
Computational Visual Media
https://doi.org/10.1007/s41095-022-0307-3 Vol. 10, No. 1, February 2024, 45–59

Research Article

A causal convolutional neural network for multi-subject motion
modeling and generation

Shuaiying Hou1, Congyi Wang2, Wenlin Zhuang3, Yu Chen1, Yangang Wang3, Hujun Bao1,
Jinxiang Chai2, and Weiwei Xu1 (�)

c© The Author(s) 2023.

Abstract Inspired by the success of WaveNet in multi-
subject speech synthesis, we propose a novel neural
network based on causal convolutions for multi-subject
motion modeling and generation. The network can
capture the intrinsic characteristics of the motion of
different subjects, such as the influence of skeleton
scale variation on motion style. Moreover, after fine-
tuning the network using a small motion dataset for
a novel skeleton that is not included in the training
dataset, it is able to synthesize high-quality motions
with a personalized style for the novel skeleton. The
experimental results demonstrate that our network
can model the intrinsic characteristics of motions well
and can be applied to various motion modeling and
synthesis tasks.

Keywords deep learning; optimization; motion
generation; motion denoising; motion
control

1 Introduction

Human-motion generation is useful for many appli-
cations, such as human-action recognition [1, 2],
motion prediction [3], and video synthesis [4].
Learning a powerful motion model from prerecorded
human-motion data is challenging because highly
nonlinear kinematic systems intrinsically govern

1 State Key Lab of CAD&CG, Zhejiang University,
Hangzhou 310058, China. E-mail: S. Hou, 11721044@
zju.edu.cn; Y. Chen, jianfenghou4@163.com; H. Bao,
bao@cad.zju.edu.cn; W. Xu, xww@cad.zju.edu.cn (�).

2 Xmov, Shanghai 200030, China. E-mail: C. Wang,
artwang007@gmail.com; J. Chai, chaijinxiang@xmov.ai.

3 School of Automation, Southeast University, Nanjing 210096,
China. E-mail: W. Zhuang, wlzhuang@seu.edu.cn; Y. Wang,
yangangwang@seu.edu.cn.

Manuscript received: 2022-05-25; accepted: 2022-08-02

human motion. As a solution, motion models should
scale up effectively to multi-subject motion datasets,
synthesize various motions, and be amenable to
multiple tasks, such as motion denoising, motion
completion, and controllable motion synthesis.

Recent deep-learning-based motion-synthesis
algorithms have shown great potential for human-
motion generation. Autoregressive models, such
as restricted Boltzmann machines and recurrent
neural networks (RNNs) [5–7], have been applied
to motion synthesis by predicting the possibility
of motion in the future. Variational autoencoders
(VAEs) [8–10] and generative adversarial networks
(GANs) [11–15] have also been applied to motion
modeling and synthesis. However, such models must
employ careful training strategies to avoid error
accumulation and mode collapse. Phase-functioned
neural network (PFNN) and its successors [16–18]
introduced a phase and local phase to reduce the
difficulty of motion modeling.

Inspired by the success of causal-convolution-based
WaveNet [19] in multisubject speech synthesis, we
propose a novel neural network based on causal
convolutions (CCNet) to address the aforementioned
issues in motion modeling and synthesis. We added
one-dimensional (1D) convolution layers to enable
CCNet to accept skeleton configurations as an input,
which is necessary for the network to handle the
scale and style variations among the skeletons of
different subjects. The output of CCNet is the
probabilistic density function (PDF) of the motion
at the next time step, which is conditioned using
the motions at previous time steps, control signals,
and skeleton configurations. Using a meticulously
designed training strategy, CCNet can effectively
capture the intrinsic characteristics of motions of

45



46 S. Hou, C. Wang, W. Zhuang, et al.

different subjects and generate more than 20,000
frames of motion.

The freezing issues frequently encountered in prior
studies can be effectively mitigated with a Gaussian
loss that simultaneously penalizes the deviation of
joint angles, positions, and velocities in training.
After being trained on motion-capture (mocap) data
across multiple subjects, CCNet can generate high-
quality motions for different subjects. Furthermore,
CCNet can synthesize motions for novel skeletons
that are not in the training dataset. If the network is
fine-tuned with a small motion dataset of the novel
skeleton, it can generate high-quality motions that
are similar to the skeleton’s ground-truth mocap data.
Although the topology of the novel skeletons is the
same as that of the skeletons in the training dataset,
their scale variations significantly influence the quality
and style of the generated motions. CCNet can
accommodate these unobserved variations, as shown
in our experiments.

We built a new large-scale motion dataset based on
12 subjects with various motion types and transitional
clips between different types of motions to model the
intrinsic characteristics of multisubject motions. The
dataset has 486,282 frames and will be made public
together with our code.

To summarize, our main contributions are as
follows. (1) We propose a novel neural network
based on causal convolutions to model the intrinsic
characteristics embodied in the motions of multiple
subjects, which has rarely been explored in deep-
learning-based motion synthesis methods. (2) A new
high-quality motion dataset is constructed across
multiple subjects for motion synthesis. (3) CCNet
is trained on our new dataset and can efficiently
generate high-quality motions (∼65 fps) and achieve
state-of-the-art results for synthesizing characteristic
motions for different subjects.

2 Related work

Data-driven motion-modeling methods have become
mainstream in recent decades, owing to the
development of motion capture techniques and
increased computing power of GPUs. Please refer
to Refs. [20, 21] for a more comprehensive survey.
In the following section, we review motion-synthesis
methods that are related to our work.

2.1 Motion style

Our method exhibits superior performance in
generating the motions of different intrinsic
characteristics associated with different people, even
when they possess the same type of human motions.
For example, fat and thin men typically have
different walking styles for the same motion type. A
critical challenge is to model motion styles. Refs. [22,
23] implicitly parameterized the motion styles to
synthesize diverse motions. Ref. [24] proposed a
motion-style transfer method for a single person
to address the problem of unlabeled heterogeneous
motions. Wen et al. [25] applied normalizing flows
to the task of unsupervised motion-style transfer and
achieved impressive results that outperformed state-
of-the-art methods. However, none of these methods
have been extended to model the variation in human
motion styles across different subjects. Aberman et al.
[26] proposed a motion-retargeting method to address
skeleton variations. However, the motions generated
for a new subject were strictly limited to the source
motion in terms of types and trajectories and had
nearly the same style as the source motion. Ref. [27]
proposed a method to address skeleton variations;
however, it only models personalized style variations
for particular human motions, such as walking or
running. In contrast, our method can scale up to
generate characteristic motions for multiple subjects
of different types, and source motions do not need to
be provided as in motion retargeting.

2.2 Deep-learning-based motion synthesis

Deep learning is a remarkable tool for learning
a compact, low-dimensional motion space from a
dataset. Previous studies have explored many neural-
network structures for motion modeling and have
made significant progress in this area, such as mixture-
of-experts [9, 18], RNNs [28–30], fully connected
networks [31, 32], graph networks [33, 34], VAEs
[35, 36], and GANs [14, 15]. These methods achieved
good performance for short-term motion prediction or
periodic locomotion-synthesis tasks, such as walking
or running generation. Various types of long-term
motion generation often exhibit over-smooth motions
or freezing poses [18]. Introducing a phase [16] or local
phase [17] as an additional motion feature is helpful
for avoiding such problems; however, obtaining these
extra temporally related features requires effort.



