1 fX (
∣
∣z1,i

∣
∣ ; θ).

Hence we obtain (19) and (20). Note that

∂2 ln fZ1(x; θ, β)

∂β2 =
{− 1

(1−β)2
, x < 0

− 1
β2 , x ≥ 0

,
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∂2 ln fZ1(x; θ)

∂θ2
=
{

∂2 ln fX (|x |;θ)

∂θ2
, x < 0

∂2 ln fX (x;θ)

∂θ2
, x ≥ 0

and

∂2 ln fZ1(x; θ, β)

∂β∂θ
= 0.

Hence

−E

{
∂2 ln fZ1(Z1; θ, β)

∂β2

}
= −β

(
− 1

β2

)
− β

(
− 1

(1 − β)2

)
= 1

β (1 − β)

and

−E

{
∂2 ln fZ1(Z1; θ, β)

∂θ2

}
= −βE

{
∂2 ln fX (|Z1| ; θ)

∂θ2

}
− βE

{
∂2 ln fX (|Z1| ; θ)

∂θ2

}

= −E

{
∂2 ln fX (X; θ)

∂θ2

}
= IX (θ).

This proves (22).

3 The RSMT of Nonnegative rv

We assume in this section that X1 ≥ 0 and X2 ≥ 0 in the RSMT.

Lemma 6 In addition to the results of Lemma 2 we have

1. |Z2| d= Y X1 + (1 − Y ) X2

2. |Z2|r d= Y Xr
1 + (1 − Y ) Xr

2 and E
(|Z2|r

) d= βE
(
Xr
1

)+ βE
(
Xr
2

)

3.

FZ2(x) =
{

β(1 − FX2(|x |)), x < 0
β + βFX1(x), x ≥ 0

,

fZ2(x) =
{

β fX2(|x |), x < 0
β fX1(x), x ≥ 0

and

F−1
Z2

(t) =
⎧
⎨

⎩

−F−1
X2

(1 − t
β
), 0 < t ≤ β

F−1
X1

(
t−β
β

)
, β ≤ t < 1

.

Lemma 7 Let H(Y ) be as in (17). For the entropy of Z2 we have
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1. If X1 and X2 are continuous or X1 and X2 are discrete with fX1(0)· fX2(0) = 0,
then

H(Z2) = H(Y ) + βH(X1) + βH(X2). (23)

2. If X1 and X2 are discrete with fX1(0)· fX2(0) > 0, then

H(Z2) = βH(X1) + βH(X2) + H(Y ) + β fX1(0) ln

(
β fX1(0)

β fX1(0) + β fX2(0)

)

+ β fX2(0) ln

(
β fX2(0)

β fX1(0) + β fX2(0)

)

. (24)

Proof We will prove only (24). Assume that X1 and X2 are discrete with fX1(0)·
fX2(0) > 0. Then,

fZ2(x) =
⎧
⎨

⎩

β fX2(|x |) , x = −1,−2, . . .
β fX1(0) + β fX2(0) , x = 0

β fX1(x) , x = 1, 2, . . .
.

Note that (24) follows from

H(Z2) = − β

−∞∑

−1

fX2 (|x |) ln(β fX2 (|x |)) − (β fX1 (0) + β fX2 (0)
)
ln
(
β fX1 (0) + β fX2 (0)

)

− β

∞∑

1

fX1 (x) ln(β fX1 (x)),

− β

−∞∑

−1

fX2 (|x |) ln(β fX2 (|x |)) = −β

∞∑

0

fX2 (x) ln(β fX2 (x)) + β fX2 (0) ln(β fX2 (0))

=βH(X2) − β ln β + β fX2 (0) ln(β fX2 (0))

and

−β

∞∑

1

fX1(x) ln(β fX1(x)) = βH(X1) − β ln β + β fX1(0) ln(β fX1(0)).

Remarks 1. If fX1(0) = fX2(0) = p in (24), then

H(Z2) = βH(X1) + βH(X2) + (1 − p) H(Y ).

2. Lemma 4 is the special case of Lemma 7 when X1
d= X2.
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Lemma 8 For i = 1, 2, assume that Yi ∼ Bernoulli(βi ), Xi, j > 0, j = 1, 2 are
continuous and Z2,i = Yi Xi,1 − (1 − Yi ) Xi,2, where Y1,Y2 and the X ′s are indepen-
dent. Then,

R(Z2,1, Z2,2) = β2 − β1β2R(X1,2, X2,2) + β1β2R(X1,1, X2,1).

The proof of Lemma 8 is parallel to that of Lemma 5.

Remark In the rest of this paper when the X ′s of the RSMT are discrete we will
assume that fX2(0; θ2) = 0.

Theorem 2 Assume, for j = 1, 2, that T j,m(X j ) is the MLE of θ j based on a ran-
dom sample of size m from fX j (x; θ j ) and let IX j (θ j ) be the corresponding Fisher
information Matrix. Let Z2,1, Z2,2, . . . , Z2,n be a random sample from

fZ2(z; θ1, θ2, β) =
{

β fX2(|z| ; θ2), z < 0
β fX1(z; θ1), z ≥ 0

.

