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Abstract Transformers have recently lead to encourag-
ing progress in computer vision. In this work, we present
new baselines by improving the original Pyramid Vision
Transformer (PVT v1) by adding three designs: (i) a
linear complexity attention layer, (ii) an overlapping
patch embedding, and (iii) a convolutional feed-forward
network. With these modifications, PVT v2 reduces
the computational complexity of PVT v1 to linearity
and provides significant improvements on fundamental
vision tasks such as classification, detection, and
segmentation. In particular, PVT v2 achieves comparable
or better performance than recent work such as the Swin
transformer. We hope this work will facilitate state-of-
the-art transformer research in computer vision. Code is
available at https://github.com/whai362/PVT.

Keywords transformers; dense prediction; image
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segmentation

1 Introduction

Recent studies on transformers for computer vision
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are converging on the backbone network [1–8] for
downstream vision tasks, such as image classifica-
tion, object detection, and instance and semantic
segmentation. To date, there have been promising
results. For example, Vision Transformer (ViT) [1]
first showed that a pure transformer can archive state-
of-the-art performance in image classification. The
Pyramid Vision Transformer (PVT v1) [3] showed
that a pure transformer backbone can also surpass
CNN counterparts for dense prediction tasks such
as detection and segmentation [9–11]. Later, Swin
transformer [5], CoaT [6], LeViT [7], and Twins
[8] further improved classification, detection, and
segmentation performance with transformer backbones.

This work aims to establish stronger and more
feasible baselines built on the PVT v1 framework.
We report three design improvements: (i) a linear
complexity attention layer, (ii) an overlapping patch
embedding, and (iii) a convolutional feed-forward
network, which are orthogonal to the PVT v1
framework, and when used with it, can bring better
image classification, object detection, and instance
and semantic segmentation results. We call the
improved framework PVT v2; it has 6 different size
variants, from B0 to B5 according to the number
of parameters. In particular, PVT v2-B5 yields
an 83.8% top-1 error on ImageNet, better than
Swin-B [5] and Twins-SVT-L [8], while having fewer
parameters and using fewer GFLOPs. Moreover,
GFL [12] with PVT-B2 archives 50.2 AP on COCO
2017 val, 2.6 AP higher when using Swin-T [5], and
5.7 AP higher when using ResNet50 [13]. We hope
these improved baselines will provide a reference for
future research on vision transformers.

2 Related work

We now discuss transformer backbones related to
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this work. ViT [1] treats each image as a sequence
of tokens (patches) with a fixed length, and then
feeds them to multiple transformer layers to perform
classification. It was the first work to demonstrate
that a pure transformer can archive state-of-the-art
image classification results given sufficient training
data (e.g., ImageNet-22k [14], JFT-300M). DeiT [2]
further explores a data-efficient training strategy and
a distillation approach for ViT.

To improve image classification results, recent
methods make tailored changes to ViT. T2T
ViT [15] progressively concatenates tokens within
an overlapping sliding window into a single token.
TNT [16] utilizes inner and outer transformer blocks
to generate pixel and patch embeddings. CPVT [17]
replaces the fixed size position embedding in ViT with
conditional position encodings, making it easier to
process images of arbitrary resolution. CrossViT [18]
processes image patches of different sizes via a dual-
branch transformer. LocalViT [19] incorporates
depth-wise convolution into vision transformers to
improve the local continuity of features.

To adapt to dense prediction tasks such as
object detection, instance and semantic segmentation,
certain methods [3–8] introduce the pyramid
structure in CNNs to the design of transformer
backbones. PVT v1 was the first pyramid structure
transformer, presenting a hierarchical transformer
with four stages, and showing that a pure transformer
backbone can be as versatile as CNN counterparts and
provide better results for detection and segmentation
tasks. Later, various improvements [4–8] were made
to enhance local continuity of features and to remove
the fixed size position embedding. For example, the
Swin transformer [5] replaces the fixed size position
embedding with relative position biases, and restricts
self-attention within shifted windows. CvT [4],
CoaT [6], and LeViT [7] introduce convolution-
like operations into vision transformers. Twins [8]
combines local and global attention mechanisms to
obtain a stronger feature representation.

3 Methodology

3.1 Limitations of PVT v1

PVT v1 [3] has three main limitations: (i) like
ViT [1], when processing high-resolution input (with
the shorter side being 800+ pixels), the computational

requirements of PVT v1 are relatively large, (ii) PVT
v1 treats an image as a sequence of non-overlapping
patches, which loses local continuity in the image to
a certain extent, and (iii) the position encoding in
PVT v1 is fixed-size, which is inflexible when images
of arbitrary size must be processed. These problems
limit the utility of PVT v1 for vision tasks.

