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Abstract Relation contexts have been proved to be
useful for many challenging vision tasks. In the field of
3D object detection, previous methods have been taking
the advantage of context encoding, graph embedding, or
explicit relation reasoning to extract relation contexts.
However, there exist inevitably redundant relation
contexts due to noisy or low-quality proposals. In fact,
invalid relation contexts usually indicate underlying
scene misunderstanding and ambiguity, which may,
on the contrary, reduce the performance in complex
Inspired by recent attention mechanism like
Transformer, we propose a novel 3D attention-based
relation module (ARMS3D). It encompasses object-
aware relation reasoning to extract pair-wise relation

scenes.

contexts among qualified proposals and an attention
module to distribute attention weights towards different
In this way, ARM3D can take
full advantage of the useful relation contexts and
filter those less relevant or even confusing contexts,
which mitigates the ambiguity in detection. We have
evaluated the effectiveness of ARM3D by plugging it
into several state-of-the-art 3D object detectors and showing
more accurate and robust detection results. Extensive
experiments show the capability and generalization of
ARM3D on 3D object detection. Our source code is
available at https://github.com/lanlan96/ARM3D.

relation contexts.
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1 Introduction

With the fast development of automatic and
unmanned technology, 3D object detection has
recently been brought to the fore. Nowadays, 3D
object detection still remains challenging and plays
an important role in 3D vision, including augmented
reality, robot navigation, robot grasping, etc. Most
current 3D object detection methods focus on point
clouds, which are more readily available than before
with the evolution of 3D scanning devices and
reconstruction techniques. However, the orderless
and unstructured nature of point clouds makes the
detection in 3D more challenging than in 2D, as it
is difficult to transfer widely used techniques for 2D
object detection to 3D.

Recently, interests in point cloud have been on
the rise to solve this challenge. With the boom of
deep learning, more and more methods have been
proposed to directly process 3D point clouds and use
the extracted features for all kinds of 3D computer
vision or graphics tasks [1-4]. Recent works [5-10)]
can effectively attain detected 3D objects in raw point
clouds of indoor scenes. These methods mainly rely
on the geometric features from deep backbones or
contextual features from context encoding or relation
reasoning.

Context has been shown to be
and useful in scene understanding [11-13] and

informative

is intuitively present in reality theoretically and
practically. Nowadays, relation reasoning is playing
an essential part in context modeling, which is applied
to both 2D and 3D indoor object detection [10, 14, 15].
However, there are still two main unsolved challenges.
On the one hand, most 3D detectors rely on proposals
(object candidates) for classification and bounding
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box regression. Qualities of the proposals used
in these methods are usually not satisfactory for

extracting relation contexts, inevitably producing

confusing or even improper contextual information.

On the other hand, each proposal actually has its
own specific needs for relation contexts from other
proposals. Previous methods use equal weights for
different relation contexts, which may ultimately
result in more ambiguity or even misunderstanding
(see Fig. 1).

In this paper, we propose an attention-based

(a) Without attention

10

Unequal weights

Fig. 1 We propose an attention-based relation module (ARM3D)
to reason about the most useful semantic relation contexts in 3D
object detection. For example, all the objects with boxes in this figure
are chairs represented as dots on the left. (a) A chair with the red
box is hard to detect due to noise in point clouds and is mistakenly
classified as a sofa using equal attention towards other objects. The
upper left chairs in this scene have untypical structures, resulting in
unclear semantic relations. (b) With unequal attention, this chair
can pay more attention to the semantic relationships with objects
having similar structures to filter the confusing context and thus can
be classified correctly and robustly. Darker orange indicates greater
attention.

relation module for context modeling in 3D object
detection to solve these two challenges. We argue that
objects in indoor scenes are more or less relative to
each other both semantically and spatially. As shown
in Fig. 2, the core ideas of our novel method contain
two parts which correspond to the two challenges
respectively: object-aware relation reasoning among
different proposal pairs; an attention module based
on Transformer to take full advantage of the most
useful ones to extract contextual relation features.
The first part includes a simple but quite useful
objectness module to select proposals with high
qualities. Available with selected proposals, we reason
about both of the pair-wise semantic and spatial
relations for different proposal pairs. As for the
second part, we leverage an attention module based
on Transformer to model the importance towards
contexts from different proposal pairs for each selected
proposal and thus reduce the effects of confusing
contexts. In this way, we can not only enhance
understanding and mitigate the ambiguity towards
various objects in manifold indoor scenes but also
avoid being affected by confusing or even useless
context information together with the useful ones.
Different from previous works, our method does
not depend on pre-defined templates for context
modeling and pays more attention to the useful
context information attained by relation reasoning
instead of taking equal treatment. This mitigates
the ambiguity and thus can boost the performance
of detection.