A causal convolutional neural network for multi-subject motion modeling and generation 47

Exact probability models [25, 37, 38] based on
normalizing flows can also solve this problem and add
diversity to the synthesized motions. However, these
normalizing-flow-based motion-synthesis models are
difficult to train and may cause noise and jerkiness.

Despite significant progress in deep-learning-based
motion modeling and synthesis, constructing a
model that is capable of accurately modeling the
characteristics of motions across different subjects
remains challenging. This is primarily owing to
the lack of datasets containing features of multiple
subjects. To address the challenges mentioned above,
we propose CCNet, which models the intrinsic
characteristics of the motions of different subjects
by taking skeleton configurations as an input.

3 Our approach

3.1 Overview

The overall framework of the proposed system
is illustrated in Fig. 1. The designed CCNet has
three types of functional blocks: a motion-feature
embedding encoder, a series of separate residual
blocks (SRBs) (light-green blocks) used to capture
the temporal correlations, and a decoder that maps
the latent features to the probability distribution of
the predicted motions. These blocks are discussed in
Section 3.2.

We represent the nth frame in our training data
as xn = {xe

n,x
ω
n,x

p
n,x

v
n,x

f
n}, where xe

n denotes
the vector of the relative joint rotations, which is
represented using exponential coordinates [39], xω

n

is the vector of the relative angular velocities of
the joints, xp

n are the 3D joint positions relative
to the previous frame, and xv

n is the vector of the
joint linear velocities. The foot-contact information
in the nth frame is represented as a 2D binary

vector xf
n. The skeleton configuration combined with

the direction, velocity, and motion type form our
control signals cn = {cs

n, c
d
n, c

t
n}, where cd

n is a
12D vector formed by sparsely sampling the points
on the motion trajectory, starting from the nth
frame in a one-second motion clip, and ct

n is a 10D
vector using one-hot encoding, which represents all
ten types of motions in our dataset. Specifically,
the skeleton configuration cs

n can be represented as
cs
n = {hr, t

x
1 , t

y
1, t

z
1, ..., t

x
m, t

y
m, t

z
m}, where hr is the

height of the root joint, and the 3D positions of
non-root joints, that is, {tx1 , tx1 , t

y
1, t

z
1, ..., t

x
m, t

y
m, t

z
m},

are set to be relative to the root. Given the training
data and corresponding control signals, our goal is
to train CCNet Fθ parameterized by θ to model the
PDF of the predicted motion for the nth frame:

p(xn|X, cn) = Fθ(X, cn) (1)
where X = {xn−l−1, ...,xn−1} and cn are the motion
data of the previous l frames and the control signals
of the nth frame, respectively.

We used Gaussian loss to encourage CCNet to
output ground-truth motion with high probability,
foot-contact loss to facilitate the removal of foot
sliding in the generated motions, and smoothness loss
to reduce jerkiness (see Section 3.3). Noise is added to
the sampled training motion data; thus, the network
is robust to the accumulated error in the motion
synthesis and can produce high-quality, non-freezing
motions. The slight foot sliding in the generated
motions was removed using an inverse kinematic (IK)
algorithm based on the predicted foot-contact labels.
3.2 CCNet architecture

3.2.1 Encoder
Encoder ψE has a simple “Conv1D-ReLU” structure,
where the kernel size of the 1D convolution is 1.
Conv1D layers with a kernel size of 1 ensure

Fig. 1 The proposed CCNet can scale up to a large-scale motion dataset across multiple subjects. Left: Examples of motion-capture data
and control signals. Middle: A schematic of our network. It consists of a motion-feature embedding encoder, a series of separate residual
blocks (light-green blocks) used to capture temporal correlations, and a decoder that maps the latent features to the probability distribution of
predicted motions. We omit the skip connections here for simplicity. Right: Examples of motions sampled from our network outputs.



48 S. Hou, C. Wang, W. Zhuang, et al.

that the motion feature at each input frame is
independent. Formally, the encoder ψE takes the
motion representation X of the previous l frames as
the input and maps the observed sequence to a latent
vector z:

z = ψE(D(X)) (2)

The dropout layer before the encoder, denoted by D,
is used to resolve the possible overfitting problem,
and its drop probability is set to 0.5.
3.2.2 Separate residual blocks
The core component of CCNet is the set of SRBs
ψiR, which is illustrated in Fig. 2. The SRBs are
similar to the residual blocks used in WaveNet [19],
which uses dilated causal convolution to guarantee
the temporal ordering of the input motion data.
The difference is that we add the Conv1D layers
to every SRB to extract the features of the control
signals to enhance the model’s ability to capture
the motion characteristics of different subjects, and
we fuse these features with the motions through
summation. Our network includes 20 SRBs, which
are executed recursively. Each ith block takes the
output of the (i− 1)th block and the control signals
as its input, whereas the inputs of the first block ψ0

R
are the outputs from the encoder and control signals.
The kernel size of the Conv1D layers is 1. Zeros are
padded before the feature of ψE(xn−l−1); therefore,
the output of the causal convolution of a frame n
depends only on the frames before it. The padding
size can be computed as (k−1)d, where k is the kernel
size, and d is the dilation size. The causal receptive

Fig. 2 Detailed architecture of the separate residual block. Each
type of control signal is input to its own Conv1D layer, and the kernel
size of Conv1D is 1. The numbers beside Oi−1

r , Oi
r , and Oi

s indicate
their number of channels.

field length CRL of CCNet can be computed using k
and d as Eq. (3):

CRL = (k − 1) +
19∑
i=0

di(k − 1) (3)

We can set different dilation sizes di for different SRBs
to adjust CRL. The kernel and dilation sizes are set
to 2 in all SRBs; accordingly, the CRL of CCNet is
41. We also experimented with other CRLs by setting
different di values; however, we observed that a CRL
of 41 is optimal (see Section 4.8). All SRBs generate
features z̃ for the decoder as Eq. (4):

z̃ = ψ0
R(z, cn) +

19∑
i=1

ψiR(· · ·ψ1
R(ψ0

R(z, cn), cn)) (4)

3.2.3 Decoder
Decoder ψD is a simple “ReLU-Conv1D” structure,
where the convolution kernel size is set to 1. It maps
the summed features from the SRBs to the PDF of
the predicted motion, as Eq. (5):

µ̂n, σn = ψD(z̃) (5)
where µ̂n is a vector of channel-wise mean values.
Vector σn is used to compute the final standard
deviation values σ̂n = e−σn . This element-wise
operation ensures that we always obtain positive
standard deviation values for σ̂n. Subsequently, the
poses at frame n can be obtained by directly using
the mean µ̂n (default setting in our implementation),
or they can be sampled from the predicted PDF.
Note that the decoder can output n frames each
time during the training iterations, owing to the fully
convolutional operations.