To address these issues, we propose PVT v2, which
improves PVT v1 through three designs, given in
Sections 3.2–3.4.

3.2 Linear spatial reduction attention

First, to reduce the high computational cost caused
by attention operations, we propose a linear spatial
reduction attention (SRA) layer, illustrated in Fig. 1.
Unlike SRA [3] which uses convolutions for spatial
reduction, linear SRA uses average pooling to reduce
the spatial dimension (h × w) to a fixed size (P × P )
before the attention operation. In this way, linear
SRA enjoys linear computational and memory costs
like a convolutional layer. Specifically, given an input
of size h × w × c, the complexity of SRA and linear
SRA are

Ω(SRA) =
2h2w2c

R2 + hwc2R2 (1)

Ω(linear SRA) = 2hwP 2c (2)

where R is the spatial reduction ratio of SRA [3], and
P is the pooling size of linear SRA, which is set to 7.

3.3 Overlapping patch embedding

Secondly, to model the local continuity information,
we utilize an overlapping patch embedding to tokenize
images. As shown in Fig. 2(a), we enlarge the patch
window, making adjacent windows overlap by half
of their area, and pad the feature map with zeros to
keep the resolution. In this work, we use convolution
with zero padding to implement overlapping patch
embedding. Specifically, given input of size h × w × c,
we feed it to a convolution with stride S, kernel size

Fig. 1 SRA in PVT v1 and linear SRA in PVT v2.
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Fig. 2 Two improvements in PVT v2: (a) overlapping patch
embedding, (b) convolutional feed-forward network.

2S −1, padding size S −1, and c′ kernels. The output
size is (h/S)(w/S)C ′.

3.4 Convolutional feed-forward

Thirdly, inspired by Refs. [17, 19, 20], we remove the
fixed-size position encoding [1], and introduce zero
padding position encoding into PVT. As shown in
Fig. 2(b), we add a 3 × 3 depth-wise convolution [21]
with padding size of 1 between the first fully-
connected (FC) layer and GELU [22] in feed-forward
networks.

3.5 Details of PVT v2 series

We scale up PVT v2 from B0 to B5 By changing the
hyper-parameters, which are as follows for Stage i:

Si: stride of the overlapping patch embedding
Ci: number of channels of output
Li: number of encoder layers
Ri: reduction ratio of the SRA
Pi: adaptive average pooling size of the linear SRA
Ni: number of heads of the efficient self-attention
Ei: expansion ratio of the feed-forward layer [23]
Table 1 gives detailed information for the PVT

v2 series. Our design follows the principles of
ResNet [24]: (i) the channel dimension increases and
the spatial resolution shrinks as the layers get deeper,
and (ii) Stage 3 has the greatest computational cost.

Table 1 Detailed settings for PVT v2 series. “-Li” denotes PVT v2 with linear SRA

Output size Layer name
Pyramid Vision Transformer v2

B0 B1 B2 B2-Li B3 B4 B5

Stage 1 H
4 × W

4

Overlapping
patch embedding

S1 = 4
C1 = 32 C1 = 64

Transformer
encoder

R1 = 8
N1 = 1
E1 = 8
L1 = 2

R1 = 8
N1 = 1
E1 = 8
L1 = 2

R1 = 8
N1 = 1
E1 = 8
L1 = 3

P1 = 7
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 4
L1 = 3

Stage 2 H
8 × W

8

Overlapping
patch embedding

S2 = 2
C2 = 64 C2 = 128

Transformer
encoder

R2 = 4
N2 = 2
E2 = 8
L2 = 2

R2 = 4
N2 = 2
E2 = 8
L2 = 2

R2 = 4
N2 = 2
E2 = 8
L2 = 3

P2 = 7
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 8

R2 = 4
N2 = 2
E2 = 4
L2 = 6

Stage 3 H
16 × W

16

Overlapping
patch embedding

S3 = 2
C3 = 160 C3 = 320

Transformer
encoder

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 6

P3 = 7
N3 = 5
E3 = 4
L3 = 6

R3 = 2
N3 = 5
E3 = 4
L3 = 18

R3 = 2
N3 = 5
E3 = 4
L3 = 27

R3 = 2
N3 = 5
E3 = 4
L3 = 40

Stage 4 H
32 × W

32

Overlapping
patch embedding

S4 = 2
C4 = 256 C4 = 512

Transformer
encoder

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 3

P4 = 7
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3
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3.6 Advantages of PVT v2

Combining these improvements, PVT v2 can (i)
achieve more local continuity of images and feature
maps, (ii) process variable-resolution input more
readily, and (iii) enjoy the same linear complexity as
a CNN.

