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Abstract Computer-generated aesthetic patterns are
widely used as design materials in various fields. The
most common methods use fractals or dynamical
systems as basic tools to create various patterns. To
enhance aesthetics and controllability, some researchers
have introduced symmetric layouts along with these
tools. One popular strategy employs dynamical systems
compatible with symmetries that construct functions
with the desired symmetries. However, these are
typically confined to simple planar symmetries. The
other generates symmetrical patterns under the
constraints of tilings. Although it is slightly more
flexible, it is restricted to small ranges of tilings
and lacks textural variations. Thus, we proposed a
new approach for generating aesthetic patterns by
symmetrizing quasi-regular patterns using general k-
uniform tilings. We adopted a unified strategy to
construct invariant mappings for k-uniform tilings that
can eliminate texture seams across the tiling edges.
Furthermore, we constructed three types of symmetries
associated with the patterns: dihedral, rotational, and
reflection symmetries. The proposed method can be
easily implemented using GPU shaders and is highly
efficient and suitable for complicated tiling with regular
polygons. Experiments demonstrated the advantages of
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our method over state-of-the-art methods in terms of
flexibility in controlling the generation of patterns with
various parameters as well as the diversity of textures
and styles.
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1 Introduction

A pattern is an arrangement of motifs that is
repeated in a consistent manner. It is used as a
basic material with wide applications in the design
of various products, such as fabrics, neckties, jewelry,
carpets, and wallpapers. The traditional pattern
creation method involves manual drawings, which
generally require a long time to shape a single
pattern, even with the assistance of software such as
Adobe Photoshop and Illustrator, etc. These patterns
can be generated automatically and efficiently
using various mathematical methods [1, 2]. Among
these methods, shape grammar [3], fractals [4, 5],
dynamical systems [6, 7], and their variants are the
most commonly used. Although they can help create
splendidly aesthetic patterns, they always suffer from
uncontrollable problems; that is, it is impossible to
establish a relationship between the parameters of the
mathematical models and their generated patterns,
which prevents artists from wide applications. Quasi-
regular pattern (QRP) is another type of digital
pattern generated by visualizing the smoothed form
of the Hamiltonian function [8]. These patterns
are typically characterized by translational and
rotational symmetries with near-regular textures [9–
11]. Although the parameters of the mathematical
model have a specific geometrical significance, it is
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still difficult to predict the shape and texture of a
pattern according to any given QRP model.

By contrast, it is much easier to control the spatial
layout of the pattern than the texture details. Therefore,
to enhance aesthetics and controllability, patterns are
typically created with symmetric layouts. One method
to generate such patterns is to construct invariant
functions with symmetries from the dynamics [2, 12,
13]. The designed function determines the layout
structure, which is typically restricted to certain simple
planar symmetry types. Another method to generate
patterns is to use dynamical systems or fractals under
the constraint of predefined tilings [14, 15]. Although
it is more flexible than those in previous works, it is
usually confined to a small range of tiling structures, for
example, Penrose tilings [14] or Archimedes tilings [15].
In addition, constructing continuous conditions across
the tiling edges reduces texture richness, making the
pattern visually monotonous.

In this paper, we proposed a new pattern generation
method that symmetrizes quasi-regular patterns
with the constraints of general k-uniform tilings.
First, we reconstructed the k-uniform tiling using
the integer representation method [16]. We then
rearranged the basic elements of the tilings to ensure
texture continuity across the tiling edges. Next,
we constructed three types of invariant mappings
with continuity conditions at the boundaries of the
fundamental regions. Finally, we colored the image
space using QRP models with the help of invariant
mapping. Our method can flexibly control the pattern
from various aspects, and the generated patterns are
rich in texture details and visually pleasing. Overall,
the contributions of our method can be summarized
as follows:
• We proposed a new method for generating

aesthetic patterns by integrating the tiling
structures with the quasi-regular pattern models,
which can flexibly control both the textures and
layout of the pattern.

• We presented a unified scheme of constructing
fundamental regions and invariant mappings for
any k-uniform tiling, which is capable of batch
generation of numerous patterns.

• We constructed three kinds of invariant mappings,
which ensures natural transition both on the
boundaries of regular polygons and fundamental
regions.

2 Related work

Extensive research has been conducted on the
generation of aesthetic patterns. Gieseke et al. [17]
recently surveyed the control mechanisms of pattern
generation. Herein, we focused only on the most
closely related ones.
2.1 Pattern generation models

Popular mathematical models for generating aesthetic
patterns include shape grammar, fractal geometry,
dynamical systems, and quasi-regular patterns.
Shape grammar applies shape rules, such as the
addition and subtraction of shapes, and various
transformations to construct geometric patterns [18],
such as Islamic geometric patterns [3]. Pattern shapes
can be controlled by grammar, which requires creative
thinking and ideas. Research on fractal geometry [4,
19] and dynamical systems [6] has a long history,
remains active, and produces several commonly used
methods, such as the escape time and orbit trap
methods. They can easily and efficiently create
various styles with beautiful patterns. However, it is
not intuitive for the user to control the pattern simply
by adjusting the parameters of the mathematical
models.