3.3 Training loss

The training loss consists of four terms: Gaussian loss
LG, motion smoothness loss Ls, foot-contact label
loss Lf , and direction-control loss Ld. The training
loss can be formulated as Eq. (6):

L = LG + λ1Ls + λ2Lf + λ3Ld (6)
where the weights λ1, λ2, and λ3 are empirically set to
10.0, 2.0, and 1.0 in all our experiments, respectively.
3.3.1 Gaussian loss
This term follows the Gaussian mixture loss in the
work of Fragkiadaki et al., whereas we used only one
mode and set the covariance matrix as a diagonal to
reduce the number of parameters. It can be written
as Eq. (7):

LG = −ln(p(xn|µ̂n, σ̂n)) (7)



A causal convolutional neural network for multi-subject motion modeling and generation 49

where xn is the motion representation extracted from
the nth frame, and the binary foot-contact label in
xn is addressed in Lf ; thus, it is not included in
this term. The Gaussian loss learns to maximize the
probability of the motion representation vector of the
ground-truth mocap data during training; therefore,
the captured motion data are of high probability. We
add a constraint to ensure that the standard deviation
σ̂n is greater than the threshold (1 × 10−4) using
a clipping operation. After training, we observed
that the standard deviations that were output by the
trained CCNet were typically between 1× 10−4 and
1 × 10−3, and their mean value was approximately
2.449 times the threshold of 1× 10−4. Consequently,
we can sample a motion according to a Gaussian
distribution to enrich the variations in the synthesized
motion. The joint positions and linear velocities
included in this term can help model the correlations
between the rotational degrees of freedom of different
joints because such quantities are affected by all the
parent joints on the kinematic chain connected to the
joints.
3.3.2 Smoothness loss
This term is a soft constraint that prevents a sudden
change in velocities at joints and smoothens the
synthesized motion, which can be formulated as

Ls =
N∑
n=2

(µ̂n−2 + µ̂n − 2µ̂n−1) (8)

The smoothness loss is only optimized for the mean
of the predicted Gaussian distributions, because the
motion generated by the network is typically close to
the mean at each frame.
3.3.3 Foot-contacts loss
We adopt the binary cross-entropy (BCE) loss
function to train the network to predict whether the
foot is in contact with the supporting plane in the
nth frame:

Lf = BCE(xf
n, x̂

f
n) (9)

where xf
n is the ground-truth foot-contact label for

the data, and x̂f
n is the network prediction. Foot-

contact labels can be used to trigger IK algorithms
to remove foot sliding in the synthesized motions.
3.3.4 Direction-control loss
For simplicity, we represent this term as a Gaussian
loss and integrate it into LG. It enables CCNet to
predict the direction and velocity control signals, and
we only use the mean of the predicted PDF, ĉd

n and ĉv
n,

when generating motions. Thus, the final Gaussian
loss becomes
LG = −ln(p(xn, cd

n, c
v
n|µ̂n, ĉd

n, ĉ
v
n, σ̂n, σ̂

d
n, σ̂

v
n)) (10)

where σ̂d
n and σ̂v

n are the predicted standard
deviations of the direction and velocity control signals,
respectively, which are computed in the same manner
as σ̂n in Eq. (5) and are discarded after training. This
term is helpful in interactive motion control when
control signals are occasionally inputted by the user.
In this case, the predicted control-signal values are
fed into the network to continue motion synthesis.

4 Results and discussion

4.1 Dataset and baselines

4.1.1 Dateset
Using the mocap technique, we built a human-motion
dataset for 12 different subjects. Three subjects were
women, and the rest were men, as shown in Fig. 3. The
dataset includes 10 types of motion: walking, running,
jumping with the left foot, jumping with the right
foot, jumping with both feet, walking backward,
zombie walking, kicking, punching, and kicking while
punching. All subjects were asked to perform the
first seven types of motion, and five were asked to
perform the last three types of motion. We recorded
approximately 20 min of motion for each subject
and asked them to perform two types of motion in
one sequence to facilitate the learning of transitions
between different motion types. Finally, we obtained
486,282 frames of poses (comprising 27 distinct
nonfinger joints) from our datasets. The test dataset
was formed by all the motion sequences of subject
7, who was randomly selected from the subjects.
Additionally, one motion sequence was randomly

Fig. 3 Skeletons and meshes in our dataset. The skeletons of subjects
0–11 are from left to right, and their heights are 1.6 m, 1.7 m, 1.68
m, 1.83 m, 1.72 m, 1.65 m, 1.95 m, 1.7 m, 1.78 m, 1.66 m, 1.55 m,
1.54 m. Subjects 2, 9, and 10 are women.



50 S. Hou, C. Wang, W. Zhuang, et al.

selected from the sequences of the remaining subjects.
The test dataset was used to test how our network
handles skeleton variations after being trained on
multisubject motion data. It contained 41 motion
sequences and 88,649 frames.
4.1.2 Baselines
We primarily focused on human-motion modeling
that captures the intrinsic characteristics embodied
in the motions of multiple subjects. This is a unique
and rarely explored task compared to most existing
methods. There are few methods that are similar
to our method proposed in this study; hence, we
compare our model to three classic models that
are most similar: ERD in the work of Fragkiadaki
et al. implemented using four LSTM layers as in
Ref. [40], called ERD-4LR; DAE-LSTM [41]; and
PFNN, which is an MLP-based network [16]. To test
the performances of these three network structures
in modeling the motion characteristics of multiple
subjects, we added parameters to their first layers to
accept skeleton configurations as inputs. Please refer
to the Electronic Supplementary Material (ESM) for
the detailed network parameters of the models.
4.2 Implementation details

We implemented our algorithm using PyTorch version
1.6. The RMSProp optimizer [42] was employed with
an initial learning rate of 1 × 10−4, which decayed
to 1 × 10−6 until 2000 epochs. The batch size was
set to 256 with each sample containing a motion
sequence of 240 consecutive frames. There are two
steps to generating the training batches: (1) randomly
selecting a motion clip from the dataset and then
the starting frame index in the clip, (2) repeatedly
using a one-frame interval for a sample of 240 frames
in the clip, that is, the starting frame index, fs+1,
of the next 240 frame sequence is fs + 1. For an
input sequence, X = {x0,x1, ...,xn−1}, we add
independent identically distributed Gaussian noise
(with 0 mean and 0.03 standard deviation) to train
the network to address accumulated errors in motion
synthesis. During training, CCNet can produce the
output Y = {y1,y2, ...,yn}, owing to the guaranteed
ordering in all dilated causal convolutions, which is
helpful for speeding up the training procedure.

Although the network can generate high-quality
motion, slight foot sliding may still occur. If not
mentioned, the IK algorithm is adopted to remove
foot sliding in generated motions according to the

predicted foot-contact labels. We refer to the initial
frames that are input to CCNet to begin motion
generation as seed frames hereafter.

4.3 Quantitative and qualitative evaluation
on test dataset

We benchmark our CCNet with baseline models
for the motion-denoising error (except for PFNN
because it is primarily designed for controllable
motion synthesis) and trajectory-following accuracy.
We also present examples to demonstrate the quality
of the generated motion. In motion denoising, we use
the mean of the predicted PDF as the frame poses.
In all other experiments, we sample poses from the
predicted PDF.
4.3.1 Motion denoising and completion
The trained CCNet can be directly applied to
motion denoising and motion completion. For
motion denoising, we randomly select the motion
sequence X of a subject and add independent
identically distributed Gaussian noise (mean 0,
standard deviation 0.01–0.1) to obtain noisy motion
data X̂. We use the mean of the predicted PDF
as the denoised motion Y by feeding X̂ to CCNet.
Each frame of the denoised poses is not fed back
into the network. Frames with indices less than
CRL were denoised based on all the frames before
them. Figures 4(a) and 4(b) show the denoising
results. The standard deviation of the noise in this
experiment was set to 0.08. Before denoising, the
trajectories of the right hand and right toes fluctuated,
and the foot was underneath the ground in some
frames. It can be observed that these artifacts are

Fig. 4 (a, b) A motion denoising result for subject 7 (from 0 min 9 s
to 0 min 20 s in the video in the ESM). (c, d) A motion completion
result for subject 5 (from 0 min 24 s to 0 min 35 s in the video in the
ESM).