4 Experiments

4.1 Image classification

4.1.1 Setting
Image classification experiments were performed
on the ImageNet-1K dataset [27], which comprises
1.28 million training images and 50k validation images
in 1000 categories. All models were trained on the
training set for fair comparison and we report the top-
1 error on the validation set. We followed DeiT [2]
and applied random cropping, random horizontal
flipping [28], label-smoothing regularization [29],
mixup [30], and random erasing [31] for data
augmentation. During training, we employed
AdamW [32] with a momentum of 0.9, a mini-batch
size of 128, and a weight decay of 5×10−2 to optimize
models. The initial learning rate was set to 10−3

and decreased following a cosine schedule [33]. All
models were trained for 300 epochs from scratch on 8
V100 GPUs. We applied a 224 × 224 center crop on
the validation set for benchmarking to evaluate the
classification accuracy.
4.1.2 Results
In Table 2, we see that PVT v2 provides best results
for ImageNet-1K classification. Compared to PVT v1,
PVT v2 uses similar flops and number of parameters,
but the image classification accuracy is improved.
For example, PVT v2-B1 is 3.6% higher than PVT
v1-Tiny, and PVT v2-B4 is 1.9% higher than PVT-
Large.

Compared to other recent counterparts, PVT v2
series also have large advantages in terms of accuracy
and model size. For example, PVT v2-B5 achieves
83.8% ImageNet top-1 accuracy, which is 0.5% higher
than Swin transformer [5] and Twins [8], while using
fewer parameters and GFLOPS.

4.2 Object detection

4.2.1 Setting
Object detection experiments were conducted on
the challenging COCO benchmark [9]. All models

Table 2 Image classification performance on the ImageNet validation
set. #Param = millions of parameters. GFLOPs is calculated for
input of size 224 × 224. * = performance of the method trained under
the strategy of its original paper. Acc = top-1 accuracy. -Li = PVT
v2 with linear SRA

Method #Param GFLOPs Acc (%)
PVT v2-B0 (ours) 3.4 0.6 70.5
ResNet18∗ [24] 11.7 1.8 69.8
DeiT-Tiny/16 [2] 5.7 1.3 72.2
PVT v1-Tiny [3] 13.2 1.9 75.1
PVT v2-B1 (ours) 13.1 2.1 78.7
ResNet50∗ [24] 25.6 4.1 76.1
ResNeXt50-32x4d∗ [25] 25.0 4.3 77.6
RegNetY-4G [26] 21.0 4.0 80.0
DeiT-Small/16 [2] 22.1 4.6 79.9
T2T-ViTt-14 [15] 22.0 6.1 80.7
PVT v1-Small [3] 24.5 3.8 79.8
TNT-S [16] 23.8 5.2 81.3
Swin-T [5] 29.0 4.5 81.3
CvT-13 [4] 20.0 4.5 81.6
CoaT-Lite Small [6] 20.0 4.0 81.9
Twins-SVT-S [8] 24.0 2.8 81.7
PVT v2-B2-Li (ours) 22.6 3.9 82.1
PVT v2-B2 (ours) 25.4 4.0 82.0
ResNet101∗ [24] 44.7 7.9 77.4
ResNeXt101-32x4d∗ [25] 44.2 8.0 78.8
RegNetY-8G [26] 39.0 8.0 81.7
T2T-ViTt-19 [15] 39.0 9.8 81.4
PVT v1-Medium [3] 44.2 6.7 81.2
CvT-21 [4] 32.0 7.1 82.5
PVT v2-B3 (ours) 45.2 6.9 83.2
ResNet152∗ [24] 60.2 11.6 78.3
T2T-ViTt-24 [15] 64.0 15.0 82.2
PVT v1-Large [3] 61.4 9.8 81.7
TNT-B [16] 66.0 14.1 82.8
Swin-S [5] 50.0 8.7 83.0
Twins-SVT-B [8] 56.0 8.3 83.2
PVT v2-B4 (ours) 62.6 10.1 83.6
ResNeXt101-64x4d∗ [25] 83.5 15.6 79.6
RegNetY-16G [26] 84.0 16.0 82.9
ViT-Base/16 [1] 86.6 17.6 81.8
DeiT-Base/16 [2] 86.6 17.6 81.8
Swin-B [5] 88.0 15.4 83.3
Twins-SVT-L [8] 99.2 14.8 83.7
PVT v2-B5 (ours) 82.0 11.8 83.8

