J Indian Soc Probab Stat (2016) 17:1-10 @ CrossMark
DOI 10.1007/s41096-016-0006-4

RESEARCH ARTICLE

Vulnerability Discovery Modeling and Weighted
Criteria Based Ranking

Adarsh Anand! - Navneet Bhatt!

Accepted: 2 May 2016 / Published online: 12 May 2016
© The Indian Society for Probability and Statistics (ISPS) 2016

Abstract Attacks on code based systems have been recent area of concern for the
software developers. Of late, this side of the coin has received much attention as the
loss happening due to this exploitation has been understood to a good extent. In today’s
neck to neck competitive marketplace, firms have to come with their software products
as quickly as possible. In order to do so, they are releasing their offerings at a much
higher pace as it used to be earlier and so, many bugs sustain in the software at the time
of release. Such a code is prone to be easily attacked by any community working in the
field. With the goal of predicting or investigating these potential number of loop holes
(vulnerabilities); many vulnerability discovery models (VDMs) have been proposed
in the literature. In this paper, we develop a model which follows a hump-shaped
curve while discovering the security vulnerabilities. Furthermore, we have compared
different set of VDMs with the proposed model using the five comparison criteria
and each criterion has been assigned different weight in order to capture the ranking
of proposed model. For checking the veracity and predictive capabilities of proposed
model, validation is done on two different data sets and results shows that the weighted
criteria methodology shows very promising results for model comparison.

Keywords Hump-shaped curve - Ranking - Vulnerability discovery modeling -
Weighted criteria introduction

B Adarsh Anand
adarsh.anand86 @ gmail.com

Department of Operational Research, Faculty of Mathematical Sciences, University of Delhi,
Room No. 207, 2nd Floor, Delhi 110007, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41096-016-0006-4&domain=pdf

2 J Indian Soc Probab Stat (2016) 17:1-10

1 Introduction

Software engineering process has changed noticeably from a decade or two ago. With
limited or no network access, computers were like an island in and of themselves.
Software applications were usually deployed as independent units after being tested
for functionality on isolated systems. Software service marketplace did not exist at
that time except in the concept stage. Security was not considered as a key aspect
since the worst that could happen following a breach was that the exploit could attack
only them in a bounded environment. But with the growth of the Internet and the
advancement of technology led to a rapid paradigm shift in the way how computer
systems are networked and development of software applications begins, resulting in
a momentous effect on security. The high mark of computer and network connectivity
available in today’s society implies that the applications not intended to function
securely are more susceptible to attack from both insiders and outsiders.

Security breaches are of great concern in today’s virtually connected economy.
Computer systems need to be protected and must be expected to function in potentially
hostile environments. With the digitalization of every department, software systems
play a key role while performing any operation. For the well-being of national security
and economic growth; secure system are the need of the time. If any firm or government
organization is directly involved in software/application development, either as an
internal or to meet business needs, security measures must be incorporated from the
starting (requirement/planning) phase of the software project and processed all the
way through the operational phase. Unfortunately, security in most cases of software
development is an afterthought. Limited resources, lack of time, and a pervasive lack of
awareness about security, are a number of reasons that prevent implementing security
measures from the beginning. Hot fixing a security issue is often bolted aftermath, as
aresponse to some threat or exploit. But encrypting the code and maintaining security
throughout all the phases of the Software Development Life Cycle (SDLC), has been
proven to be more effective and less expensive rather accumulating security to an
operational system.

At some points in the course of software development, coders unintentionally create
loop-holes that are later noticed and mitigated. As the software gets deployed and goes
into its operational phase, it immediately becomes a possible target for attacks. Ideally,
from the moment of implementation it requires to shield itself from the intruders. In
this regard, software developers have to work efficiently and proficiently in order to
detect and remove—and later avoid—vulnerabilities before product has been released.
With many advantages a malicious attacker might leave a defender in a dilemma. For
an attacker it is easier to exploit only one weakness, whereas the defender has to secure
itself against all potential threats. As well, exploiters have the comfort of attacking
software systems whenever they like, while the defender needs to be on constant watch.
Accumulating enough security measures would veer the advantage to the defender,
putting the attacker in isolation.