A causal convolutional neural network for multi-subject motion modeling and generation 51

significantly reduced in the denoised motion. We
compared CCNet to baseline networks in terms of the
quality of the denoised motions. We added Gaussian
noise to the test data with standard deviations of 0.03,
0.05, and 0.1 and then used CCNet, DAE-LSTM, and
ERD-4LR, respectively, to denoise the noisy motion
data. The error between the ground-truth motion
and denoising result was computed as the Euclidean
distance between their motion-representation vectors.
We also trained these three models on a selected CMU
mocap dataset to further compare their performance
on motion denoising (please refer to the ESM for
details on the selection of CMU mocap data). As
shown in Table 1, the error of the denoised motion
generated by CCNet was less than those of the
motions denoised by DAE-LSTM and ERD-4LR.

The motion-completion procedure was similar to
that of motion denoising. The experimental results
are shown in Figs. 4(c) and 4(d). We first select a
700-frame motion sequence containing walking and
jumping with both feet and then set the rotations of
the joints of the right legs of 30% of the frames to
0. CCNet accepts incomplete motion as an input
and outputs a complete, natural-looking motion.
Moreover, it can be observed from Figs. 4(b) and
4(d) that the poses of jumping with both feet vary
for different subjects, which means that CCNet can
capture the intrinsic styles of different subjects.
4.3.2 Following user-specified trajectories
Synthesizing different types of motions along a
specified trajectory is a desirable function in motion
planning. We allow users to specify a motion
trajectory J on the XOZ plane with additional
velocity and motion-type information. We then map

Table 1 Motion-denoising comparisons. STD: standard deviation;
D: our dataset; S-CMU: selected CMU mocap dataset. IK is disabled
in this experiment. The errors of the motions that are denoised by
CCNet are less than those of the motions denoised by ERD-4LR and
DAE-LSTM

Noise STD
Denoising error (mean±std)

ERD-4LR DAE-LSTM CCNet

D
0.03 0.768±0.357 0.687±0.384 0.528±0.126
0.05 0.768±0.357 0.687±0.384 0.539±0.125
0.1 0.770±0.361 0.687±0.384 0.584±0.117

S-CMU
0.03 2.248±1.132 2.214±1.364 1.789±1.250
0.05 2.251±1.135 2.214±1.365 1.789±1.250
0.1 2.246±1.132 2.217±1.364 1.788±1.251

the trajectory into the control signals cd
n and ct

n that
are supported in our system. Please refer to the ESM
for further details.

As shown in Fig. 5, CCNet can synthesize motion
using two user-specified trajectories. Figure 7(a)
shows that the synthesized motions can follow
a trajectory with large curvatures and frequently
changing motion types. In Fig. 7(b), we show that
CCNet can generate various motions, such as the
kicking and punching present in our training dataset,
when the user specifies these two types along a
trajectory.

We leveraged the average distance between the user-
specified and root trajectories on the XOZ plane
as the criterion for comparison for the trajectory-
following accuracy. In this experiment, we used six
different trajectories that were manually specified by
users, extracted the direction control signals, and
randomly assigned motion types to the trajectory
segments. Subsequently, we synthesized motions
using the first 120 frames of the 33 locomotion
sequences in the test dataset as the seed frames
for each specified trajectory and obtained 198
motion-synthesis results. The trajectory distance is
computed by summing the closest distance between
the projected root position and target trajectory in
each frame. The means and standard deviations
of the averaged trajectory distances are as follows:
27.878 ± 8.516 cm for CCNet, 158.67 ± 30.94 cm
for PFNN, and 171.973 ± 31.862 cm for ERD-4LR;
an example is shown in Fig. 6. The results of the
CCNet model are more accurate than those of the
baseline models. We present the six trajectories in
the ESM.

4.4 Interactive control

CCNet can easily be integrated into interactive
applications. We demonstrate this capability by

Fig. 5 Trajectory-following results of two subjects (from 0 min 49 s
to 1 min 7 s in the video in the ESM). Left: A synthesized motion
transitioning from walking to running and then to zombie walking for
subject 10. Right: A synthesized motion transitioning from jumping
with the right foot to jumping with the left foot and then to jumping
with both feet for subject 11. We use different colors to represent
different motion types (refer to the video in the ESM for details).



52 S. Hou, C. Wang, W. Zhuang, et al.

Fig. 6 Comparisons against ERD-4LR and PFNN (from 4 min 24 s to 4 min 46 s in the video in the ESM). The character starts by jumping
with the left foot and then changes to jumping with the right foot till the end. The total errors (3000 frames) between the synthesized
trajectories (yellow lines) and input trajectories (green lines) of ERD-4LR, PFNN, and CCNet are 177.143 cm, 156.604 cm, and 27.043 cm,
respectively. IK is disabled in this experiment.

Fig. 7 CCNet can synthesize (a) motion heading along a complex
trajectory for subject 7 (from 3 min 1 s to 3 min 15 s in the video in
the ESM) and (b) the motion of kicking while punching for subject 5
(from 1 min 8 s to 1 min 15 s in the video in the ESM).

developing a demo that allows the user to control
direction, velocity, and motion type through a
keyboard. Direction and velocity signals are used to
generate future motion trajectories cd

n online, similar
to PFNN. We used the LibTorch API to ease the
implementation of CCNet in C++.

Specifically, the user can control the motion type
with the number keys, from 1 to 5, to select from five
motion types: walking, running, jumping with the left
foot, jumping with the right foot, and jumping with
both feet. Once a key (for example, 2) is pressed, we
update the motion-type label by interpolating the new
type label with the previous one in 20 frames, which
means that the character can smoothly transition
from the previous motion type to the new one. The
user can also control the velocity by pressing the
up and down keys and the heading direction of the
character by pressing the left and right keys. Once
the left key is pressed, the trajectory turns to the
left. This is achieved by first computing a small
offset vector on = [1, 0] ∗ h ∗ 0.015, where h is the
height of the root. This offset is added to cd

n by
on ∗ wi, where wi = i/5, i = 0.5. Thus, the offset
is added to the six points in the predicted control
signal ĉd

n through the corresponding wi. The distance
between the 2D points in the updated ĉd

n is then
adjusted according to the user-specified velocity vu.

Because ĉd
n represents the future motion trajectory

within one second, we can adjust the velocity by
multiplying the distance between the 2D points by
the ratio vu/vcur. The current scalar velocity of the
character, vcur, is computed using the length of the 2D
points in cd

n. The velocity is changed from the current
velocity to the user-specified velocity within a 20-
frame interval. Figure 8 illustrates the user interface
used in interactive control, and further results can be
observed between 1 min 32 s and 1 min 51 s in the
accompanying video in the ESM.

4.5 User study

To measure the visual quality of the generated
motions, we followed the advice of a researcher in
the field of human interaction to conduct a two-
alternative forced-choice user study. We selected 16
participants (six women and ten men) with experience
in 3D animation or games because they are able to
judge motion quality. Then, we gave the participants
five clear and detailed criteria, which are described
in the ESM, and showed them some examples for
each criterion before the user study. The procedure
of the user study is as follows. First, we presented
the 16 participants with all the groups of motion

Fig. 8 User interface for interactive control. The green dots on the
ground represent the direction-control signal. IK is disabled in this
experiment.



A causal convolutional neural network for multi-subject motion modeling and generation 53

sequences: four groups for CCNet and the baseline
models. Each group contained 16 pairs of motion
sequences. In each pair, one is the mocap sequence,
and the other is generated by CCNet or one of the
baseline models. Second, we asked the participants
to answer the question “which motion sequence in
the pair is of better motion quality?” according to
the five criteria.