were trained on COCO 2017 train (118k images)
and evaluated on COCO 2017 val (5k images). We
verified the effectiveness of PVT v2 backbones with
mainstream detectors, including RetinaNet [34], Mask
R-CNN [35], Cascade Mask R-CNN [36], ATSS [37],
GFL [12], and Sparse R-CNN [38]. Before training,
we used weights pre-trained on ImageNet to initialize
the backbone and Xavier [39] to initialize the newly
added layers. We trained all models with batch
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size 16 on 8 V100 GPUs, and adopted AdamW [32]
with an initial learning rate of 10−4 as optimizer.
Following common practice [34, 35, 40], we adopted
a 1× or 3× training schedule (12 or 36 epochs) to
train all detection models. Training images were
resized to have a shorter side of 800 pixels, while the
longer side did not exceed 1333 pixels. When using
the 3× training schedule, we randomly resized the
shorter side of the input image to lie within the range
[640, 800]. In the testing phase, the shorter side of
the input image was fixed to 800 pixels.
4.2.2 Results
As Table 3 reports, PVT v2 significantly outperforms
PVT v1 on both one-stage and two-stage object
detectors with similar model size. For example, PVT
v2-B4 achieves 46.1 AP with RetinaNet [34], and
47.5 APb with Mask R-CNN [35], surpassing models
with PVT v1 by 3.5 AP and 4.6 APb, respectively.
We present some qualitative object detection and
instance segmentation results on COCO 2017 val [9]
in Fig. 3, which also shows the good results from our
models.

For a fair comparison between PVT v2 and
Swin transformer [5], we kept all settings the same,
including ImageNet-1K pre-training and COCO fine-
tuning strategies. We evaluated Swin transformer and
PVT v2 on four state-of-the-art detectors, including
Cascade R-CNN [36], ATSS [37], GFL [12], and
Sparse R-CNN [38] (Table 4). We see that PVT v2
obtains much better AP than Swin transformer for all

detectors, showing its better feature representation
ability. For example, on ATSS, PVT v2 uses a similar
number of parameters and flops to Swin-T, but PVT
v2 achieves 49.9 AP, 2.7 higher than Swin-T. Our
PVT v2-Li reduces the computation from 258 to 194
GFLOPs, while only sacrificing a little performance.

4.3 Semantic segmentation

4.3.1 Settings
Following PVT v1 [3], we chose ADE20K [10]
to benchmark semantic segmentation. For a fair
comparison, we tested the PVT v2 backbones by
using them with Semantic FPN [41]. In the training
phase, the backbone was initialized with weights pre-
trained on ImageNet [14], and the newly added layers
were initialized with Xavier [39]. We optimized our
models using AdamW [32] with an initial learning
rate of 10−4. Following common practices [41, 42],
we trained our models for 40k iterations with a batch
size of 16 on 4 V100 GPUs. The learning rate decayed
following a polynomial decay schedule with a power
of 0.9. We randomly resized and cropped images to
512 × 512 for training, and rescaled the shorter side
to 512 pixels during testing.
4.3.2 Results
As Table 5 shows, when using Semantic FPN [41]
for semantic segmentation, PVT v2 consistently
outperforms PVT v1 [3] and other counterparts.
For example, using almost the same number of
parameters and GFLOPs, PVT v2-B1/B2/B3/B4

Table 3 Object detection and instance segmentation on COCO 2017 val. #P = millions of parameters. APb = bounding box AP. APm =
mask AP. -Li = PVT v2 with linear SRA