The quasi-regular pattern model generates colorful
patterns by visualizing a special type of smooth
function [9–11]. It has several geometrically significant
parameters, and the generated patterns typically have
local symmetries and near-regular structures. These
patterns are widely used in textile and garment
designs [20, 21]. It has better controllability than
the other models but is still difficult for arbitrary
QRP models.

2.2 Patterns based on symmetric functions

To control the spatial layout of the pattern and
enhance aesthetics, researchers have resorted to
constructing functions with symmetrical properties
that are used in dynamical systems. Chung and Chan
[12] constructed functions with all the wallpaper
symmetries using a Fourier series. Carter et al. [22]
extended this method to construct equivariant
functions with respect to more symmetries, such
as frieze and crystallographic groups. Zou et
al. [23] combined chaotic functions with cyclic
and dihedral symmetries by using the orbit trap
method to render aesthetic patterns. Lu et al. [13]
generated patterns by constructing trigonometric
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and polynomial functions with specific wallpaper
symmetry. Gdawiec [24] applied fixed-point
theory to create symmetric functions. Recently,
they proposed a modified orbit trap method [2],
which can obtain various interesting patterns. In
addition, non-Euclidean geometries are widely used
to generate patterns with distinctive styles, such
as spherical [25] and hyperbolic geometries [26].
However, all these methods require the analysis and
design of specific functions with certain symmetries
and are generally confined to a small range of
symmetry types.

2.3 Patterns constrained by tilings

Another method to control the spatial layout of
a pattern is using predefined tilings. The key to
this method is to construct invariant mappings
for the tiling to maintain texture continuity on
the boundaries of polygons. One class of methods
uses dynamical systems based on several types of
tiling, such as chair tiling [27], Penros tiling [14],
spiral tiling [28], and Archimedean tiling [15].
Another class uses complicated fractal models with
a tiling structure, which possesses a self-similarity
property [29–31]. These methods can flexibly control
the pattern layout. However, all of them suffer from at
least two problems: (1) invariant mappings should be
designed separately for each tiling, and (2) the texture
of the pattern is monotonous near the boundaries of
the fundamental regions because of simple continuous
conditions. Our method integrates general k-uniform
tilings with quasi-regular patterns and devises a
simple and effective scheme to eliminate texture seams
across the boundaries, which could overcome the
abovementioned problems.

3 Preliminaries

To make the paper self-consistent, we introduced some
preliminaries on generating quasi-regular patterns
and k-uniform tilings in this section.
3.1 Generation of quasi-regular patterns

A quasi-regular pattern is obtained by visualizing a
specific type of function whose geometry is a smooth
2-manifold surface, specifically a smooth height field
defined inR2. Its basic mathematical model is derived
from the weak chaos theory [8] and is expressed by
Eq. (1):

Hq(x, y) =
bqc∑
i=1

cos
(
x cos

(2πi
q

)
+ y sin

(2πi
q

))
(1)

where q denotes the number of resonances, (x, y) ∈
R2 are the coordinates, and Hq is named as “QRP
model” here. Please refer to Ref. [8] for details on
this deduction. A visualization of the surface defined
by Eq. (1) is presented in Fig. 1(a).

Noting that the contours of the QRP model
Hq constitute a series of closed curves of various
shapes, Zhang and Li [9] proposed a method
for visualizing the contours of surface Hq. They
partitioned the height field of QRP model Hq into
several disjoint intervals h1, h2, ..., hn(∪ni=1hi = Hq),
and the connected region corresponding to each
interval was assigned the same predefined color
value. The generated colorful image is called a quasi-
regular pattern (see the example in Fig. 1(b)). To
elaborate on the details, each pixel (nx, ny) in the
image space was transformed into a normalized space
[xt, yt]× [xt + sπ, yt + sπ].

(x, y) =
(
xt + nx

sπ

Wx
, yt + ny

sπ

Wy

)
(2)

where Wx and Wy denote the width and height of
the canvas, respectively, (xt, yt) is the vector for
the translation, and s is used to control the scale
of the normalized space. Subsequently, the color
value for the pixel (nx, ny) in the connected region
corresponds to its partitioned interval. The details
of the algorithm are presented in Algorithm 1.

3.2 Reconstruction of kkk-uniform tilings

A k-uniform tiling composed of regular polygons is
an edge-to-edge tiling whose basic elements (tiles)
consist of five types of regular polygons: triangular,
square, hexagonal, octagonal, and dodecagon. It has

Fig. 1 Quasi-regular pattern of basic model with parameters q =
5, s = 18, xt = yt = 0.
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Algorithm 1 Algorithm for generating quasi-regular
patterns

Input: Canvas width: Wx, height: Wy, parameters
q, s, xt, yt

Output: Quasi-regular pattern
for all pixels in canvas (nx, ny) do

Calculate (x, y) with Eq. (2) ;
Calculate Hq with Eq. (1);
Set the color for the pixel (nx, ny) according the
partition of the height field Hq;

end for

k distinct transitivity classes of vertices and, therefore,
has k equivalence classes of vertices with respect to
their symmetries. Figure 2 shows 15 vertex types that
appear in the k-uniform tilings. In this study, a tiling
is named according to the number of vertex types it
contains, where each type corresponds to a capital
letter, as shown in Fig. 2. A k-uniform tiling may
contain several different vertex types and thus can be
named as a combination of those letters. Specifically,
when k = 1, it degenerates into a special class of
tiling known as Archimedean tiling [15].