After obtaining the user study results, we checked
them. First, we checked the time that each participant
spent on completing the questionnaire. If the time
was less than 10 min (the shortest time needed
to judge all motion sequences), we discarded the
questionnaire. Second, if a questionnaire had blank
responses, it was discarded. Third, if a questionnaire
had conflicting choices, it was also discarded. For
example, if a participant chose A, B, and C as the
better sequence from three pairs, (A,B), (B,C), and
(A,C), we treated these as conflicting choices. From
the first two choices, we can infer that A is better than
C; however, the participant chose C as the better
sequence from the third pair. Finally, we obtained 15
valid questionnaires for DAE-LSTM and 16 for the
other models.

We performed a t-test on the user study results
to verify the hypothesis that CCNet can generate
motions of better quality than the baseline models,
and the results are shown in Table 2. The P values
of CCNet versus other baseline models were all
less than the selected threshold (0.05). Therefore,
the motions generated by CCNet were significantly
different from those generated by the baselines.
Based on the average number of motion sequences
selected by the participants (mean in Table 2), the
number of choices for CCNet is larger than those
of the other baselines, which verifies that CCNet

Table 2 T-test of user-study results (confidence interval = 0.95).
VS: performing t-test between the results of CCNet and all the results
of the baseline models in the second row. Mean: the average number
of generated sequences selected by all the participants compared to
mocap sequences in the same group. Std: the standard deviation of
the number that is selected

VS
DAE-LSTM
(mean: 1.75
std: 0.968)

ERD-4LR
(mean: 2.75
std: 1.199)

PFNN
(mean: 2.375
std: 0.992)

CCNet
(mean: 6.625
std: 1.165)

P-value:
6.1188E-13

t-value:
-11.9588

P-value:
2.7365E-8
t-value:
-7.4383

P-value:
1.0127E-9
t-value:
-8.7165

can better capture the intrinsic characteristics of
the motions of different subjects. Furthermore, we
prepared another three-group dataset that contained
pairs of motion sequences generated by CCNet and
each baseline model. As listed in Table 3, the number
of CCNet-generated motion sequences selected by
the participants was still higher than that of the
sequences generated by the baseline models. We
also performed an ANOVA test on the user study
results, as illustrated in Table 4, which verifies the
user study’s statistical significance.

4.6 Generalization to unseen skeletons

After training CCNet with multisubject motion data,
the model can generate motions for skeletons that
are not in the training dataset. As illustrated in
Figs. 3, 4(a), 4(b), and 7(a), we applied the trained
CCNet to automatically generate motions for the
skeleton of subject 7, which was unseen during
training. It can be observed in Fig. 9 that the baseline
models cannot differentiate the variations exhibited
by different skeletons as effectively as CCNet can.
We further tested the generalization ability of CCNet
by applying it to a specially designed skeleton that
was generated by scaling the skeleton of subject 7.
The topology of the skeleton remained the same as
that of other skeletons but varied substantially in the
lower-body scale. Because there is no mocap data for
the skeleton, we utilized the motion-retargeting [43]

Table 3 Average selected numbers for CCNet-generated motion
sequences. Baseline vs. CCNet: a group of 16 pairs of motion
sequences generated by a baseline model and CCNet. Mean±std: mean
and variance of the numbers of CCNet-generated motion sequences
selected by all the participants

Groups Numbers for CCNet (mean±std)

DAE-LSTM vs. CCNet 12.31±2.34
ERD-4LR vs. CCNet 11.63±2.87

PFNN vs. CCNet 11.45±1.87

Table 4 ANOVA-test of user study for confidence interval = 0.95.
SS: sum-of-squares for variability between groups. df: degrees of
freedom. MS: mean squares. F: F ratio. —: not applicable

Source of variation Between groups Within groups Total

SS 346.6875 76.7500 423.4375
df 3 60 63

MS 115.5625 1.2792 —
F 90.3420 — —

P-value 3.1855E-22 — —
F-critical 2.7581 — —



54 S. Hou, C. Wang, W. Zhuang, et al.

Fig. 9 Foot-ground penetrations in the motions generated by DAE-
LSTM, ERD-4LR, and PFNN. Left: 611-th frame generated by DAE-
LSTM for subject 9. Middle: 450-th frame generated by ERD-4LR
for subject 7. Right: 666-th frame generated by PFNN for subject 8.
DAE-LSTM, ERD-4LR, and PFNN cannot effectively differentiate the
variations in different skeletons and lead to foot-ground penetrations,
as indicated by the red rectangles.

algorithm to generate 120 seed frames for it. Figure 10
illustrates that CCNet can effectively generalize the
new skeleton. In addition, we used ERD-4LR and
PFNN to generate motions for the skeleton. The
results show that both motions contain large, sharp
changes between the seed frames and generated
frames, which is inferior to the motions generated
by CCNet. Please refer to the accompanying video
in the ESM from 4 min 16 s to 4 min 21 s for the
relevant results.

Given a part of the motion data of a novel skeleton,
CCNet can learn to generate motions for the skeleton
that are similar to its ground-truth mocap data.
Table 5 shows that, after fine-tuning the network
using the walking and running motion of subject 7,
the relative pose difference relp for all mocap data of
this subject in the test dataset can be significantly
reduced (refer to the accompanying video in the ESM
from 2 min 31 s to 2 min 47 s for the comparison

Fig. 10 Trajectory-following results generated by CCNet for an
unseen skeleton subject 7b (from 2 min 3 s to 2 min 15 s in the video
in the ESM). The skeleton of subject 7b is generated by scaling the
lower body of subject 7’s skeleton by 0.8.

Table 5 Influence of the fine-tuning of CCNet with partial motion
data of an unseen skeleton for subject 7. FT: fine-tuning, W: walking;
R: running; CCNet-D1: CCNet trained on dataset 1, which contains
motions of subjects 1, 3, 4, and 8; CCNet-D2: CCNet trained on
dataset 2, which contains motions of subjects 0, 5, 6, and 11. Fine-
tuning CCNet trained on our entire training dataset with walking
and running mocap data of subject 7 (first row) achieves the lowest
relative pose difference. IK is disabled in this experiment

Model
Relative pose difference (mean±std)

No FT FT with W FT with W and R

CCNet 0.0830±0.0925 0.0536±0.0365 0.0483±0.0544
CCNet-D1 0.0861±0.1550 0.0543±0.0646 0.0525±0.0594
CCNet-D2 0.0914±0.1080 0.0598±0.0770 0.0590±0.0713

of generated jumping motions of subject 7 before
and after fine-tuning). This implies that CCNet can
capture the intrinsic characteristics embodied in the
motions of the new subject better than other models.
We compute the relative pose difference as

relp = 1
N

N∑
n=0

(‖x̂n − xn‖2 / ‖xn‖2)

where N is the number of frames, and x̂n and xn
are the motion-representation vectors of motions
generated by CCNet and the corresponding mocap
data. The ability to generalize to new skeletons is
crucial because it can reduce efforts to capture a
large amount of mocap data for a new skeleton in
motion-synthesis applications.