With proper modeling of the security design and attack surface, the developer
becomes aware of the potential vulnerabilities that can be exploited, and can mitigate
the threats before they’re exploited by the attacker. Schultz et al. (1990) defined vulner-
ability as a “defect which enables an attacker to bypass security measures”. Suggesting

@ Springer

J Indian Soc Probab Stat (2016) 17:1-10 3

a proper alerting and on demand automated system in the software that aids the devel-
oper, and allows the software developer to be on watch constantly. Rising concern over
security aims to fill the void amongst developer and attacker. Researchers have been
showing an increased attention by quantifying the vulnerabilities in the software. As
a result, few authors have incorporated the concept of Software Reliability Modeling
in order to provide a quantitative aspect of security. They have considered that rate
at which vulnerabilities get discovered is analogous to the rate of fault detection as
in reliability assessment. As a brief review of related research, security vulnerability
discovery in software has attracted some attention recently. Anderson (2002), used the
Brady et al. (1999) model developed for software reliability to find out the trend in
vulnerability discovery. Rescorla (2005) has attempted to classify trends in the vulnera-
bility data by applying the linear and exponential models. Alhazmi and Malaiya (2005)
showed the relationship between the cumulative vulnerabilities with time and further
developed a logistic and an effort based exponential model by segregating the efforts
required to discover vulnerabilities. Later, Kapuretal. (2015) showed the use of logistic
detection rate while discovering the vulnerabilities. Unlike these studies, in this paper,
we further investigate the modeling of security vulnerability. Our model incorporates
the unique pattern of vulnerability exposure, such as the hump-shaped vulnerability
discovery rate function. In addition, because the VDMs cannot provide good results
for a particular data set, in this study, we formulate a ranking based analysis making
use of weighted criteria method (Anjum et al. 2013) for comparing different available
models in the literature with our proposed model for a given software vulnerability
data. The models are ranked based on the overall weight assigned to different models.
Rest of the paper is organized as follows. Section 2 reviews some existing VDMs.
Section 3 comprises of notations and we have discussed about the mathematical for-
mulation of our proposed model. The proposition has been validated on real data sets;
therefore, the results are given in Sect. 4. Finally, conclusion is given in Sect. 5.

2 Literature Review
Categorically, the vulnerability discovery models (VDMs) proposed so far are classi-

fied as time based and effort based models. In the following section we will describe
and illustrates some well-known time based VDMs.

2.1 Rescorla Exponential Model
This model attempts to fit the vulnerability finding rate exponential with time. Rescorla
used the famous Goel-Okumoto SRGM (Goel and Okumoto 1979) to fit the security
vulnerabilities. The exponential model can be given as:

o) = Nre ™ (1)
where N represents the total number of vulnerabilities in the software system and A

is the rate constant. After integrating the above Eq. (1), equation for the cumulative
number of vulnerabilities can be obtained as:

@ Springer

4 J Indian Soc Probab Stat (2016) 17:1-10

Fig. 1 The basic 3-phase
S-shaped model proposed by
Alhazmi and Malaiya (2005)
° Phase 1 Phase 2 Phase 3
2
=
o
o
o
£
3
>
Time
_ —At
Qt)y=N1—e) 2)

2.2 Alhazmi-Malaiya Logistic Model (AML)

The AML is an S-shaped, time based logistic model proposed by Alhazmi and Malaiya
(2005). According to this model vulnerability discovery occurs in three phases: learn-
ing, linear, and saturation. The starting phase is a learning phase, in which the detectors
begin to understand the target system, so they do not report much vulnerability. After
the learning phase, the detectors are familiar with the product and the new system will
attract a significant number of users and the number of vulnerabilities reported grows
linearly. After a certain time, the system starts getting replaced by newer versions. The
users start to mitigate or upgrade to a more modern system. At the same time, detectors
are less interested in the system, and the vulnerability reporting rate declines. This is
termed the saturation phase. Figure 1 depicts these phases as identified by Alhazmi
and Malaiya.

The vulnerability discovery rate of the AML model is given by the differential
equation:

d2(t)
dt

= AQ(B — Q(1)) (3)

where Q2 (7) is the cumulative number of vulnerabilities, ¢ is the calendar time. A and
B are the empirical constants determined from recorded data. Solving the differential
Eq. (3) we obtain

B

Q)=
= Bee B 11

“

Where C is the constant introduced while solving the Eq. (3).

2.3 Kapur et al. (2015)
This model is known as flexible model and uses logistic detection rate. The differential

equation depicting the vulnerability discovery is based on the removal phenomenon
as given by Kapur and Garg (1992).