Assume, without any loss of generality that z2,i ≥ 0, i = 1, 2, . . . , n1, 0 < n1 < n
and z2,i < 0, i = n1 + 1, . . . , n. Let β̂, θ̂1 and θ̂2 be the MLE of β, θ1 and θ2. Then,

β̂ = n1
n

, (25)

θ̂1 = T 1,n1(z2,1, z2,2, . . . , z2,n1), (26)

θ̂2 = T 2,n−n1(−z2,n1+1,−z2,n1+2, . . . ,−z2,n) (27)

and

√
n

⎛

⎝
β̂ − β

θ̂1 − θ1
θ̂2 − θ2

⎞

⎠ d−→ N

⎛

⎜
⎝0,

⎡

⎢
⎣

β (1 − β) 0 0
0 1

β
I−1
X1

(θ1) 0

0 0 1
β
I−1
X2

(θ2)

⎤

⎥
⎦

⎞


⎠ . (28)

Proof For simplicity, we will prove the results when both θ1 and θ2 have dimension
1. It is clear that (25)–(27) follow from the result that the LF of the sample is given
by

L(θ1, θ2, β; z2) = βn1 (1 − β)n−n1
∏n1

i=1 fX1(z2,i ; θ1)
∏n

i=n1+1 fX2(
∣
∣z2,i

∣
∣ ; θ2).

Note that

−E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂β2

}
= −β

(
− 1

β2

)
− β

(
− 1

(1 − β)2

)
= 1

β (1 − β)
,

−E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂θ21

}

= −βE

{
∂2 ln fX1(X1; θ1)

∂θ21

}

= β IX1(θ1),
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−E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂θ22

}

= −βE

{
∂2 ln fX2(X2; θ2)

∂θ22

}

= β IX2(θ2)

and

E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂β∂θ1

}
= E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂β∂θ2

}

= E

{
∂2 ln fZ2(Z2; θ1, θ2, β)

∂θ1∂θ2

}
= 0.

This completes the proof of (28).

Next we consider the special case when X1 and X2 are from the same family but
with some common parameters. In this case

fZ2(z; δ, θ1, θ2, β) =
{

β f (|z| ; δ, θ2), z < 0
β f (z; δ, θ1), z ≥ 0

.

Theorem 3 Let β̂, δ̂, θ̂1 and θ̂2 be the MLE of β, δ, θ1 and θ2 based on a random
sample Z2,1, Z2,2, . . . , Z2,n from

fZ2(z; δ, θ1, θ2, β) =
{

β f (|z| ; δ, θ2) , z < 0
β f (z; δ, θ1) , z ≥ 0

.

Assume that Fisher information Matrix associated with f (x; δ, θ) is given by

I (δ, θ) = [Ii j (δ, θ)
]
i, j=1,2

and 0 <
∑n

i=1 I (Z2,i > 0) < n. Then,

β̂ =
∑n

i=1 I (Z2,i > 0)

n
,

and δ̂, θ̂1 and θ̂2 are obtained by solving the normal equations

n∑

i=1

∂ ln f (z2,i ; δ, θ1)

∂δ
I (z2,i > 0) +

n∑

i=1

∂ ln f (
∣
∣z2,i

∣
∣ ; δ, θ2)

∂δ
I (z2,i < 0) = 0,

n∑

i=1

∂ ln f (z2,i ; δ, θ1)

∂θ1
I (z2,i > 0) = 0

and

n∑

i=1

∂ ln f (
∣
∣z2,i

∣
∣ ; δ, θ2)

∂θ2
I (z2,i < 0) = 0.
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In addition, we have

√
n

⎛

⎜⎜
⎝

β̂ − β

δ̂ − δ

θ̂1 − θ1
θ̂2 − θ2

⎞


⎠

d−→ N

(
0,

[
β (1 − β) 0

0 I−1(δ, θ1, θ2)

])
,

where

I (δ, θ1, θ2) =
⎡

⎣
β I11(δ, θ1) + β I11(δ, θ2) β I12(δ, θ1) β I12(δ, θ2)
β I12(δ, θ1) β I22(δ, θ1) 0
β I12(δ, θ2) 0 β I22(δ, θ2)

⎤

⎦ .

4 The Double Generalized Pareto distributions

Following the notation of de Zea Bermudez and Kotz [6], the rv X has the two
parameter Generalized Pareto distribution GP(κ, σ ) if its CDF and pd f are given
by

F(x) = 1 −
(
1 − κx

σ

) 1
κ

, κ 	= 0

and

f (x) = 1

σ

(
1 − κx

σ

) 1
κ
−1

, κ 	= 0,

with 0 ≤ x ≤ σ
κ
if κ > 0 and 0 ≤ x < ∞ if κ < 0. Smith [22] proved the asymptotic

Normality of the MLE of κ and σ , for κ < 0.5.
The first Double Generalized Pareto distribution, denoted by DGP(β, κ, σ ), is

obtained using the RST when X has the GP(κ, σ ). By Lemma 1, the CDF, QF and
pd f of the DGP(β, κ, σ ) are given by

FZ1(x) =
⎧
⎨

⎩

1 − β
(
1 − κx

σ

) 1
κ , x ≥ 0

β
(
1 − κ|x |

σ

) 1
κ

, x < 0
,

F−1
Z1

(t) =
⎧
⎨

⎩

−σ
κ

(
1 −

(
t
β

)κ)
, 0 < t ≤ β

σ
κ

(
1 −

(
1−t
β

)κ)
, β ≤ t < 1

and

fZ1(x) =
⎧
⎨

⎩

β
σ

(
1 − κx

σ

) 1
κ
−1

, x ≥ 0

β
σ

(
1 − κ|x |

σ

) 1
κ
−1

, x < 0
.
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TheMLEof the parameters of DGP(β, κ, σ ) and the corresponding asymptotic theory
are obtained using Theorem 1 and the results of Smith [22].