To evaluate how the number of subjects in the
dataset influences the generalization ability of CCNet,
we intentionally put the motions of subjects 1, 3, 4,
and 8 into dataset 1 and the motions of subjects 0, 5,
6, and 11 into dataset 2. Table 5 lists the relp values
of the motion generated by CCNet trained on dataset
1 (CCNet-D1) and dataset 2 (CCNet-D2). Because
the heights of subjects 1, 3, 4, and 8 are closer to
subject 7’s height, the relp value of CCNet-D1 is
less than that of CCNet-D2; however, this value is
still larger than that of CCNet trained on the entire
training dataset. Thus, to improve the generalization
ability of CCNet for new skeletons, it is better to
construct a dataset with more subjects so that the
network learns how to process their skeleton and style
variations.

4.7 Motion prediction on H3.6M dataset

We directly trained CCNet on the H3.6M [44] dataset
without any additional modifications to test its
motion-prediction ability. We followed the same data
representation and reported the mean angle error



A causal convolutional neural network for multi-subject motion modeling and generation 55

(MAE) in the same test dataset, as Fragkiadaki et
al. and Liu et al. do. We compared CCNet with
ERD-4LR, HP-GAN [12], QuaterNet [45], and AM-
GAN [15], and the results are reported in Table 6.
Because Liu et al. have not yet released their code, the
MAEs of AM-GAN in Table 6 are sourced from their
paper. CCNet is primarily designed for long-term
multi-subject motion generation (typically at least
10 s) instead of motion prediction; however, it also
achieves average performance among these methods.
We believe that with meticulous adjustments, the
performance of CCNet can be improved for motion
prediction.

4.8 Evaluation of network hyper-parameters
and training settings

In this section, we present ablation-study experiments
to determine the following hyper-parameters and
training settings selected for CCNet: (1) the cau-
sal receptive field length (CRL), (2) number of
consecutive frames of each sample in a batch (NCF),
(3) joint rotations and angular velocities in the

Table 6 Motion prediction comparisons (in MAE) over four different
action types in the H3.6M dataset

Method
80 ms 160 ms 320 ms 400 ms 1000 ms

Walking

ERD-4LR 0.93 1.18 1.59 1.78 2.24
HP-GAN 0.95 1.17 1.69 1.79 2.47

QuaterNet 0.35 0.64 1.19 1.38 1.58
AM-GAN 0.23 0.51 0.62 0.66 0.84

CCNet 1.34 1.40 1.45 1.46 1.55

Eating

ERD-4LR 1.27 1.45 1.66 1.80 2.02
HP-GAN 1.28 1.47 1.70 1.82 2.51

QuaterNet 0.31 0.49 0.82 0.97 1.89
AM-GAN 0.20 0.31 0.49 0.66 1.15

CCNet 1.35 1.45 1.58 1.65 2.04

Smoking

ERD-4LR 1.66 1.95 2.35 2.42 3.14
HP-GAN 1.71 1.89 2.33 2.42 3.20

QuaterNet 0.32 0.55 0.96 1.07 1.37
AM-GAN 0.25 0.46 0.88 0.88 1.10

CCNet 1.81 1.92 2.14 2.21 2.65

Discussion

ERD-4LR 2.27 2.47 2.68 2.76 3.11
HP-GAN 2.29 2.61 2.79 2.88 3.67

QuaterNet 0.31 0.67 0.94 1.04 1.96
AM-GAN 0.28 0.55 0.81 0.92 1.58

CCNet 1.55 1.72 1.83 1.83 2.22

data representation (ROT), (4) smoothness loss
term (Smooth), (5) skeleton configurations (SK),
(6) advantages of SRBs over LSTM (SRB2LSTM),
and (7) seed frame length when synthesizing. We
chose these values or settings to minimize loss L in
Eq. (6) for both the training and test datasets. For a
better visualization, we plotted the logarithmic loss
curves using the formula log10(L+ 320) in Figs. 11
and 12. Because L is typically approximately −300,
a bias of 320 is necessary to obtain a positive result.
4.8.1 CRL and NCF
We conducted experiments to choose the CRL value
among three settings: 31 (dilation sizes of SRBs are
repeatedly 1 and 2), 41 (dilation sizes of SRBs are
2), and 46 (dilation sizes of SRBs are repeatedly 1,
2, and 4). The number of SRBs is fixed at 20. We
also tested three different NCFs, 60, 120, and 240,
which correspond to 1 s, 2 s, and 4 s of motion for
our 60-fps motion dataset, respectively. Note that
we keep the NCF fixed at 240 when computing the
loss on the test dataset for fair comparisons. Based

Fig. 11 Logarithmic loss curves obtained using different hyper-
parameters of CCNet. Left: training. Right: test. We modify
each hyper-parameter, including CRL, NCF, with/without skeleton
configuration (SK or w/o SK), and with/without the joint rotations
and angular velocities in the data representation (ROT or w/o ROT).

Fig. 12 Ablation study of smoothness loss term and SRBs. We
remove the smoothness loss term, replace the SRBs with a 1-layer
LSTM and 2-layer LSTM, and evaluate the logarithmic losses of the
corresponding re-trained models. Left: training. Right: test.



56 S. Hou, C. Wang, W. Zhuang, et al.

on Fig. 11, we chose CRL = 41 and NCF = 240 for
CCNet because these settings led to the lowest loss.
4.8.2 ROT, smooth, and SK
To verify their importance, we removed the joint
rotations and angular velocities from the input
and removed the smoothness loss term from
Eq. (6). Additionally, the skeleton configurations were
removed by disconnecting their corresponding 1D
convolution modules from CCNet. We can observe
from Figs. 11 and 12 that without the joint rotations
and angular velocities, smoothness loss term, or
skeleton configurations, the corresponding networks
overfit the training set. Therefore, we can conclude
that encoding joint rotations and angular velocities in
the data representation and the smoothness loss term
are essential for CCNet to converge to a better result.
Additionally, skeleton configuration is important in
the network to disambiguate the motions of different
subjects.
4.8.3 LSTM vs. SRB
We determined the advantages of the SRBs over
LSTM by replacing SRBs with LSTM layers with
different numbers of layers and hidden state channels.
The results show that only the 1-layer and 2-layer
LSTM settings with 512 hidden channels using a
smaller initial learning rate, 1× 10−5, can converge
to but overfit the training set, as depicted in Fig. 12.
4.8.4 Seed frame length
The influence of seed-frame length on the quality
of the generated motions was measured using relp.
Specifically, we extracted seed frames from the
mocap data in the test dataset and then used the
networks to predict a frame for comparison with the
corresponding mocap frame. Table 7 shows the relp
values for different seed-frame lengths. The lower
value indicates that the generated motion has more

Table 7 Ablation study on the length of seed frames. We synthesized
motion sequences using different seed-frame lengths to check their
influences on the generated motions. IK is disabled

Seed frame
numbers

Relative pose difference (mean±std)

ERD-4LR DAE-LSTM CCNet

1 0.214±0.302 0.560±0.572 0.130±0.179
5 0.180±0.145 0.325±0.508 0.091±0.128
10 0.140±0.159 0.303±0.490 0.084±0.136
30 0.145±0.179 0.182±0.270 0.074±0.128
60 0.120±0.138 0.178±0.253 0.074±0.124
120 0.126±0.160 0.115±0.144 0.074±0.125

similarity with the mocap data; thus, it is of better
quality. It can be observed that CCNet is robust to
variations in the length of the seed frames compared
to ERD-4LR and DAE-LSTM, and it does not require
excessively long seed frames to synthesize high-quality
motions. However, we observe that jitters between
the seed frames and generated frames are slightly
more obvious when the seed-frame numbers are one
and five (please refer to the accompanying video in
the ESM from 3 min 23 s to 3 min 46 s for details).
We hypothesize that CCNet cannot obtain sufficient
information to generate smooth motions for such
short seed frames.