ARMS3D is a plug-and-play module which can be
conveniently applied to different 3D object detectors.
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Fig. 2 3D detection pipeline equipped with our ARM3D. With point cloud as input, the backbone networks of current proposal-based 3D

detectors produce numerous proposals. These proposals are then sent into our attention-based relation module to extract the fine-grained
relation features. These proposals are first selected according to their objectness, and each proposal is matched with several selected proposals
to reason about their specific relation contexts. Darker blue means greater attention and higher weights. The relation features are concatenated
with the proposal features together. The combined features of different proposals are used by the detection heads to perform classification and
regression. After 3D non-maximum suppression (NMS), the pipeline outputs the final detected bounding boxes.
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It provides precise and useful relation contexts to
help 3D detectors locate and classify objects more
accurately and robustly. We apply ARM3D to
two 3D object detectors and evaluate its improved
performance on two challenging datasets. Extensive
experiments demonstrate the effectiveness of ARM3D.

Specifically, applying ARM3D to VoteNet [6] achieves

7.8% improvement on ScanNetV2 [16] and 3.4% on

SUN RGB-D dataset [17]. As for MLCVNet [7], we

achieve 3.4% improvement on ScanNetV2.

In summary, the major contributions of this paper
are:

e a novel attention-based 3D relation module,
using a simple but useful objectness module to
perform object-aware relation reasoning between
selected proposals, which can extract reliable and
rich semantic and spatial relation contexts for
detection;

e an expressive attention module based on Trans-
former, intended to avoid the negative effects of
confusing relation contexts and thereby enabling
each object to take full advantage of the most
useful context from others. Incorporated with
the proposed objectness module and attention
module, our method ARM3D can achieve more
accurate and detection performance;

e extensive experiments demonstrating the benefits
of our attention-based relation module. Using our
relation module in two state-of-the-art detectors
shows substantial improvements on ScanNetV2
and SUN RGB-D benchmarks indicating that our
design is effective and can be widely applicable.

2 Related work

3D object detection in point clouds. 3D object
detection has been investigated for decades with
numerous applications [6-8, 18-24]. However, due
to the orderless and sparse properties of point
clouds, one of the main 3D representations, 3D
object detection still remains challenging. Before
the emergence of deep learning techniques on 3D
point clouds [2, 25, 26|, earlier attempts mainly
turn to intermediate solutions such as using voxel
grids [27-29], multi-view images [22, 30] or trying to
transform 2D object candidates to 3D from existing
2D object detection methods [21, 31], which limits
the applicability in certain situations.

Thanks to PointNet/PointNet++ [1, 3], in recent

years 3D object detection has started to take
point clouds directly as input. Inspired by Faster
RCNN [32], PointRCNN [24] uses a two-stage
3D object detector for proposal generation and
refinement. Yi et al. [5] proposed GSPN, a novel
object proposal generation network by reconstructing
shapes from noisy observations in a scene with an
analysis-by-synthesis strategy. Motivated by Hough
voting in 2D object detection, VoteNet [6] presents an
end-to-end trainable 3D object detection framework
and highlights the challenge and importance of
directly predicting bounding box centers in point
clouds because most surface points are far from the
object centers. Extension works of VoteNet [7, 9, 20,
33, 34] make use of contextual information, graph
neural networks with hierarchical structures, better
reasonable sampling strategies, and back-tracing
representative cluster points for better proposal
generation. In fact, explicit relationships between
objects provide abundant information for scene
understanding, which are usually ignored. The
significance of relation contexts between objects for
3D box estimation is also emphasized by Huang
et al. [35].

Relational reasoning in 3D. With the emer-
gence of the Relation Network [36], there have been
a great number of methods that adapt the Relation
Network [36] to various 2D image tasks [14, 14, 37,
37-46]. The successful applications of these works
illustrate the importance of relation reasoning in
visual tasks.