Note that DGP( 12 , κ, σ ) appeared in the work of Armagan et al. [2] andWang [24].
Nadarajah et al. [13] studied in details the distribution of DGP( 12 , κ, σ ) and obtained
the maximum likelihood estimators of its parameters.

The second distribution, denoted by DGP(β, κ1, σ1; κ2, σ2), is obtained by assum-
ing in the RSMT that Xi has theGP(κi , σi ), i = 1, 2. For this distribution, by Lemma
2, we have

FZ2(x) =

⎧
⎪⎨

⎪⎩

1 − β
(
1 − κ1x

σ1

) 1
κ1 , x ≥ 0

β
(
1 − κ2|x |

σ2

) 1
κ2 , x < 0

,

F−1
Z2

(t) =
⎧
⎨

⎩

−σ2
κ2

(
1 −

(
t
β

)κ2
)

, 0 < t ≤ β

σ1
κ1

(
1 −

(
1−t
β

)κ1
)

, β ≤ t < 1

and

fZ2(x) =

⎧
⎪⎨

⎪⎩

β
σ1

(
1 − κ1x

σ1

) 1
κ1

−1
, x ≥ 0

β
σ2

(
1 − κ2|x |

σ2

) 1
κ1

−1
, x < 0

.

Other important special cases ofDGP(β, κ1, σ1; κ2, σ2) areDGP(β, κ, σ1; κ, σ2),

DGP( 12 , κ1, σ1; κ2, σ2), DGP( 12 , κ, σ1; κ, σ2), DGPD(β, κ1, σ ; κ2, σ ) and
DGP( 12 , κ1, σ ; κ2, σ ). In any of these special cases the MLE of the parameters and
the corresponding asymptotic theory are obtained using Theorem 2 or 3 and the results
of Smith [22].

The rv X has the Generalized Pareto(IV) distribution GP-I V (κ, σ, γ ) if its CDF
and pd f are given by

F(x) = 1 −
⎛

⎝1 − κ
( x
σ

) 1
γ

⎞

⎠

1
κ

, κ 	= 0

and

f (x) = x
1
γ −1

γ σ
1
γ

(
1 − κ

( x
σ

) 1
γ

) 1
κ
−1

, κ 	= 0,

where γ > 0 and 0 ≤ x ≤ σ
κγ if κ > 0 and 0 ≤ x < ∞ if κ < 0. The information

Matrix for the parameters of GP-I V (κ, σ, γ ) is given in Barazauskas [4].
Similar to DGP(β, κ, σ ) we can use the RST to obtain the first Double General-

ized Pareto (IV) distribution, denoted by DGP-I V (β, κ, σ, γ ). In addition, similar to
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DGP(β, κ1, σ1; κ2, σ2) we can use the RSMT to obtain the second Double General-
ized Pareto (IV) distribution, denoted by DGPD-I V (β, κ1, σ1, γ1; κ2, σ2, γ2).

5 Double Discrete Distributions

The development of integer-valued rv with negative and positive support has received
increased attention in the past decade, see for example, Skellam [21], Kozubowski
and Inusah [12], Alzaid and Omair [1], Barbiero [5], Seetha Lekshmi and Sebastian
[18] and Bakouch et al. [3]. Integer-valued rv with negative and positive support have
recently been used in the developement of stationary integer-valued Time Series with
negative and positive support. Some exmples of thesesmodels are given in Freeland [8]
and Nastić et al. [14].

In this section we introduce and study a number of double discrete distributions
using the RST and the RSMT. To avoid facing the issue of identifiably at zero when
using the RSMT for discrete rv we only use distributions for X1 and X2 such that
fX1(0)· fX2(0) = 0. In the following, without any loss of generality, we will assume
that fX2(0) = 0.

5.1 The Double Discrete Generalized Pareto Distributions

The rv X has the two parameter Discrete Generalized Pareto distribution DGP(κ, σ )

(See Buddana and Kozubowski [7] for an alternative definition) if its CDF and pd f
are given by

F(x) = 1 −
(
1 − κ (
x� + 1)

σ

) 1
κ

, κ 	= 0

and

f (x) =
(
1 − κx

σ

) 1
κ −

(
1 − κ (x + 1)

σ

) 1
κ

, κ 	= 0

where 
·� is the floor function and x = 0, 1, . . . ,
⌊

σ
κ

⌋−1 if κ > 0 and x = 0, 1, 2, . . .
if κ < 0.

The first Double Discrete Generalized Pareto distribution, denoted by DDGP-
I (β, κ, σ ), is obtained using the RST when X has the DGP(κ, σ ). By Lemma 1, the
CDF and pd f of the DDGP(β, κ, σ ) are given by

FZ1(x) =

⎧
⎪⎨

⎪⎩

1 − β
(
1 − κ(
x�+1)

σ

) 1
κ

, x ≥ 0

β
(
1 − κ(−
x�)

σ

) 1
κ

, x < 0
,
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and

fZ1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

β

{(
1 − κx

σ

) 1
κ −

(
1 − κ(x+1)

σ

) 1
κ

}
, x = 0, 1, . . .

β

{(
1 − κ|x |

σ

) 1
κ −

(
1 − κ(|x |+1)

σ

) 1
κ

}
, x = −1,−2, . . .