Although Archimedean tilings can be represented
simply by vertex types, the representation of a general
k-uniform tiling is relatively complicated. Medeiros
e Sá et al. [32] presented a simple representation
for periodic tilings of the plane by regular polygons.
This approach explicitly represents a minimal subset
of vertices from which all vertices of the tiling are
systematically generated by translations. After that,
Soto Sánchez et al. [16] improved the method and

Fig. 2 15 different vertex types that appear in k-uniform tilings
with regular polygons.

proposed an integer representation for any k-uniform
tiling.

According to their definition, the coordinates of the
tiling vertices are represented as complex numbers
under the basis {1, ω, ω2, ω3}: a0 +a1ω+a2ω

2 +a3ω
3,

where [a0, a1, a2, a3] are four integers representing the
lattice coordinates, and ωi is one of the principal
12th roots of unity. Thus, k-uniform tiling can
be represented concretely by a (2 + n) × 4 integer
matrix containing the lattice coordinates for the two
translation vectors (the first two rows) and n seed
vertices (remaining rows). See Ref. [16] for further
details.

Given an integer representation of k-uniform tilings,
the calculation of k-uniform tilings composed of
regular polygons is straightforward and can be
summarized in the following steps:
• Reconstruct the translation grid: reconstruct

lattice coordinates for all the vertices of a
representative translation cell by using the seed
coordinates.

• Convert lattice coordinates to Cartesian coordinates:
The Cartesian coordinates of the tiling’s ver-
tices for rendering can be obtained from the
corresponding lattice coordinates, which are
calculated as Eq. (3):

(x, y) =
(
a0 a1 a2 a3

)


1 0
√

3
2

1
2

1
2

√
3

2
0 1


(3)

• Translate the grid to construct the tiling:
Translate the grid to cover the whole plane, where
the translation vector can be also calculated by
Eq. (3).

4 Symmetrization of quasi-regular patterns

4.1 Overview

We aimed to generate aesthetic patterns from quasi-
regular patterns by controlling their spatial layout
and, more precisely, symmetrize the patterns under
the constraint of any given k-uniform tiling. The key
problem is constructing invariant mappings under
specific symmetry groups that can maintain the
continuity of the rendered pattern across the edges
of the tiling and the axes of the local symmetrical
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transformations.
In contrast to the existing methods [14, 15], which

must tediously design invariant mapping for each
tiling, we proposed a unified method that can be
applied to all types of k-uniform tilings. We first
reconstructed the selected k-uniform tiling using
the integer representation method [16]. We then
rearranged the basic elements of the tiling for further
construction of the fundamental region, which helped
transit the texture continuously across the edges of
the tiling. Here, the fundamental region is defined
as a connected set that covers all basic elements
under the action of a certain symmetry group S

without overlapping except at their boundaries [15].
Next, we constructed the fundamental region and
corresponding invariant mappings under the three
types of symmetric groups. Finally, we set the colors
in the image space using QRP models with invariant
mapping. The details of this algorithm are described
in Algorithm 2.

4.2 Rearrangement of basic elements

Suppose that a k-uniform tiling is composed of r (1 6
r 6 5) types of basic elements, that is, tiles, each of
which is a regular m polygon Pm. We would use the
fundamental region U as the element to cover the
entire canvas via symmetry transformations.

Therefore, instead of directly constructing a
fundamental tiling region [14, 15], we proposed a
scheme that rearranges all basic elements to form

Algorithm 2 Symmetrize QRP with k-uniform tilings
Input:
1. Integer matrix representing a given k-uniform tilt T .
2. The QRP model H and its parameters q, s, xt, yt.
3. Canvas width: Wx, height: Wy,
Output: Tiling-constrained quasi-regular pattern
Initialize: Reconstruct the tiling with T by calculating
Cartesian coordinates (px, py) of all polygons Pm with
Eq. (3).
for all Pm do

for all (px, py) ∈ Pm do
Calculate (p′

x, p′
y) with Eq. (4);

Calculate dOO′ with Eq. (6);
p′

x = p′
x + dOO′ ;

Calculate (x, y) by the invariant mapping M which
will be introduced in Section 4.3;
Calculate the corresponding pixel color of (x, y) with
the QRP algorithm (Algorithm 1);

end for
end for

the target domain, where the fundamental region
can be defined. The scheme aims to transform each
basic element such that one edge of each basic element
overlaps, which helps eliminate texture seams between
neighboring polygons.