Backbone
RetinaNet 1× Mask R-CNN 1×

#P AP AP50 AP75 APS APM APL #P APb APb
50 APb

75 APm APm
50 APm

75

PVT v2-B0 13.0 37.2 57.2 39.5 23.1 40.4 49.7 23.5 38.2 60.5 40.7 36.2 57.8 38.6
ResNet18 [24] 21.3 31.8 49.6 33.6 16.3 34.3 43.2 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PVT v1-Tiny [3] 23.0 36.7 56.9 38.9 22.6 38.8 50.0 32.9 36.7 59.2 39.3 35.1 56.7 37.3
PVT v2-B1 (ours) 23.8 41.2 61.9 43.9 25.4 44.5 54.3 33.7 41.8 64.3 45.9 38.8 61.2 41.6
ResNet50 [24] 37.7 36.3 55.3 38.6 19.3 40.0 48.8 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PVT v1-Small [3] 34.2 40.4 61.3 43.0 25.0 42.9 55.7 44.1 40.4 62.9 43.8 37.8 60.1 40.3
PVT v2-B2-Li (ours) 32.3 43.6 64.7 46.8 28.3 47.6 57.4 42.2 44.1 66.3 48.4 40.5 63.2 43.6
PVT v2-B2 (ours) 35.1 44.6 65.6 47.6 27.4 48.8 58.6 45.0 45.3 67.1 49.6 41.2 64.2 44.4
ResNet101 [24] 56.7 38.5 57.8 41.2 21.4 42.6 51.1 63.2 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d [25] 56.4 39.9 59.6 42.7 22.3 44.2 52.5 62.8 41.9 62.5 45.9 37.5 59.4 40.2
PVT v1-Medium [3] 53.9 41.9 63.1 44.3 25.0 44.9 57.6 63.9 42.0 64.4 45.6 39.0 61.6 42.1
PVT v2-B3 (ours) 55.0 45.9 66.8 49.3 28.6 49.8 61.4 64.9 47.0 68.1 51.7 42.5 65.7 45.7
PVT v1-Large [3] 71.1 42.6 63.7 45.4 25.8 46.0 58.4 81.0 42.9 65.0 46.6 39.5 61.9 42.5
PVT v2-B4 (ours) 72.3 46.1 66.9 49.2 28.4 50.0 62.2 82.2 47.5 68.7 52.0 42.7 66.1 46.1
ResNeXt101-64x4d [25] 95.5 41.0 60.9 44.0 23.9 45.2 54.0 101.9 42.8 63.8 47.3 38.4 60.6 41.3
PVT v2-B5 (ours) 91.7 46.2 67.1 49.5 28.5 50.0 62.5 101.6 47.4 68.6 51.9 42.5 65.7 46.0
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Table 4 Comparison with Swin transformer on object detection.
APb = bounding box AP. #P = millions of parameters. #G =
GFLOPs calculated for an input size 1280 × 800. -Li = PVT v2 with
linear SRA

Backbone Method APb APb
50 APb

75 #P #G
ResNet50 [24]

Cascade
Mask

R-CNN

46.3 64.3 50.5 82 739
Swin-T [5] 50.5 69.3 54.9 86 745
PVT v2-B2-Li (ours) 50.9 69.5 55.2 80 725
PVT v2-B2 (ours) 51.1 69.8 55.3 83 788
ResNet50 [24]

ATSS

43.5 61.9 47.0 32 205
Swin-T [5] 47.2 66.5 51.3 36 215
PVT v2-B2-Li (ours) 48.9 68.1 53.4 30 194
PVT v2-B2 (ours) 49.9 69.1 54.1 33 258
ResNet50 [24]

GFL

44.5 63.0 48.3 32 208
Swin-T [5] 47.6 66.8 51.7 36 215
PVT v2-B2-Li (ours) 49.2 68.2 53.7 30 197
PVT v2-B2 (ours) 50.2 69.4 54.7 33 261
ResNet50 [24]

Sparse
R-CNN

44.5 63.4 48.2 106 166
Swin-T [5] 47.9 67.3 52.3 110 172
PVT v2-B2-Li (ours) 48.9 68.3 53.4 104 151
PVT v2-B2 (ours) 50.1 69.5 54.9 107 215

provide at least 5.3% higher mIoU than PVT v1-
Tiny/Small/Medium/Large. Moreover, although
PVT-Large uses 12% less GFLOPs than ResNeXt101-

Table 5 Semantic segmentation results for different backbones using
the ADE20K validation set. #P = millions of parameters. #G =
GFLOPs with input size 512 × 512. -Li = PVT v2 with linear SRA