@ Springer

J Indian Soc Probab Stat (2016) 17:1-10 5

dfh(’) = r()(a — Q) ®)
Q@ v

=" (a—Q(@) (6)

where r is the rate of vulnerability detection. Solving the above differential equation,
under initial condition €2 (0) = 0, we get mean value function as:

1 _ e—rt
Qty=a| —— 7
(1) a(Hﬁe”) @)
where €2(¢) = cumulative number of vulnerability detected by time z.

3 Modeling Vulnerability Discovery Process of Software

Although SRGMs have been in use for almost four decades, the security community
has only begun to apply these models to vulnerability data in the past few years. As
a result, many researchers were able to fit their respective vulnerability discovery
models corresponding to various data projects like RedHat 6.2, OpenBSD, WinNT4
and Win98 (Rescorla 2005; Ozment 2007; Alhazmi and Malaiya 2005).

In real life situation, while discovering vulnerabilities it involves much more testers
in the testing process and most of the testers are attackers trying to exploit the loop
holes. Further, due to the attractiveness of the software more users try to find the
potential vulnerable points in the software. More specifically, each release of software
can attract increasing number of testers (attacker and defender) in the early phase since
more and more people know it and use it. After the number of testers reaches at the peak,
it will decrease since the software is losing its attractiveness over time. Consequently,
the number of vulnerability reaches its peak, and will decrease as the product loses its
attractiveness. Accordingly, it is reasonable to assume that the vulnerability detection
rate follows a hump-shaped curve (Li et al. 2011). In order to describe this special
property, the first derivative of logistic function is selected and it is given by

o VZﬁe—rt .
0= (755e) "

Therefore, the mean value function for vulnerability detection for the proposed model
can be written using Eq. (8) in Eq. (5) as follows:

dQ() (riBe"!

e (1+re‘”)2)(a_9(t)) 2

Solving the differential Eq. (9) under the boundary condition €2 (0) = 0, we get:
1 1
Q) =a (1 - gr{(1+ﬂe—”)(l+ﬂ)}) (10)

@ Springer

6 J Indian Soc Probab Stat (2016) 17:1-10

Table 1 Parameter estimates of the proposed model DS-I

Parameter estimates Models under comparison
Rescorla AML Kapur et al. Proposed
186541.4346 876.5189803 942.1483834 3565.538441
0.000233496 0.000421763 0.316680475 0.316100681
b - 0.052122998 28.4109939 33.04984889

Table 2 Parameter estimates of the proposed model DS-II

Parameter estimates Models under comparison
Rescorla AML Kapur et al. Proposed

a 67942.12386 649.3660296 654.8518541 1602.933986
0.000724951 0.000884829 0.538932293 0.53586275
- 0.080632759 38.99594129 49.86224165

It is interesting to note the behaviour of our proposed model. Initially, when the
vulnerability discovery process begins, i.e. at t = 0; we have () = 0 and at later
stages when the vulnerability discovery process is carried on for an infinite time i.e.
at t = oo; the vulnerabilities are almost discovered by the testers giving

Q1) =a(1 _e_(lrfﬂ))_ (11)

4 Data Analysis

The proposed model has been validated on the security vulnerability data of two
software products namely Microsoft Windows XP (DS-I) and Apple Macintosh Server
(DS-1I) obtained CVE details (Mac Os X Server 2016; Windows Xp 2016). Further, a
set of models have been used in order to evaluate which model is performing best by
comparing their overall ranking using the weighted criteria method. We have estimated
the parameters of the developed model using SPSS tool based on non-linear least square
method. The parameter values of the proposed model along with the models proposed
in the literature have been calculated and are given in Tables 1 and 2.

4.1 Comparison Criteria

A model can generally be analysed according to its retrodictive capability (i.e. its ability
to reproduce the observed behaviour of the software), and predictive capability (i.e.
its ability to predict future behaviour of the software from the observed failure data)
(Huang and Lyu 2011). Since the data sets used for the validation are of vulnerability
count, we employ the Goodness-of-fit criteria to evaluate the performance of the model

@ Springer

J Indian Soc Probab Stat (2016) 17:1-10 7

Vulnerabilities

800
700
600
500
400
300
200
100

0

—a— Observed
—o— Rescorla
AML
—¥=—Kapur et al.
—@— Proposed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2 Goodness of fit for DS-1

Vulnerabilities

800

700

600

500

400

300

200

100

0

—@—observed —e—Rescorla

A AML —i=— Kapur et al.