For the convenience of the later construction of
the fundamental region, we first built a mapping
to transform each polygon in the tiling to a fixed
location. The mapping translates the polygon to the
origin of the coordinate system such that the centroid
of the polygon coincides with the origin and then
rotates it by one of its edges to ensure that it is
perpendicular to the x-axis (an illustration is shown in
Fig. 3). Therefore, the mapping can be expressed as(

p′x
p′y

)
=
[
cos θ − sin θ
sin θ cos θ

](
px − cx
py − cy

)
(4)

where (cx, cy) is the centroid of the polygon and
(px, py) and (p′x, p′y) are the point pairs for the polygon
before and after the mapping. The rotation angle θ
can be calculated as Eq. (5):

θ=α−β, α=


0, n = 3
π

n
, n 6= 3

, β=arccos

 Vx√
V 2
x +V 2

y


(5)

where (Vx, Vy) is the position of any vertex of the
polygon that falls into the first and second quadrants
after the transformation.

We then rearranged all the basic elements of a
tiling to a state in which one side of each element
overlapped. By default, the overlapping edges and
their perpendicular bisector lines coincide with y- and
x-axes, respectively. Note that there are 2n cases for
such an arrangement, where n is the number of basic
elements. Each case leads to a different fundamental
region U and, thus, produces very different results,
which gives us another DOF to control the pattern.
To explain the details, we employed a tiling composed
of three distinct types of regular polygons as an
illustrative example, where the basic elements include

Fig. 3 Initialize the location of the basic elements.
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a regular triangle, quadrilateral, and dodecagon. It
can be verified that 8 different arrangements can be
made in total, which can be represented as 3l4l12l,
3l4l12r, 3l4r12l, 3r4l12l, 3l4r12r, 3r4l12r, 3r4r12l, and
3r4r12r, where the digits denote the number of sides of
the basic elements and the superscript letters l and r
indicate whether the corresponding element is placed
on the left (l) or right (r). Figure 4 displays two of the
8 cases, that is, 3l4r12r and 3r4r12r. In all cases, each
polygon is initially located in the the center of the
coordinate system(Fig. 3) along the x axis to obtain a
new arrangement, and the displacement is calculated as

dOO′
m

= (−1)lm |e|
2 tan

( π
m

) (m = 3, 4, 6, 8, 12) (6)

where |e| is the edge length of the polygons and lm
is a Boolean that denotes whether the polygon is on
the left (lm = 1) or right (lm = 0).

Finally, we constructed the target domain being
used to build the fundamental region by connecting
the centroid of each polygon to the two endpoints
of the overlapping edge. The defined fundamental
region is marked as the colored area in Fig. 4.

4.3 Construction of invariant mappings

We constructed three types of invariant mappings
associated with general k-uniform tilings without
strange seams to enrich the spatial structure of
quasi-regular patterns. The generated patterns have
the expected local symmetries whose textures are
continuous across the edges of the polygons.

The symmetry of each tiling was isometric. All
symmetries of a tiling constitute a symmetry group
that can be represented as a set of generators
{g1, g2, ..., gp} [33]. Let Gm be the symmetry group of
Pm; then, the fundamental region U for a k-uniform
tiling is the union of the fundamental regions of all

Fig. 4 Two of the 8 cases for rearranging the basic elements, where
O

′

m is the centroid of the m polygon Pm, R and S represent the
endpoints of their coincident edges, and K denotes the intersection
point of this edge with the x-axis.

its basic elements, that is, U = ∪mUm. We built
invariant mappings M based on fundamental regions
U . In general, invariant mapping is a transformation
that maintains a specific property of an object after
its application. The goal of invariant mapping is to
make the mapped and fundamental regions congruent.
Formally, let T be a symmetry transformation. Then,
for any point (x, y) in the fundamental region, it holds
M(x, y) = M(T (x, y)).

We took the fundamental region constructed in
Fig. 5 as an example to describe how to construct
three types of invariant mappings, denoted as M1,M2,
and M3. Let RAB be the reflection transformation
of the line AB. To construct a symmetrical group,
we used different composite transformations of RAB
as the generator.
4.3.1 Invariant mappings with dihedral symmetries
The dihedral symmetry corresponds to the dihedral
group D, and each regular polygon Pm contains a
dihedral group consisting of m-fold rotations and
m-fold reflections. Thus, any k-uniform tiling is
naturally equipped with this symmetry.

Without loss of generality, we used the GLM-type tiling
illustrated in Fig. 5(a) as an example to construct an
invariant mappingM1 with dihedral symmetry. LetD3 =
{RO′

3K
,RO′

3R
}, D4 = {RO′

4K
,RO′

4R
}, and D12 =

{RO′
12K

,RO′
12R
} be the dihedral symmetry group of

basic elements (polygons) P3,P4, and P12, respectively.
The fundamental regions corresponding to each
polygon were 4O′3RK,4O′4RK, and 4O′12RK. By
definition, for any point in the fundamental region
U of the tiling, for example, A1 ∈ RK marked in
Fig. 5(a), we obtained rotationally symmetrical points

A2 = RO′
4R

(A1) ∈ RP
A3 = RO′

3R
(A1) ∈ RM

A4 = RO′
12R

(A1) ∈ RQ
(7)

as well as its reflectional symmetrical points.
A′1 = RO′

4K
(A1) = RO′

3K
(A1) = RO′

12K
(A1) ∈ RS

(8)
where A1,A4, and A′1 lie on the boundary of
fundamental region U .