.

The second distribution, denoted by DDGP-I I (β, κ1, σ1, κ2, σ2), is obtained by
assuming in the RSMT that X1 ∼ DGP(κ1, σ1) and X2 ∼ (DGP(κ2, σ2) + 1) . For
this distribution, by Lemma 2, we have

FZ2(x) =

⎧
⎪⎨

⎪⎩

1 − β
(
1 − κ1(
x�+1)

σ1

) 1
κ1 , x ≥ 0

β
(
1 − κ2(−
x�−1)

σ2

) 1
κ2 , x < 0

and

fZ2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

β

{(
1 − κ1x

σ1

) 1
κ1 −

(
1 − κ1(x+1)

σ1

) 1
κ1

}
, x = 0, 1, 2, . . .

β

{(
1 − κ2(|x |−1)

σ2

) 1
κ2 −

(
1 − κ2|x |

σ2

) 1
κ2

}
, x = −1,−2, . . .

.

Important special cases of DDGP-I I (β, κ1, σ1; κ2, σ2) are DDGP-I I

(β, κ, σ1, σ2)
d= DDGP-I I (β, κ, σ1, κ, σ2) and DDGP-I I (β, κ1, κ2, σ )

d=
DDGP-I I (β, κ1, σ, κ2, σ ).

5.2 The Double Geometric Distributions Using the RST

The rv U is said to have the Geometric Geo1(θ) (resp. Geo0(θ)) if its pd f is given
by fU (x) = θθ x−1, x = 1, 2, . . . (resp., fU (x) = θθ x , x = 0, 1, 2, . . .). Note that for
U ∼ Geo1(θ) we have FU (x) = 1 − θ
x�, x ≥ 0, E(U ) = 1

θ
, Var(U ) = θ

θ
2 and

MU (t) = θet

1 − θet
.

For both Geo1(θ) and Geo0(θ), I (θ) = 1

θθ
2 .

Consider theRST Z1 = (2Y − 1) X,whereY ∼ Bernoulli(β) and X isGeometric
rv and X and Y are independent. Depending on the distribution of X we have two
Double Geometric distributions. The MLE of the parameters and the corresponding
asymptotic theory are obtained using Theorem 1 and the well known results for the
MLE of the Geometric distribution.
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5.2.1 DG − I (β, θ)

Using X ∼ Geo1(θ) in the RST we obtain DG − I (β, θ). For this distribution we
have

1. fZ1(x) =
⎧
⎨

⎩

βθθ−x−1 , x = −1,−2, . . .
0 , x = 0

βθθ x−1 , x = 1, 2, . . .

2. FZ1(x) =
⎧
⎨

⎩

βθ−
x�−1 , x < −1
β ,−1 ≤ x < 1

1 − βθ
x� , x ≥ 1

3. MZ1(t) = θ
2+βθξ(t)+βθξ(−t)

θ
2−θξ(t)−θξ(−t)

, ξ(t) = et − 1

4. μZ1 = (2β − 1) 1
θ

5. σ 2
Z1

= θ

θ
2 + 4ββ

(
1
θ

)2
.

Note that this distribution can be useful in modelling data with no zeros. Note also
that DG − I ( 12 , θ) is symmetric about zero.

5.2.2 DG − I I (β, θ)

Using X ∼ Geo0(θ) in the RST we obtain DG − I I (β, θ). For this distribution we
have

1. fZ1(x) =
⎧
⎨

⎩

βθθ−x , x = −1,−2, . . .
θ , x = 0

βθθ x , x = 1, 2, . . .

2. FZ1(x) =
⎧
⎨

⎩

βθ−
x�, x < 0
β + βθ, 0 ≤ x < 1

1 − βθ
x�+1, x ≥ 1

3. MZ1(t) = θ
2−βθθξ(t)−βθθξ(−t)

θ
2−θξ(t)−θξ(−t)

4. μZ1 = (2β − 1) θ

θ

5. σ 2
Z1

= θ

θ
2 + 4ββ

(
θ

θ

)2
.

Note that DG − I I ( 12 , θ) is symmetric about zero.

5.3 The Double Geometric Distributions Using the RSMT

In this case Z2 = Y X1 − (1 − Y ) X2, where Y ∼ Bernoulli(β), X1 and X2 are
Geometric rv and X1, X2 and Y are independent. We will consider the following
three Double Geometric distributions.
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X2 ∼ Geo0(θ2) X2 ∼ Geo1(θ2)

X1 ∼ Geo0(θ1) DG − I I I (β, θ1, θ2)

X1 ∼ Geo1(θ1) DG − I V (β, θ1, θ2) DG − V (β, θ1, θ2)

The MLE of the parameters and the corresponding asymptotic theory are obtained
using Theorem2 and thewell known results for theMLEof theGeometric distribution.

5.3.1 DG − I I I (β, θ1, θ2)

In this case X1 ∼ Geo0(θ1) and X2 ∼ Geo1(θ2). The following results hold:

1. fZ2(x) =
⎧
⎨

⎩

βθ2θ
−x−1
2 , x = −1,−2, . . .

βθ1, x = 0
βθ1θ

x
1 , x = 1, 2, . . .