Backbone
Semantic FPN

#P #G mIoU (%)
PVT v2-B0 (ours) 7.6 25.0 37.2
ResNet18 [24] 15.5 32.2 32.9
PVT v1-Tiny [3] 17.0 33.2 35.7
PVT v2-B1 (ours) 17.8 34.2 42.5
ResNet50 [24] 28.5 45.6 36.7
PVT v1-Small [3] 28.2 44.5 39.8
PVT v2-B2-Li (ours) 26.3 41.0 45.1
PVT v2-B2 (ours) 29.1 45.8 45.2
ResNet101 [24] 47.5 65.1 38.8
ResNeXt101-32x4d [25] 47.1 64.7 39.7
PVT v1-Medium [3] 48.0 61.0 41.6
PVT v2-B3 (ours) 49.0 62.4 47.3
PVT v1-Large [3] 65.1 79.6 42.1
PVT v2-B4 (ours) 66.3 81.3 47.9
ResNeXt101-64x4d [25] 86.4 103.9 40.2
PVT v2-B5 (ours) 85.7 91.1 48.7

64x4d, its mIoU is still 8.5% higher. Figure 3 shows
some qualitative semantic segmentation results on
ADE20K [10]. These results demonstrate that PVT v2

Fig. 3 Results for object detection and instance segmentation on COCO 2017 val [9], and semantic segmentation on ADE20K [10]. Left to
right: results generated by PVT v2-B2-based RetinaNet [34], Mask R-CNN [35], and Semantic FPN [41].



PVT v2: Improved baselines with Pyramid Vision Transformer 421

backbones can extract powerful features for semantic
segmentation, benefiting from the improved designs.

4.4 Ablation study

4.4.1 Model analysis
Ablation experiments on PVT v2 are reported in
Table 6. We see that all three designs improve
the model in terms of result quality, number of
parameters, or computational requirements.
4.4.2 Overlapping patch embedding
Overlapping patch embedding (OPE) is important.
Comparing #1 and #2 in Table 6, the model with
OPE obtains better top-1 accuracy (81.1% vs. 79.8%)
on ImageNet and better AP (42.2 vs. 40.4) on
COCO than when using the original patch embedding
(PE) [1]. OPE is effective because it can model
the local continuity of images and feature maps via
overlapping sliding windows.
4.4.3 Convolutional feed-forward network
The convolutional feed-forward network (CFFN)
matters. Compared to the original feed-forward
network (FFN) [1], our CFFN contains a zero-
padding convolutional layer, which can capture local
continuity of the input tensor. In addition, due to the
positional information introduced by zero-padding
in OPE and CFFN, we can remove the fixed-size
positional embeddings used in PVT v1, giving the
model the flexibility to handle variable resolution
input. As reported in #2 and #3 in Table 6, CFFN
brings 0.9 points improvement on ImageNet (82.0%
vs. 81.1%) and 2.4 points improvement on COCO,
demonstrating its effectiveness.
4.4.4 Linear SRA
Linear SRA (LSRA) contributes to a better
model. As reported in #3 and #4 in Table 6,
compared to SRA [3], LSRA significantly reduces
the computational load (in GFLOPs) of the model by
22%, while providing comparable top-1 accuracy on

Table 6 Ablation experiments on PVT v2. OPE, CFFN, and LSRA
represent overlapping patch embedding, convolutional feed-forward
network (PVT v2-B2), and linear SRA (PVT v2-B2-Li), respectively.
#P = millions of parameters. #G = GFLOPs. Acc = top-1 accuracy

# Setting
Acc
(%)

RetinaNet 1×
#P #G AP

1 PVT v1-Small [3] 79.8 34.2 285.8 40.4
2 + OPE 81.1 34.9 288.6 42.2
3 ++ CFFN 82.0 35.1 290.7 44.6
4 +++ LSRA 82.1 32.3 227.4 43.6

ImageNet (82.1% vs. 82.0%), and only 1 point lower
AP on COCO (43.6 vs. 44.6). These results show the
lower computational cost and good effects of LSRA.
4.4.5 Computational complexity
As Fig. 4 shows, with increasing input scale, the
growth rate of the computational requirements in
GFLOPS for the proposed PVT v2-B2-Li are much
lower than for PVT v1-Small [3], and are similar to
those of ResNet-50 [13]. This demonstrates that PVT
v2-Li successfully addresses the high computational
overheads caused by the attention layer.

Fig. 4 GFLOPs required for different input sizes.

5 Conclusions

We studied the limitations of the Pyramid Vision
Transformer (PVT v1) and improved it with three
designs: an overlapping patch embedding, a convo-
lutional feed-forward network, and a linear spatial
reduction attention layer. Extensive experiments on
different tasks, such as image classification, object
detection, and semantic segmentation demonstrate
that the proposed PVT v2 is stronger than
its predecessor PVT v1 and other state-of-the-
art transformer-based backbones, with comparable
numbers of parameters. We hope these improved
baselines will provide a reference for future research
in vision transformers.
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