For any point (x,y) ∈ Pm, we can map it to its
fundamental region Um using the dihedral symmetry
group Dm as Eq. (9):

(x′, y′) = γm (x,y) ∈ Um, s.t. γm ∈Dm (9)
Note that all symmetrical points lead to the same
coordinates (x′, y′). Thus, mapping M1 defined as
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Fig. 5 Examples of three kinds of invariant mappings. The colored areas marked in (a), (b), and (c) are the fundamental regions of M1,M2,
and M3, respectively. (d), (e), and (f) illustrate the symmetries corresponding to (a), (b), and (c) , respectively.

M1(x,y) = Hq(x′, y′) is an invariant mapping, where
Hq is the QRP model defined in Eq. (1).

An illustration of the mapping under dihedral
symmetry is shown in Fig. 5(d), where the double red
arrows represent the symmetric relationship between
the fundamental region U and the others. Examples
of the generated pattern and its corresponding surface
are shown in Fig. 6(a) and Fig. 6(b).
4.3.2 Invariant mappings with rotational symmetries
An n-fold rotational symmetry is a cyclic group Cn,
which makes it somewhat complicated to construct
invariant mapping compared with the previous case.
To further clarify the mapping M2, we utilize Fig. 5(b)
as an illustrative example. To elaborate on mapping
M2, we consider Fig. 5(b) as an example. In this
mapping, we must consider the continuity of the
seams across both the boundary edges of the polygons
and the fundamental region U . In Fig. 5(b), let
Cm (m = 3, 4, 12) be the cyclic symmetry of Pm. Then
(RO′

3K
·RO′

3R
), (RO′

4K
·RO′

4R
), and (RO′

12K
·RO′

12R
)

are the generators of C3, C4, and C12, respectively. All

of these are counterclockwise rotations about Om at
an angle 2π/m. To construct M2, the fundamental
regions corresponding to each polygon become
4O′3RS, 4O′4RS, and 4O′12RS. Then, we obtained
the symmetrical points of ∀A1 ∈ RS as

A2 = (RO′
4K
·RO′

4R
)−1 (A1) ∈ RM

A3 = (RO′
3K
·RO′

3R
)−1 (A1) ∈ RP

A4 = (RO′
12K
·RO′

12R
)−1 (A1) ∈ RQ

(10)

and ∀B2 ∈ O′12R as
B1 = (RO′

12K
·RO′

12R
) (B2) ∈ O′12Q (11)

The symmetry of the fundamental regions for other
polygons can also be deduced similarly from Eq. (10)
and Eq. (11) using their corresponding generators.

In contrast to dihedral symmetry, the definition
of rotational symmetry cannot ensure continuity
across the boundaries of fundamental regions. For
the symmetry transformation γm ∈ Cm defined on
Pm, we can map any point (x, y) ∈ Pm to the
fundamental region Um under γm and obtain a new
point p = (xγ , yγ) = γm (x, y) ∈ Um. We then
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Fig. 6 Aesthetic patterns of three kinds of invariant mapping: (a),
(c), and (e) are the patterns generated by the model Eq. (1) (q = 4.4,
s = 8, xt = yt = 0) corresponding to M1, M2, and M3, respectively.
(b), (d), and (f) are the surface of pattern corresponding to (a), (b),
and (c), respectively.

constructed a composite mapping h applied to γm to
satisfy the continuity condition:

(x′, y′) = h (γm(x, y))

= (xγ , yγ)σ
(
dmin(p)
dsum(p)

)
+ (xγ , η |yγ |)

[
1− σ

(
dmin(p)
dsum(p)

)]
(12)

where η ∈ (0, 1] is a parameter used to control the
texture details and dmin(p), dsum(p), and σ(x) are the
three functions. dmin denotes the minimum distance
from a point in the fundamental region p to its
boundary, ∂Um.

dmin(p) = min
e∈∂Um

d(p, e), p ∈ Um (13)

dsum is the summation of all distances defined in Eq. (13):

dsum(p) =
∑

e∈∂Um

d(p, e), p ∈ Um (14)

σ is a smooth function used to encourage each edge
of the fundamental region Um to have the same color
after rotation γm is applied, which can be defined as
a Sigmoid function:

σ(x) = 1
1 + e−(b+ωx) (15)

where b and ω are parameters of the linear function
of x. We can easily verify that r = dmin(p)/dsum(p) ∈
[0,1/3]. When point p ∈ U approaches ∂U , r → 0
and its mapped point is expected to approach its
symmetrical point about the xaxis, that is, σ(r)→ 0.
In contrast, when p is away from ∂U , r → 1/3, we
would like to retain the original color calculated by
QRP model as much as possible, that is, σ(r) → 1.
Thereafter, we set b = −5 and ω = 25 by default,
which satisfy the properties.