2. FZ2(x) =

⎧
⎪⎨

⎪⎩

βθ
−
x�−1
2 , x < 0

β + βθ1, 0 ≤ x < 1
1 − βθ


x�+1
1 , x ≥ 1

3. MZ2(t) = θ1θ2+
(
βθ2−βθ1θ2

)
ξ(−t)

θ1θ2−θ1ξ(t)−θ2ξ(−t)

4. μZ2 = β θ1
θ1

− β 1
θ2

5. σ 2
Z2

= β θ1

θ
2
1

+ β θ2

θ
2
2

+ ββ
(

θ1
θ1

+ 1
θ2

)2
.

Remarks 1. Kozubowski and Inusah [12] introduced and studied the Skew Discrete
Laplace distribution (SDL(θ1, θ2)) with parameters 0 < θ1, θ2 < 1 as Z3 =
X1 − X2, where X1 and X2 are independent rv such that X1 ∼ Geo0(θ1) and
X2 ∼ Geo0(θ2) (or X1 ∼ Geo1(θ1) and X2 ∼ Geo1(θ2)). Inusah andKozubowski
[9] introduced and studied the Discrete Laplace distribution (DL(θ)) which is the
special case of SDL(θ1, θ2) when θ1 = θ2 = θ.

2. By Proposition 3.3 of Kozubowski and Inusah [12], DG − I I I ( θ2
1−θ1θ2

, θ1, θ2)
d=

SDL(θ1, θ2).
3. DG − I I I ( ln θ2

ln(θ1θ2)
, θ1, θ2) is the same as the Skew discrete Laplace distribution

of Barbiero [5] who derived it as a discretization of a certain parametrization of
the LD.

5.3.2 DG − I V (β, θ1, θ2)

In this case X1 ∼ Geo1(θ1) and X2 ∼ Geo0(θ2). Note that DG − I V (β, θ1, θ2) =
−DG − I I I (β, θ2, θ1).

5.3.3 DG − V (β, θ1, θ2)

In this case X1 ∼ Geo1(θ1) and X2 ∼ Geo1(θ2). The following results hold:
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1. fZ2(x) =
⎧
⎨

⎩

βθ2θ
−x−1
2 , x = −1,−2, . . .
0, x = 0

βθ1θ
x−1
1 , x = 1, 2, . . .

2. FZ2(x) =

⎧
⎪⎨

⎪⎩

βθ
−
x�−1
2 , x < 0
β, 0 ≤ x < 1

1 − βθ

x�
1 , x ≥ 1

3. MZ2(t) = θ1θ2−βθ1θ2ξ(−t)−βθ1θ2ξ(t)
θ1θ2−θ1ξ(t)−θ2ξ(−t)

4. μZ2 = β 1
θ1

− β 1
θ2

5. σ 2
Z2

= β θ1

θ
2
1

+ β θ2

θ
2
2

+ ββ
(

1
θ1

+ 1
θ2

)2
.

Note that this distribution is useful in modelling data with no zeros. Note also that
DG − V (β, θ, θ) = DG − I (β, θ).

5.4 The Double Poisson Distributions

The first distribution, DP − I (β, θ), is obtained using X ∼ P(θ) in the RST. This
distribution is the same as the Extended Poisson distribution of Bakouch et al. [3].

The second distribution, DP − I I (β, θ1,θ2) is obtained using X1 � P(θ1) and
X2 � (P(θ2) + 1) in the RSMT. For this distribution we have

1.

fZ2(x) =
⎧
⎨

⎩
β

θ−x−1
2 e−θ2

(|x |−1)! , x = −1,−2, . . .

β
θ x1 e

−θ1

x ! , x = 0, 1, 2, . . .

2. MZ2(t) = βeθ1(et−1) + βeθ2(e−t−1)+t

3. μZ2 = βθ1 − β (θ2 + 1)
4. σ 2

Z2
= βθ1 + βθ2 + ββ (θ1 + θ2 + 1)2 .

The third distribution is thewell knownSkellam distribution (SK (θ1, θ2) developed
by Skellam [21] by using the DT Z3 = X1 − X2, where Xi ∼ P(θi ), i = 1, 2 and
are independent. This distribution was studied in details in Alzaid and Omair [1]. For
this distribution

fZ3(x) = e−θ1−θ2

(
θ1

θ2

) x
2

I|x |
(
2
√

θ1θ2

)
, x = . . . ,−1, 0, 1, . . . , (29)

where

Iy(t) =
(
t

2

)y ∞∑

k=0

(
t2
4

)k

k!(y + k)!

is the modified Bessel function of the first kind.
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5.5 The Double Negative Binomial Distributions

The first DNBD, denoted by DNBD − I (β, ν, θ), is developed using the RST when
X ∼ N B(υ, θ) with

fX (x, θ) =
(
x + ν − 1

x

)
θ

ν
θ x , x = 0, 1, 2, . . .

For this distribution we obtain

1. fZ1(x) =

⎧
⎪⎨

⎪⎩

β
(|x |+ν−1

|x |
)
θ

ν
θ |x |, x = −1,−2, . . .

θ
ν
, x = 0

β
(x+ν−1

x

)
θ

ν
θ x , x = 1, 2, . . .

2. MZ1(t) = β
(

θ
1−θet

)ν + β
(

θ
1−θe−t

)ν

3. μZ1 = (2β − 1) νθ

θ

4. σ 2
Z1

= νθ

θ
2 + 4ββ

(
νθ

θ

)2
.

The second DNBD, denoted by DNBD− I I (β, ν1, ν2, θ1, θ2), is developed using
X1 ∼ N B(υ1, θ1) and X2 ∼ (N B(υ2, θ2) + 1) in the RSMT. For this distribution we
obtain

1. fZ2(x) =
{

β
(|x |+ν2−2

|x |−1

)
θ

ν2
2 θ

|x |−1
2 , x = −1,−2, . . .