5 Conclusions

We designed a novel neural network for motion
generation, CCNet, to synthesize high-quality
motions for multiple subjects. The trained CCNet
can capture the motion characteristics of different
subjects well and synthesize various types of motion,
such as punching. Moreover, CCNet can generate
motion for novel skeletons. Given a few sample
motions of a novel skeleton, the pretrained CCNet
can be fine-tuned to synthesize motions that better
reproduce the intrinsic characteristics of the motions
of the skeleton. In the future, we plan to extend our
method to include skeletons with different typologies.

Acknowledgements

We thank the anonymous reviewers for their
constructive comments. Weiwei Xu is partially sup-
ported by the National Natural Science Foundation
of China (No. 61732016).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article. The
author Hujun Bao is the Associate Editor of this
journal.

Electronic Supplementary Material

There are three types of electronic supplementary
materials. The first is a video named
“ccnet cvm.mp4”, which contains the generated
motions rendered into the video. The second is a file
named “CCNet supplementary material.pdf”, which
describes the details of the model parameters, user



A causal convolutional neural network for multi-subject motion modeling and generation 57

study criteria, and trajectories used in the trajectory-
following experiment. The last includes python codes
and a training script named “run wavenet.sh”. They
are available in the online version of this article at
https://doi.org/10.1007/s41095-022-0307-3.

References

[1] Zhang, P. F.; Lan, C. L.; Zeng, W. J.; Xing, J. L.; Xue,
J. R.; Zheng, N. N. Semantics-guided neural networks
for efficient skeleton-based human action recognition.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 1109–1118,
2020.

[2] Chen, Z.; Li, S. C.; Yang, B.; Li, Q. H.; Liu, H. Multi-
scale spatial temporal graph convolutional network for
skeleton-based action recognition. Proceedings of the
AAAI Conference on Artificial Intelligence Vol. 35, No.
2, 1113–1122, 2021.

[3] Gui, L. Y.; Wang, Y. X.; Liang, X. D.; Moura, J. M. F.
Adversarial geometry-aware human motion prediction.
In: Computer Vision – ECCV 2018. Lecture Notes
in Computer Science, Vol. 11208. Ferrari, V.; Hebert,
M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham,
823–842, 2018.

[4] Wang, T. C.; Liu, M. Y.; Tao, A.; Liu, G. L.; Kautz,
J.; Catanzaro, B. Few-shot video-to-video synthesis.
In: Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Article No.
451, 5013–5024, 2019.

[5] Taylor, G. W.; Hinton, G. E. Factored conditional
restricted Boltzmann Machines for modeling motion
style. In: Proceedings of the 26th Annual International
Conference on Machine Learning, 1025–1032, 2009.

[6] Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J.
Recurrent network models for human dynamics. In:
Proceedings of the IEEE International Conference on
Computer Vision, 4346–4354, 2015.

[7] Martinez, J.; Black, M. J.; Romero, J. On human
motion prediction using recurrent neural networks. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4674–4683, 2017.

[8] Yan, X. C.; Rastogi, A.; Villegas, R.; Sunkavalli, K.;
Shechtman, E.; Hadap, S.; Yumer, E.; Lee, H. MT-
VAE: Learning motion transformations to generate
multimodal human dynamics. In: Computer Vision –
ECCV 2018. Lecture Notes in Computer Science, Vol.
11209. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss,
Y. Eds. Springer Cham, 276–293, 2018.

[9] Ling, H. Y.; Zinno, F.; Cheng, G.; Van De Panne,
M. Character controllers using motion VAEs. ACM

Transactions on Graphics Vol. 39, No. 4, Article No. 40,
2020.

[10] Ghosh, A.; Cheema, N.; Oguz, C.; Theobalt, C.;
Slusallek, P. Synthesis of compositional animations
from textual descriptions. In: Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 1376–1386, 2021.

[11] Wang, Z. Y.; Chai, J. X.; Xia, S. H. Combining
recurrent neural networks and adversarial training
for human motion synthesis and control. IEEE
Transactions on Visualization and Computer Graphics
Vol. 27, No. 1, 14–28, 2021.

[12] Barsoum, E.; Kender, J.; Liu, Z. C. HP-GAN:
Probabilistic 3D human motion prediction via GAN.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops,
1499–149909, 2018.

[13] Kundu, J. N.; Gor, M.; Babu, R. V. BiHMP-GAN:
Bidirectional 3D human motion prediction GAN.
Proceedings of the AAAI Conference on Artificial
Intelligence Vol. 33, No. 1, 8553–8560, 2019.

[14] Wang, Z. Y.; Yu, P.; Zhao, Y.; Zhang, R. Y.; Zhou, Y.
F.; Yuan, J. S.; Chen, C. Y. Learning diverse stochastic
human-action generators by learning smooth latent
transitions. Proceedings of the AAAI Conference on
Artificial Intelligence Vol. 34, No. 7, 12281–12288, 2020.

[15] Liu, Z. G.; Lyu, K. D.; Wu, S.; Chen, H. P.; Hao, Y.
B.; Ji, S. L. Aggregated multi-GANs for controlled 3D
human motion prediction. Proceedings of the AAAI
Conference on Artificial Intelligence Vol. 35, No. 3,
2225–2232, 2021.

[16] Holden, D.; Komura, T.; Saito, J. Phase-functioned
neural networks for character control. ACM Trans-
actions on Graphics Vol. 36, No. 4, Article No. 42, 2017.

[17] Starke, S.; Zhao, Y. W.; Komura, T.; Zaman, K. Local
motion phases for learning multi-contact character
movements. ACM Transactions on Graphics Vol. 39,
No. 4, Article No. 54, 2020.

[18] Starke, S.; Zhao, Y. W.; Zinno, F.; Komura, T.
Neural animation layering for synthesizing martial arts
movements. ACM Transactions on Graphics Vol. 40,
No. 4, Article No. 92, 2021.

[19] Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan,
K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior,
A.; Kavukcuoglu, K. WaveNet: A generative model for
raw audio. In: Proceedings of the 9th ISCA Speech
Synthesis Workshop, 125, 2016.

[20] Wang, X.; Chen, Q. D.; Wang, W. L. 3D human motion
editing and synthesis: A survey. Computational and
Mathematical Methods in Medicine Vol. 2014, 104535,
2014.

https://doi.org/10.1007/s41095-022-0307-3


58 S. Hou, C. Wang, W. Zhuang, et al.

[21] Xia, S. H.; Gao, L.; Lai, Y. K.; Yuan, M. Z.; Chai, J. X.
A survey on human performance capture and animation.
Journal of Computer Science and Technology Vol. 32,
No. 3, 536–554, 2017.

[22] Brand, M.; Hertzmann, A. Style machines. In:
Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, 183–
192, 2000.

[23] Xu, J. W.; Xu, H. Z.; Ni, B. B.; Yang, X. K.; Wang,
X. L.; Darrell, T. Hierarchical style-based networks
for motion synthesis. In: Computer Vision – ECCV
2020. Lecture Notes in Computer Science, Vol. 12356.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 178–194, 2020.

[24] Xia, S. H.; Wang, C. Y.; Chai, J. X.; Hodgins, J.
Realtime style transfer for unlabeled heterogeneous
human motion. ACM Transactions on Graphics Vol.
34, No. 4, Article No. 119, 2015.

[25] Wen, Y. H.; Yang, Z. P.; Fu, H. B.; Gao, L.; Sun,
Y. N.; Liu, Y. J. Autoregressive stylized motion
synthesis with generative flow. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 13607–13607, 2021.