Because all symmetrical points lead to the same
coordinate (x′, y′) as in Eq. (12), the mapping M2
defined as M2(x,y) = Hq(x′, y′) is an invariant
mapping. An illustration of the mapping is shown in
Fig. 5(e), and the generated patterns and surfaces of
the QRP model are shown in Fig. 6(c) and Fig. 6(d).
4.3.3 Invariant mappings with reflection symmetries
The patterns generated using M3 have local reflection
symmetries, the axes of which are lines that end
at the polygon’s centroid and one of its vertices.
The constructions of M3 and M1 have certain
similarities. However, unlike M1, M3 has a larger
fundamental region area and must consider the
boundary continuity between the polygons.

We used Fig. 5(c) as an example to demonstrate
the construction details. In Fig. 5(c), let D′m be
dihedral symmetry group of Pm (m = 4,6,12). RO′

4R

and RO′
4S

, RO′
6R

and RO′
6S

, and RO′
12R

and RO′
12S

are the generators of D′4, D′6, and D′12, respectively.
The fundamental regions U corresponding to each
polygon are 4O′4RS, 4O′6RS, and 4O′12RS. Then,
for any point A1 ∈ RK, the symmetrical points under
invariant mapping M3 lying at P4,P6, and P12 are as
Eq. (16): 

A2 = RO′
4R

(A1) ∈ RP
A3 = RO′

4S
(A1) ∈ SW

A4 = RO′
6R

(A1) ∈ RM
A5 = RO′

6S
(A1) ∈ SN

A6 = RO′
12R

(A1) ∈ RQ
A7 = RO′

12S
(A1) ∈ ST

(16)
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Unlike M1, the construction of M3 must eliminate
the texture seams at the boundaries of the tilings.
To this end, we constructed a mapping that can
make each edge of polygon Pm symmetrical about its
perpendicular bisector. Therefore, for ∀ (x,y) ∈ Pm,
we first mapped it to its fundamental region Um by
symmetry transformation γn ∈ D′m, that is, p =
(xγ, yγ) = γm (x,y) ∈ Um, and then apply a composite
function to make it symmetrical.

(x′, y′) = (xγ , yγ)σ(d) + (xγ , η |yγ |) [1− σ(d(p))]
(17)

where σ is defined in Eq. (15) and d(p) is the
distance from p to RS, that is, d(p) = d(p, RS) =
minq∈RS ||p− q||.
M3 is an invariant mapping under the definition in

Eq. (17). An illustration is shown in Fig. 5(f), and
the generated pattern and its QRP surface are shown
in Fig. 6(e) and Fig. 6(f).

4.4 GPU implementation

Because of the enormous number of pixels in a pattern
to be calculated, serial implementation on the CPU
is inefficient. Thus, we took advantage of the multi-
pipeline feature of the GPU, leveraging it to render all
pixels of a pattern in parallel, and applied OpenGL
Shading Language (GLSL) for GPU computing.

In the vertex shader, the projection matrix was
received from the CPU memory. The grids were
translated by the matrix to make the tile cover the
entire window, as shown in Fig. 7.

The fragment shader obtains the vertex information
passed in from the vertex shader as well as
other parameters. Substitute these parameters
into Eqs. (4)–(6) in Section 4.2 to construct the
fundamental region. Simultaneously, three different
types of invariant mappings, M1, M2, and M3 as well
as predefined QRP models, are all implemented in
the fragment shader in Section 4.3.

We then colored all pixels of the pattern using
texture mapping. Each pixel corresponds to a texture

Fig. 7 Illustration of tiling construction by translating grid.

coordinate, and its color is determined by the value
H, which can be efficiently calculated using the QRP
model.

5 Experimental results

The proposed pattern generation algorithm is
implemented using GPU shaders and ran on a
PC with Intel Xeon (2.40 GHz) processor, NVDIA
Quadro P620 (2 GB), Windows 10 OS, and all
patterns are rendered to image with a resolution
of 1024 pixels × 1024 pixels. The tiling dataset was
collected from Ref. [34] and contained 212 tilings. By
default, we set the basic model (Eq. (1)) as the QRP
model with parameters q = 5, s = 18, xt = yt = 0.
The parameter q was originally defined as a positive
integer but could be set as any positive real number
q > 1 in practice, which also works well.

In the following sections, we experimentally
demonstrated the effectiveness of the algorithm
using several examples and comparisons from diverse
perspectives.
5.1 Influence factors of the algorithm

There are various ways to control the generated
patterns for our algorithm, including η in Fig. 8,
the type of local symmetry, the method of overlaying
basic polygons, models, and parameters of quasi-
regular patterns, and the type of tiling structures, etc.
All of these factors significantly affected the results.