β
(x+ν1−1

x

)
θ

ν1
1 θ x

1 , x = 0, 1, 2, . . .

2. MZ2(t) = β
(

θ1
1−θ1et

)ν1 + βet
(

θ2
1−θ2e−t

)ν2

3. μZ2 = β ν1θ1
θ1

− β
(

ν2θ2
θ2

+ 1
)

4. σ 2
Z2

= β ν1θ1

θ
2
1

+ β ν2θ2
θ2

+ ββ
(

ν1θ1
θ1

+ ν2θ2
θ2

+ 1
)2

.

Remark Note that DNBD− I I (β, ν1, ν2, θ1, θ2) has the following important special
cases

1. DNBD − I I (β, ν, θ1, θ2)
d= DNBD − I I (β, ν, ν, θ1, θ2)

2. DNBD − I I (β, ν, θ)
d= DNBD − I I (β, ν, ν, θ, θ)

3. DNBD − I I (β, 1, ν, θ1, θ2)

4. DNBD − I I (β, ν, 1, θ1, θ2)

5. DNBD − I I (β, 1, ν, θ)
d= DNBD − I I (β, 1, ν, θ, θ)

Using the DT, Seetha Lekshmi and Sebastian [18] introduced and studied the
DNBD, Z3 = X1 − X2, where Xi ∼ N B(υ, θi ), i = 1, 2 and are indepen-
dent. Let DNBD − I I I (ν1, ν2, θ1, θ2) denotes the distribution of Z3 when Xi ∼
N B(υi , θi ), i = 1, 2 and are independent. For this distribution we have
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1.

fZ3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

θ
ν2
2 θ

ν1
1

∞∑
k=−x

(
ν2+k−1

k

)(
ν1+k+x−1

k+x

)
θk2 θk+x

1 , x = −1,−2, . . .

θ
ν2
2 θ

ν1
1

∞∑
k=x

(
ν1+k−1

k

)(
ν2+k+x−1

k+x

)
θk1 θk−x

2 , x = 0, 1, 2, . . .
(30)

2. MZ3(t) =
(

θ1
1−θ1et

)ν1
(

θ2
1−θ2e−t

)ν2

3. μZ3 = ν1θ1
θ1

− ν2θ2
θ2

4. σ 2
Z3

= ν1θ1

θ
2
1

+ ν2θ2
θ2

.

Remarks 1. Note that DNBD− I I I (ν1, ν2, θ1, θ2) has the following important spe-
cial cases
(a) DNBD− I I I (ν, θ1, θ2)

d= DNBD− I I I (ν, ν, θ1, θ2)which has been intro-
duced and studied in Seetha Lekshmi and Sebastian [18]

(b) DNBD − I I I (1, ν, θ1, θ2)

(c) DNBD − I I I (1, ν, θ, θ)

2. Ong et al. [16] proved recurrence relations and gave some distributional properties
of the rv resulting from the DT when X1 and X2 are discrete rv belonging to
Panjer’s [17] family of discrete distributions. Sundt and Jewell [23] proved that
the only non-degenerate members of this family are the Binomial, Poisson and
Negative Binomial distributions.

5.6 The RSMT of a Binomial and a Poisson Distributions

The RSMT of a Binomial and a Poisson rv, DPB(θ1, θ2, β), is developed using
X1 ∼ Binomial(n, θ1) and X2 ∼ (P(θ2) + 1) in the RSMT. For this distribution we
obtain

1. fZ2(x) =
{

β
θ

|x |−1
2 e−θ2

(|x |−1)! , x = −1,−2, . . .
β
( n
|x |
)
θ x
1 (1 − θ1)

n−x , x = 0, 1, 2, . . .

2. MZ2(t) = β
(
1 − θ1 + θ1e−t

)n + βeθ2(et−1)+t

3. μZ2 = nβθ1 − β (θ2 + 1)

4. σ 2
Z2

= nβθ1 (1 − θ1) + βθ2 + ββ (nθ1 + θ2 + 1)2 .

5.7 The RSMT of a NB and a Poisson Distributions

The DPN BD − (β, ν, θ1, θ2) is obtained using X1 ∼ N B(υ, θ1) and X2 ∼
(P(θ2) + 1) in the RSMT. For this distribution we obtain

1. fZ2(x) =
{

β
θ

|x |−1
2 e−θ2

(|x |−1)! , x = −1,−2, . . .

β
(x+ν−1

x

)
θ

ν

1θ
x
1 , x = 0, 1, 2, . . .
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2. MZ2(t) = β
(

θ1
1−θ1e−t

)ν + βeθ2(et−1)+t

3. μZ2 = β νθ1
θ1

− β (θ2 + 1)

4. σ 2
Z2

= β νθ1

θ
2
1

+ βθ1 + ββ
(
θ2 + 1 + νθ1

θ1

)2
.

Note that DPN BD − (β, 1, θ1, θ2) is the RSMT of X1 ∼ Geo0(θ1) and X2 ∼
(P(θ2) + 1) and will be denoted by DPG − I (θ1, θ2, β). The RSMT of X1 ∼ P(θ1)

and X2 ∼ Geo1(θ2) will be denoted by DPG − I I (θ1, θ2, β). For this distribution

1. fZ2(x) =

⎧
⎪⎨

⎪⎩

βθ2θ
−x−1, x = −1,−2, . . . ,−n

βe−θ1 , x = 0

β
θ x1 e

−θ1

x ! , x = 1, 2, . . .