—@— Proposed

Years

Fig. 3 Goodness of fit for DS-2

which comprises of the mean square error, bias, variation, RMSPE and the coefficient
of multiple determinations (Kapur et al. 2011). From the Figs. 2 and 3 of the observed
vulnerabilities and the predicted vulnerabilities of different models it was not clear
that which of them is performing best. Thus it is required to apply a method to rank the
models and get the best amongst them on the basis of certain comparison criterions.

4.2 Weighted Criteria Value Method

The steps involved in this approach follow (Anand et al. 2014; Anjum et al. 2013):

i. For each model compute the attribute value ;; for the value of jth criteria of ith
model. Let us consider n number of models with m criteria. Further, maximum
value and minimum value of each criterion is determined.

@ Springer

J Indian Soc Probab Stat (2016) 17:1-10

ii.

ii.

iv.

As these criterion ratings are different for each model, the criteria ratings are
determined as under:

Case 1 When smaller value of the criterion represents fitting well to the actual data
i.e. best value:

Max.Value — Criteria Value
Max.Value — Min.Value

X =
Case 1 When large value of the criterion represents fitting well to actual data i.e.
best value:

o Criteria Value — Max. Value
Y7 Max.Value — Min.Value

The weight matrix can be represented as:
Wi =1-Xjj

Weighted criteria value matrix is computed by the product of weight of each
criterion with the criteria value i.e.

Ajj = Wiiaij

Permanent value is the weighted mean value of all criteria. This value is given by
below:

7. — Z;nzl Aij
===

> Wi
wherei =1,2,3,.......... n

The Model value is taken to be absolute of the permanent value. The lower parameter

value indicates a better fit to the model. The results of weighted criteria approach are
shown in Tables 3, 4, 5 and 6.

After applying weighted criteria value method in determining the ranking for dif-

ferent vulnerability discovery models, it has been found that our proposed model is at
rank one followed by Kapur et al. (2015) model for the data set DS-I (Table 4). Further
(Table 6) show that Kapur et al. (2015) is ranked one followed by our proposed model

Table 3 Weighted value of criteria (DS-I)

Model MSE Bias Variation RMSPE R square
Rescorla 7211.407 —30.9662 75.29213 81.41138 0.9
AML 544.9552 —2.24451 21.48736 21.60427 0.993
Kapur et al. 436.3341 —1.14487 19.30275 19.33668 0.994
Proposed 436.1846 —1.14681 19.29931 19.33335 0.994

@ Springer

J Indian Soc Probab Stat (2016) 17:1-10 9

Table 4 Model permanent value and ranking (DS-I)

Model Sum of weight Sum of weighted value Model value Model rank
Rescorla 3 7368.11 2456.037 4
AML 2.044201 9.199488 4.500286 3
Kapur et al. 2.000137 —0.13903 —0.06951 2
Proposed 1.999935 —0.15273 —0.07637 1

Table 5 Weighted value of criteria (DS-II)

Model MSE Bias Variation RMSPE R square
Rescorla 4107.359 —17.3335 58.88841 61.38645 0.936
AML 304.824 —1.24279 16.00827 16.05644 0.996
Kapur et al. 273.2647 —0.40874 15.20013 15.20563 0.996
Proposed 273.4 —0.41516 15.20371 15.20938 0.996

Table 6 Model permanent value and ranking (DS-II)

Model Sum of weight Sum of weighted value Model value Model rank
Rescorla 3 4227.63402 1409.21134 4
AML 1.995872236 2.915458957 1.460744282 3
Kapur et al. 2 0.587262607 0.293631304 1
Proposed 1.99981909 0.593126336 0.296589996 2

for DS-II, but as reflected from the Table 6; the values in the column, model value;
of our proposed model and of Kapur et al. (2015) model are approximately equal to
each other. Hence, suggesting that the proposed model and the model given by Kapur
et al. (2015) are performing very well. Also, it is observed that the respective ranking
of models AML and Rescorla is not changing with change in the data.