The parameter η in Eq. (12) is used to rescale
the local detail of the texture. This is an additional
degree for controlling the variation in the patterns.
When η = 1, the position of the mapped point was
maintained, and the pattern displayed its original
texture detail. When η < 1, the position of the
mapped point about the y axis was rescaled; thus,
the details of the pattern were magnified. The smaller
the value of η, the larger the magnification and the
clearer the texture. The results generated by different
values of η are shown in Fig. 8. We empirically set
η = 0.3 by default.

The next example shows the patterns generated
with three different types of local symmetries with
fixed tiling structures (Fig. 9(a) and Fig. 9(e))
and the same QRP models. The results show that
local dihedral symmetry (Fig. 9(b) and Fig. 9(f)),
rotational symmetry (Fig. 9(c) and Fig. 9(g)), and
reflection symmetry (Fig. 9(d) and Fig. 9(h)) have



568 Z. Yin, Y. Jin, Z. Fang, et al.

Fig. 8 Results with different values of η in Eq. (12), where the QRP model is defined in Eq. (1) (q = 3.6, s = 3, xt = 2, yt = 0) and the
invariant mapping is M2.

Fig. 9 Patterns generated by M1, M2, and M3. (a) and (e) are the tiling structure of the generated patterns (b)–(d) and (f)–(h), respectively.

their own art styles and differ significantly from each
other in appearance. The reason behind this is that
the constructed fundamental region of each type is
different, which leads to different shapes of QRP
defined in that region.

The third example in Fig. 10 shows the effectiveness
of different methods for rearranging the basic tiling
elements. We used the same tiling structure (HLMP),
QRP models, and local symmetry type (dihedral)
but with different rearrangements of the basic
elements. The results show that they share some
similarities in global structure but differ in local
texture details. This is because the tiling structure
and local symmetry type reflect global features,
whereas the QRP model determines the local texture
features.

Then, we showed examples to demonstrate
the colorful texture patterns of QRP models
and their parameters, with all remaining factors
fixed. Figure 11 displays tiling-constrained patterns
generated with different QRP models and the same
parameters (q = 4.8, s = 8, xt = 0, yt = 0), and
their function expressions are varied from the basic
models, which can be seen in Table 1. Owing to our
scheme of building the fundamental region, any QRP
model defined is continuous across the edges of the
tiling, which naturally eliminates the texture seams
on those edges.The patterns generated with different
QRP models (Fig. 11) differ considerably for both the
local and global textures. We also investigated the
parameters (q, s, xt, yt) of the QRP model, and the
corresponding results are shown in Fig. 12. Because
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Table 1 QRP models used in the experiments

QRP model Example

H =
bqc∑
i=1

cos
(
x cos3

(
2πi
q

)
+ y sin3

(
2πi
q

))
11(b)

H =
bqc∑
i=1

cos
(
|x|

3
4 cos

(
2πi
q

)
+ |y|

3
4 sin

(
2πi
q

))
11(c)

H =
bqc∑
i=1

cos [Ω]2 +
sin (y) + cos (x)

5
11(d)

H =
bqc∑
i=1

cos [Ω]2 +
cos (xy)

5
−

(x+ y)
100

11(e)

H =
bqc∑
i=1

sin {cos [Ω]}+ |sin [Ω]| 11(f)

H =
bqc∑
i=1

tan {sin [Ω]}+ cos [Ω]3 11(g)

H =
bqc∑
i=1

cos [Ω]3 + cos (y sin (x)) 11(h)

Note: Ω = x cos
(

2πi
q

)
+ y sin

(
2πi
q

)

the parameter q reflects the complexity of the model,
the local texture detail becomes more complicated
as q increases (Figs. 12(a)–12(d)). The parameters
xt, yt confine the domain of definition and, thus, affect
the contour shape of the QPR models. The textural
details of the pattern changed as these two parameters
varied (Figs. 12(e)–12(l)). s was used to control the
scale of the texture pattern, and the texture size
decreased as the value of s increased. The translation
period gradually increases for rendered images with
the same resolution (Figs. 12(m)–12(p)).

The tiling structure determines the pattern layout.
Moreover, the fundamental regions differ for different
tiling structures; therefore, the QRP models defined
therein are distinct. Figure 13 displays pattern
generation results with different tiling structures of
a different number of vertex types while keeping the
remaining factors unchanged. It can be observed
from the figure that the tiling structures significantly

Fig. 10 Patterns generated from different ways of rearrangement of basic elements, where the QRP model is defined in Eq. (1) (q = 5.0,
s = 8, xt = 0, yt = 0) and the invariant mapping is M1.

Fig. 11 Patterns generated with different QRP models: (a) basic model (Eq. (1)). (b)–(h) correspond to seven different models listed in
Table 1. All of them are generated by the parameters (q = 4.8, s = 8, xt = 0, yt = 0) and invariant mapping M1.
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Fig. 12 Patterns generated with different parameters of the QRP model.(a)–(d) are results tuned by the parameter q with HLW tiling
structure and the mapping M1; (e)–(h) are results tuned by the parameter s with the mapping M3. (i)–(l) are results tuned by the parameter
xt with the mapping M1. (m)–(p) are results tuned by the parameter yt with the mapping M1.

affect the global features as well as the local details
of the generated patterns.