2. MZ2(t) = βeθ1(et−1) + β θ2e−t

1−θ2e−t

3. μZ2 = βθ1 − β 1
θ2

4. σ 2
Z2

= βθ1 + β θ2

θ
2
2

+ ββ
(
θ1 + 1

θ2

)2
.

6 The Distribution of Sums

In this section we use the notation that ϕ 	= J � {1, 2, . . . , n} and nJ = # of elements
in J.

Lemma 9 Assume that Yi and Xi , i = 1, 2, . . . , n are such that Yi ∼ Bernoulli(βi ),

Xi ∼ Fi (·) and are all independent. Define

Z1,i = (2Yi − 1)Xi , i = 1, 2, . . . , n and Tn =
n∑

i=1

Z1,i .

Then,

P(Tn ≤ x)
d=

n∏

i=1

βi P

{
n∑

i=1

Xi ≤ x

}

+
n∏

i=1

β i P

{
n∑

i=1

Xi ≥ −x

}

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P

{
∑

i∈J

Xi −
∑

i∈J c
Xi ≤ x

}

.

For discrete rv

P(Tn = x)
d=

n∏

i=1

βi P

{
n∑

i=1

Xi = x

}

+
n∏

i=1

β i P

{
n∑

i=1

Xi = −x

}

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P

{
∑

i∈J

Xi −
∑

i∈J c
Xi = x

}

.
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The proof follows from the result that

Tn
d=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

i=1
Xi , with probability

n∏

i=1
βi

−
n∑

i=1
Xi , with probability

n∏

i=1
β i

∑

i∈J
Xi −∑i∈J c Xi , for each J with probability

∏

i∈J
βi
∏

i∈J c
β i

.

Example 1 Assume Xi ∼ P(θi ), i = 1, 2, . . . , n. Define θJ =∑i∈J θi . Then,

P(Tn = x)
d=

n∏

i=1

βi

(∑n
i=1 θi

)x
e−∑n

i=1 θi

x ! I (x ≥ 0)

+
n∏

i=1

β i

(∑n
i=1 θi

)−x
e−∑n

i=1 θi

|x |! I (x ≤ 0)

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P {SK (θJ , θJ c ) = x} , (31)

where P {SK (θ1, θ2) = x} is as given in (29). In particular, when βi = β and θi =
θ, i = 1, 2, . . . , n we have

P(Tn = x)
d=βn (nθ)x e−nθ

x ! I (x ≥ 0) + β
n (nθ)−x e−nθ

|x |! I (x ≤ 0)

+
n−1∑

r=1

(
n

r

)
βn−rβ

r
P {SK ((n − r) θ, rθ) = x} .

The special case of (31) when n = 2 is given in (15) - (17) of Bakouch et al. [3].

Example 2 Assume Xi ∼ Geoo(θ), i = 1, 2, . . . , n. Then,

P(Tn =x)
d=

n∏

i=1

βi P {N B(n, θ) = x} I (x ≥ 0) +
n∏

i=1

β i P {N B(n, θ)

= −x} I (x ≤ 0) +
∑

J

∏

i∈J

βi

∏

i∈J c
β i P {N B(nJ , θ) − N B(nJc , θ) = x} ,

where P {N B(ν1, θ1) − N B(ν2, θ2) = x} can be computed using (30).When βi = β,

P(Tn = x)
d= βn P {N B(n, θ) = x} I (x ≥ 0) + β

n
P {N B(n, θ) = −x} I (x ≤ 0)

+
n−1∑

r=1

(
n

r

)
βn−rβ

r
P {N B(n − r, θ) − N B(r, θ) = x} .
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Lemma 10 Assume that Yi , Xi,1 and Xi,2, i = 1, 2, . . . , n are such that Yi ∼
Bernoulli(βi ), Xi, j ∼ Fi, j (·), j = 1, 2 and are all independent. Define

Z2,i = Yi Xi,1 − (1 − Yi )Xi,2, i = 1, 2, . . . , n and Sn =
n∑

i=1

Z2,i .

Then,

P(Sn ≤ x)
d=

n∏

i=1

βi P

{
n∑

i=1

Xi,1 ≤ x

}

+
n∏

i=1

β i P

{
n∑

i=1

Xi,2 ≥ −x

}

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P

{
∑

i∈J

Xi,1 −
∑

i∈J c
Xi,2 ≤ x

}

.

For discrete rv

P(Sn = x)
d=

n∏

i=1

βi P

{
n∑

i=1

Xi,1 = x

}

+
n∏

i=1

β i P

{
n∑

i=1

Xi,2 = −x

}

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P

{
∑

i∈J

Xi,1 −
∑

i∈J c
Xi,2 = x

}

.

Example 3 For i = 1, 2, . . . , n,assume Xi,1 ∼ P(θi,1) and Xi,2 ∼ (
P(θi,2) + 1

)
.

Then,

P(Sn = x)
d=

n∏

i=1

βi

(∑n
i=1 θi,1

)x
e−∑n

i=1 θi,1

x ! I (x ≥ 0)

+
n∏

i=1

β i

(∑n
i=1 θi,2

)−x−n
e−∑n

i=1 θi,2

(|x | − n)! I (x ≤ −n)

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P

{
SK (θJ,1, θJ c,2) = x − nJ

}
.