5 Conclusion

Concern arises due to the security issues has shifted the roots of information industry
to the uprising events of virtual thefts through the means of exploiting sensitive infor-
mation. The Vulnerability Discovery approach provides a new paradigm of software
development, where uprooting the vulnerable points has shown a clear-cut shield over
the intruders. With the release of software, the attractiveness amongst the malicious
users is generally increases and over time it gets decreases. In order to describe this
unique property, in this paper; a new vulnerability discovery model has been proposed
which uses a hump-shaped detection curve. Furthermore, the validity and accuracy
of the proposed model have been carried out on two different data set of operating
system. The results are quite promising as can be viewed through the numerical illus-

@ Springer

10 J Indian Soc Probab Stat (2016) 17:1-10

tration. A clear cut inference was not depicted by the goodness of fit measures. Hence,
a technique called weighted criteria has been implemented in order to rank the various
models for determining the optimal fit.

Acknowledgments The research work presented in this paper is supported by grants to the first author
from University of Delhi, R&D Grant No-RC/2015/9677, and Delhi, India.

References

Alhazmi OH, Malaiya YK (2005) Modeling the vulnerability discovery process. In: Proceedings of 16th
IEEE international symposium on software reliability engineering (ISSRE’05), pp 129-138

Anand A, Kapur PK, Agarwal M, Aggrawal D (2014) Generalized innovation diffusion modeling &
weighted criteria based ranking. In: Reliability, infocom technologies and optimization (ICRITO)
(Trends and Future Directions), pp 1-6

Anderson RJ (2002) Security in opens versus closed systems—the dance of boltzmann coase and moore.
Open Source Software: Economics, Law and Policy, Toulouse, France

Anjum M, Harque MA, Ahmad N (2013) Analysis and ranking of software reliability models based on
weighted criteria value. Int J Inform Technol Comput Sci 5:1-14

Brady RM, Anderson RJ, Ball RC (1999) Murphy’s law, the fitness of evolving species, and the limits of
software reliability. Cambridge University Computer Laboratory Technical, Report No 471

Goel AL, Okumoto K (1979) Time-dependent error detection rate model for software and other performance
measures. IEEE Trans Reliab 28:206-211

Huang CY, Lyu MR (2011) Estimation and analysis of some generalized multiple change-point software
reliability models. IEEE Trans Reliab 60(2):498-514

Kapur PK, Garg RB (1992) A software reliability growth model for an error removal phenomenon. Softw
Eng J 7(4):291-294

Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability assessment with OR application. Springer,
Berlin

Kapur PK, Sachdeva N, Khatri SK (2015) Vulnerability discovery modeling. In: International conference
on quality, reliability, infocom technology and industrial technology management, pp 34-54

Li X, Li YF, Xie M, Ng SH (2011) Reliability analysis and optimal version-updating for open source
software. Inform Softw Technol 53:929-936

Mac Os X Server (2016) Vulnerability statistics. http://www.cvedetails.com/product/2274/
Apple-Mac-Os-X-Server.html?vendor_id=49. Accessed 6 Feb 2016

Ozment A (2007) Vulnerability discovery & software security. Dissertation, University of Cambridge

Rescorla E (2005) Is finding security holes a good idea? Secur Priv 3:14-19

Schultz E Jr, Brown DS, Longstaff TA (1990) Responding to computer security incidents. Lawrence Liv-
ermore National Laboratory. ftp:/ftp.cert.dfn.de/pub/docs/csir/ihg.ps.gz

Windows Xp (2016) Vulnerability statistics. http://www.cvedetails.com/product/739/Microsoft- Windows-
Xp.html?vendor_id=26. Accessed 6 Feb 2016

@ Springer

http://www.cvedetails.com/product/2274/Apple-Mac-Os-X-Server.html?vendor_id=49
http://www.cvedetails.com/product/2274/Apple-Mac-Os-X-Server.html?vendor_id=49
ftp://ftp.cert.dfn.de/pub/docs/csir/ihg.ps.gz
http://www.cvedetails.com/product/739/Microsoft-Windows-Xp.html?vendor_id=26
http://www.cvedetails.com/product/739/Microsoft-Windows-Xp.html?vendor_id=26

	Vulnerability Discovery Modeling and Weighted Criteria Based Ranking
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Rescorla Exponential Model
	2.2 Alhazmi--Malaiya Logistic Model (AML)
	2.3

	3 Modeling Vulnerability Discovery Process of Software
	4 Data Analysis
	4.1 Comparison Criteria
	4.2 Weighted Criteria Value Method

	5 Conclusion
	Acknowledgments
	References