[26] Aberman, K.; Li, P. Z.; Lischinski, D.; Sorkine-
Hornung, O.; Cohen-Or, D.; Chen, B. Q. Skeleton-
aware networks for deep motion retargeting. ACM
Transactions on Graphics Vol. 39, No. 4, Article No. 62,
2020.

[27] Min, J. Y.; Liu, H. J.; Chai, J. X. Synthesis and editing
of personalized stylistic human motion. In: Proceedings
of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 39–46, 2010.

[28] Nie, Q.; Liu, Z. W.; Liu, Y. H. Unsupervised
3D human pose representation with viewpoint and
pose disentanglement. In: Computer Vision – ECCV
2020. Lecture Notes in Computer Science, Vol. 12364.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 102–118, 2020.

[29] Corona, E.; Pumarola, A.; Alenyà, G.; Moreno-
Noguer, F. Context-aware human motion prediction.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 6990–6999,
2020.

[30] Ghorbani, S.; Wloka, C.; Etemad, A.; Brubaker, M.
A.; Troje, N. F. Probabilistic character motion synthesis
using a hierarchical deep latent variable model. Computer
Graphics Forum Vol. 39, No. 8, 225–239, 2020.

[31] Holden, D.; Saito, J.; Komura, T. A deep learning
framework for character motion synthesis and editing.
ACM Transactions on Graphics Vol. 35, No. 4, Article
No. 138, 2016.

[32] Mao, W.; Liu, M. M.; Salzmann, M. History repeats
itself: Human motion prediction via motion attention.
In: Computer Vision – ECCV 2020. Lecture Notes in
Computer Science, Vol. 12359. Vedaldi, A.; Bischof, H.;
Brox, T.; Frahm, J. M. Eds. Springer Cham, 474–489,
2020.

[33] Li, M. S.; Chen, S. H.; Zhao, Y. H.; Zhang, Y.; Wang, Y.
F.; Tian, Q. Dynamic multiscale graph neural networks
for 3D skeleton based human motion prediction. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 211–220, 2020.

[34] Cui, Q. J.; Sun, H. J.; Yang, F. Learning dynamic
relationships for 3D human motion prediction. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 6518–6526, 2020.

[35] Yuan, Y.; Kitani, K. M. Diverse trajectory forecasting
with determinantal point processes. In: Proceedings
of the 8th International Conference on Learning
Representations, 2020.

[36] Petrovich, M.; Black, M. J.; Varol, G. Action-
conditioned 3D human motion synthesis with
transformer VAE. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 10965–
10975, 2021.

[37] Henter, G. E.; Alexanderson, S.; Beskow, J. MoGlow:
Probabilistic and controllable motion synthesis using
normalising flows. ACM Transactions on Graphics Vol.
39, No. 6, Article No. 236, 2020.

[38] Valle-Pérez, G.; Henter, G. E.; Beskow, J.; Holzapfel,
A.; Oudeyer, P. Y.; Alexanderson, S. Transflower:
Probabilistic autoregressive dance generation with
multimodal attention. ACM Transactions on Graphics
Vol. 40, No. 6, Article No. 195, 2021.

[39] Grassia, F. S. Practical parameterization of rotations
using the exponential map. Journal of Graphics Tools
Vol. 3, No. 3, 29–48, 1998.

[40] Lee, K.; Lee, S.; Lee, J. Interactive character animation
by learning multi-objective control. ACM Transactions
on Graphics Vol. 37, No. 6, Article No. 180, 2018.

[41] Ghosh, P.; Song, J.; Aksan, E.; Hilliges, O. Learning
human motion models for long-term predictions. In:
Proceedings of the International Conference on 3D
Vision, 458–466, 2017.

[42] Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

[43] Buss, S. R. Introduction to inverse kinematics with
Jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and
Automation Vol. 17, 16, 2004.

[44] Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu,
C. Human3.6M: Large scale datasets and predictive



A causal convolutional neural network for multi-subject motion modeling and generation 59

methods for 3D human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 36, No. 7, 1325–1339, 2014.

[45] Pavllo, D.; Feichtenhofer, C.; Auli, M.; Grangier, D.
Modeling human motion with quaternion-based neural
networks. International Journal of Computer Vision
Vol. 128, No. 4, 855–872, 2020.

Shuaiying Hou is currently a Ph.D.
student at State Key Lab of CAD&CG
at Zhejiang University. He received his
B.S. degree in software engineering from
Northwestern Polytechnical University,
in 2017. His research interests include
computer animation and computer
graphics.

Congyi Wang received his Ph.D.
degree in computer science from Institute
of Computing Technology, Chinese
Academy of Sciences in 2017. Since 2018,
he has been a research scientist at Xmov,
a startup company aiming at AI-powered
virtual production. His research interests
include computer animation, computer

graphics, computer vision, and speech signal processing.

Wenlin Zhuang received his M.S.
degree from the School of Automation,
Southeast University, in 2021. His
research interests include human pose
estimation and 3D human animation.

Yu Chen received his master degree
in computer science from Zhejiang
University, in 2016. His research
interests include computer animation,
computer graphics, computer vision, and
speech signal processing.

Yangang Wang is currently an
asso-ciate professor in the School of
Automation at Southeast University.
He received his Ph.D. degree from
Department of Automation at Tsinghua
University, in 2014. His research
interests include motion capture and
animation, 3D reconstruction, and

image processing.

Hujun Bao is a Cheung Kong professor
in the School of Computer Science and
Technology in Zhejiang University, and
the director of State Key Laboratory
of CAD&CG. He received his B.S. and
Ph.D. degrees in applied mathematics
from Zhejiang University in 1987 and
1993, respectively. His research interests

include geometry computing, vision computing, real-time
rendering and virtual reality.

Jinxiang Chai received his Ph.D.
degree in computer science from Car-
negie Mellon University. He is currently
an associate professor in the Department
of Computer Science and Engineering
at Texas A&M University. His primary
research is in the area of computer
graphics and vision with broad applications

in other disciplines such as virtual and augmented reality,
robotics, human computer interaction, and biomechanics. He
received an NSF CAREER award for his work on theory and
practice of Bayesian motion synthesis.

Weiwei Xu is currently a professor
at the State Key Lab of CAD&CG
in Zhejiang University. He was a
Qianjiang Professor at Hangzhou Normal
University and a researcher in the
Internet Graphics Group at Microsoft
Research Asia from 2005 to 2012. He
was a post-doc researcher at Ritsmeikan

University in Japan for over one year. He received his Ph.D.
degree in computer graphics from Zhejiang University, and
B.S. and master degrees in computer science from Hohai
University in 1996 and 1999, respectively.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduc-tion in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Motion style
	Deep-learning-based motion synthesis

	Our approach
	Overview
	CCNet architecture
	Encoder
	Separate residual blocks
	Decoder

	Training loss
	Gaussian loss
	Smoothness loss
	Foot-contacts loss
	Direction-control loss


	Results and discussion
	Dataset and baselines
	Dateset
	Baselines

	Implementation details
	Quantitative and qualitative evaluation on test dataset
	Motion denoising and completion
	Following user-specified trajectories

	Interactive control
	User study
	Generalization to unseen skeletons
	Motion prediction on H3.6M dataset
	Evaluation of network hyper-parameters and training settings
	CRL and NCF
	ROT, smooth, and SK
	LSTM vs. SRB
	Seed frame length


	Conclusions