The last example shows the influence of the color
palette selection. Keeping all other factors frozen, we
selected different color palettes and numbers of colors
to render the image. The results are shown in Fig. 14.
Note that the texture detail of the pattern remains

unchanged for palettes of different colors (Figs. 14(a)–
14(d)). However, the texture detail decreases as the
number of colors decreases (Figs. 14(e)–14(h)).

5.2 Comparisons

In this section, we compared the advantages of our
algorithm against the state-of-the-art methods to
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Fig. 13 Patterns generated with tilings of different vertex types.

Fig. 14 Patterns generated with different color palettes. Patterns from (a) to (d) are generated with different color palettes under the same
tiling structure. Patterns from (e) to (h) are generated with color palettes with different numbers of colors.

demonstrate its superiority.
A dynamical system is one of the most popular tools

for generating aesthetic patterns with symmetrical
properties. Thus, we first compared it with the

generating patterns with simple planar symmetries
from dynamical systems [2, 24]. The results are shown
in Figs. 15(a)–15(h). In general, the patterns are
regular and monotonous because of their simple,
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Fig. 15 Symmetrical patterns generated from dynamical systems. (a)–(d) Results of the method [24]. (e)–(h) Results of the method [2]. All
the figures are extracted from Refs. [24] and [2].

symmetric wallpaper layout. Additionally, these
methods [2, 24] require the design of specific functions
with symmetric properties for dynamical system
models, which is difficult and tedious. In comparison,
users can flexibly control the pattern from various
aspects using our method, and the generated patterns
vary in both space structures and textures.

We also compared tiling-constrained pattern
generation methods based on dynamical systems [14,
15]. We implemented both algorithms and present
their results in Fig. 16 and Fig. 17. Comparisons show
that our algorithm outperforms the others [14, 15]
in several respects. First, our method can generate
seamless patterns for any given k-uniform tilings. In

contrast, the methods [14, 15] are limited to simple
types of tilings (Penrose and Archimedean) and should
design invariant mappings for each tiling case by case.
Second, our method naturally eliminates seams across
the tiling edges; thus, the generated patterns are
rich in variation near these edges. However, both
methods [14, 15] require the construction of explicit
continuous conditions across the tiling edges, and
visibility is usually observed in their patterns. Third,
the QRP model used in our algorithm has several
fixed and meaningful parameters that can conveniently
control pattern variation. However, the parameters of
the dynamic models are integrated into the functions,
which have different geometrical significances for the

Fig. 16 Patterns generated with Penrose tilings [14].
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Fig. 17 Comparison results with tiling-constrained pattern generation methods.(a) and (e) are the tiling structures of (b)–(d) and (f)–(h),
respectively; (b) and (f) are generated by Ouyang et al. [15]; (c), (g), (d), and (h) are generated by our method.

different functions. Thus, one has to frequently change
the function models to obtain patterns with different
styles.

5.3 Performance

Owing to the parallel implementation on GPU,
our algorithm achieves high performance, even for
rendering images of large resolutions. Table 2 shows
the time statistics for rendering images of different
resolutions. Note that the time cost remains nearly
the same as the resolution increases.

5.4 Application

The patterns generated by our method can be used
as materials in certain design fields, such as fabrics

Table 2 Graphics generation speed at different resolutions

Pattern resolution Cost time per pattern (s)

512×512 0.0403

1024×1024 0.0407

2048×2048 0.0411

4096×4096 0.0413

8192×8192 0.0420

and ties. Here, we demonstrated the application of
such patterns in the tie design (Fig. 18). Because
the style and features of our patterns are similar to
those of ties, slight alterations are needed for the
final applications, which could greatly assist artists
in improving the efficiency of design flows.

Fig. 18 An application of our aesthetic patterns used in ties design.
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6 Conclusions

We proposed a novel method for generating colorful
patterns by symmetrizing quasi-regular patterns
with general k-uniform tilings composed of regular
polygons. Our method, which unifies the construction
of invariant mappings for all k-uniform tilings, is
flexible for controlling the generation of patterns
with various parameters in both textures and
symmetric layout structures. Compared with existing
methods, our method can generate patterns with
more variations in spatial layout structures and
texture details. In addition, our method is fully
automatic, which significantly reduces the effort
required to design specific invariant mappings for
any given k-uniform tiling.

Although the overall performance of our method
is promising, it has a few limitations. We did
not consider the aesthetic evaluation of specific
domains of the generated patterns, which may hinder
practical design applications. Two main factors affect
aesthetics. The first is the strategy for partitioning
the height field of QRP models, which significantly
impacts the shape of the generated pattern. The
other is color compatibility and spatial arrangements,
which require artists to create secondary designs
for practical applications. In the future, we plan
to integrate the aesthetic model learned from a
specific art design field into the method and study
a method for generating quasi-regular patterns with
the constraints of aperiodic tiling’s.
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