In particular, when βi = β, θi,1 = θ1 and θi,2 = θ2, i = 1, 2, . . . , n we have

P(Sn = x)
d=βn (nθ1)

x e−nθ1

x ! I (x ≥ 0) + β
n (nθ2)

−x−n e−nθ2

(|x | − n)! I (x ≤ −n)

+
n−1∑

r=1

(
n

r

)
βn−rβ

r
P {SK ((n − r) θ1, rθ2) = x − r} .
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Example 4 Assume Xi, j ∼ EX P(θ j ), i = 1, 2, . . . , n, j = 1, 2. Then,

P(Sn ≤ x)
d=

n∏

i=1

βi P {G(n, θ1) ≤ x} +
n∏

i=1

β i P {G(n, θ2) ≥ −x}

+
∑

J⊂{1,2,...,n}

∏

i∈J

βi

∏

i∈J c
β i P {G(nJ , θ1) − G(nJc , θ2) ≤ x} ,

where J ⊂
	=

{1, 2, . . . , n} . When βi = β,

P(Sn ≤ x)
d=βn P {G(n, θ1) ≤ x} + β

n
P {G(n, θ2) ≥ −x}

+
n−1∑

r=1

(
n

r

)
βn−rβ

r
P {G(n − r, θ1) − G(r, θ2) ≤ x} .

For the computation of P {G(nJ , θ1) − G(nJc , θ2) ≤ x}we refer to Klar [10], Omura
and Kailath ( [15], p. 25) and Simon ( [20], p.28).

Example 5 For i = 1, 2, . . . , n,assume Xi,1 ∼ Geoo(θ1) and Xi,2 ∼ Geo1(θ2).
Then,

P(Sn = x)
d=

n∏

i=1

βi P {N B(n, θ1) = x} I (x ≥ 0) +
n∏

i=1

β i P {N B(n, θ2)

= −x − n} I (x ≤ −n)

+
∑

J

∏

i∈J

βi

∏

i∈J c
β i P {N B(nJ , θ1) − N B(nJc , θ2) = x − nJc } ,

where P {N B(ν1, θ1) − N B(ν2, θ2) = x} can be computed using (30).When βi = β,

P(Tn = sx)
d= βn P {N B(n, θ1) = x} I (x ≥ 0) + β

n
P {N B(n, θ2)

= −x − n} I (x ≤ −n)

+
n−1∑

r=1

(
n

r

)
βn−rβ

r
P {N B(n − r, θ1) − N B(r, θ2) = x − r} .

7 Applications

Consider the DP − I I (β, θ1,θ2) for which Z2 = Y X1 − (1 − Y )X2 with X1 �
P(θ1) and X2 � (P(θ2) + 1)) as a competitor to the Skellam (Poisson Difference)
distribution.

Let Z2,i , i = 1, 2, . . . , n be a random sample from DP − I I (β, θ1,θ2). Let n1 =∑
I (Z2,i ≥ 0), Sum+ = ∑

Z2,i I (Z2,i ≥ 0) and Sum− = −∑ Z2,i I (Z2,i < 0)
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Table 1 Goodness-of-fit results for SABIC and Arabian Shield

Stock Fitted distribution p value

SABIC Skellam(0.1682, 0.2516) 0.449862

DP − I I (0.8125, 0.1641, 0.1556) 0.71918

Arabian Shield Skellam(0.451, 0.5551) 0.137931

DP − I I (0.721, 0.399, 0.403) 0.25818

Fig. 1 The fitted and emprical
distributions of SABIC data

and assume that 0 < n1 < n. By Theorem 2, the MLE of β, θ1 and θ2 are given by

β̂ = n1
n

, θ̂1 = Sum+
n1

and θ̂2 = Sum−
n − n1

− 1.

In addition,

√
n

⎛

⎝
β̂ − β

θ̂1 − θ1
θ̂2 − θ2

⎞

⎠ d−→ N

⎛

⎜
⎝0,

⎡

⎢
⎣

β (1 − β) 0 0
0 θ1

β
0

0 0 θ2
β

⎤

⎥
⎦

⎞


⎠ .

Alzaid and Omair (2010) considered the following two real data sets from the Saudi
Stock Exchange (TASI). Trading in Saudi Basic Industry (SABIC) and Arabian Shield
from TASI recorded every minute of June 30, 2007. The price can move up and down
by amultiple of SAR0.25. The two data sets consist of 4×(close price−open price)
in every minute. They used the runs test on each sample to show that the samples are
random. They used the Skellam distribution to fit each of the two data sets.We used the
DP − I I (β, θ1,θ2) to fit each of the two data sets Their results together with ours are
summarized in Table 1. The given p values of Table 1 are obtained by using Pearson
Chi-square goodness-of-fit test.

Figure 1 gives a plot of the empirical distribution and the fitted DP − I I (0.8125,
0.1641, 0.1556) distribution for SABIC data. Figure 2 gives a plot of the empirical
distribution and the fitted DP − I I (0.721, 0.399, 0.403) distribution for Arabian
Shield data.

Bakouch et al. [3] used the DP − I (β, θ) to fit a data set based on the number of
students from the Bachelor program at the IDRAC International Management School
(Lyon, France) in 60 consecutive Sessions of courses in Marketing.
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Fig. 2 The fitted and emprical
distributions of Arabian Shield
data
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