As a result of the successful applications of
relational reasoning in 2D, various works began to
explore its applications in 3D. For furniture layout
in 3D, Ref. [47] defines five types of relations for
modeling furniture in indoor scenes using a graph
structure, which, however, is time-consuming for
relations like facing and Ref. [48] measures the
similarity between various furniture layouts with case-
based reasoning. Duan et al. [49] took advantage of
PointNet [1] to reason about the local structural
dependencies with an additional relation network
and attain improved performance in point cloud
classification as well as part segmentation. Aimed
at pose estimation, Ref. [50] proposes a joint object
and relation network to analyze the relative poses
between each pair of objects. For 3D object detection,
Xie et al. [7] exploited self-attention to reason
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meaningful contextual information to generate better
qualified proposals at three levels. GRNet [51]
proposes a geometric relation network to leverage
intra-object and inter-object features extracted by
aggregation for 3D object detection. Ref. [10]
proposes a relation module that explicitly defines
the semantic and spatial relations between objects to

get better relation contexts for 3D object detection.

However, these works usually ignore the fact that
part of the contextual information is misleading,
and may degrade the performance in visual tasks
when combined with correct information in complex
environments.

Attention in 3D vision.
intelligent mechanism which can highlight what is
important in a flexible manner. Recently, there have
been numerous methods introducing attention to all
kinds of 3D vision tasks. Refs. [52-54] intuitively
leverage attention-based graph structures to capture
the fine-grained features of 3D points for point cloud

Attention is an

classification and segmentation. Ref. [55] proposes
a skip-attention mechanism to bridge local region
features and point features of the decoder for better
point cloud completion. There are also applications of
attention mechanism in point cloud registration [56,
57] and point cloud based retrieval [58, 59]. Moreover,
Refs. [60, 61] adapt Transformer, which attracts
much attention in natural language processing, to 3D

point cloud learning, and obtains high performance.

Inspired by these methods, we utilize an expressive
attention module mainly based on Transformer to
model the importance of relation contexts of different
object pairs for more accurate and robust 3D object
detection.

3 Method

3.1 Overview

Contextual relationships have been shown to be
useful. However, there are still two main challenges
when applying relational reasoning to 3D object
detection. Firstly, most existing methods resort to
object proposals first and rely on these proposals to
perform bounding box classification and regression.
Objectness of these raw proposals is usually
represented as proposal quality, which actually makes
a difference to relational reasoning. Proposals with
low objectness, however, usually account for the

majority, resulting in misleading context to some

Q@f} EN?VIEIISSEY%IEI{:?S @ SPI‘lnger

extent. Secondly, even for high-quality proposals,
simply extracting the relation contexts between
these proposals is not robust enough. Previous
methods give relation contexts equal importance.
This inevitably includes contradictory information
with regard to a single object and may lead to
ambiguity in 3D object detection.

To overcome these two challenges and utilize
relation contexts better, we have designed an
attention-based relation module, ARMS3D for short,
to distribute unequal attention towards relation
contexts with different qualified object proposals.
See Fig. 2: with point cloud as input, different
backbones can be used to generate numerous object
proposals. By taking features of these proposals
as input, ARM3D first selects proposals with high
objectness scores through MLP which in itself
enhances reliability, and then each proposal is
matched with other proposals in the same scene at
random. Moreover, ARM3D uses an attention module
to model the importance of different relation contexts
for each selected proposal. For proposal p;, darker
blue indicates greater importance. Both semantic and
spatial relational reasoning is performed to extract
the contextual relation features for more robust and
accurate detection.

In summary, we propose object-aware relational
reasoning for the first challenge (see Section 3.2) and
an attention module based on Transformer structures
for the second challenge (see Section 3.3). Designs
for loss function for ARM3D and its application to
current 3D detectors are considered in Section 3.4.
Extensive experiments show that our design can not
only achieve more accurate and robust detection
performance but also mitigate the ambiguity in 3D
object detection.

3.2 Object-aware relational reasoning

Relation reasoning has been proven to be beneficial
to 3D scene understanding [35, 47]. In fact, objects
in the same scene are typically related to each
other. For instance, only half of a chair beside a
table may be visible in point cloud due to noise,
but it is still likely to be recognized as a chair
using human intuition. The reason why people can
successfully understand this situation is that we know
that chairs are often found beside tables in indoor
scenes. This means that chairs are usually by the
side of a table in indoor scenes. However, for neural
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networks, it is hard to model the correlation directly
to provide prior information as used by humans.
Thus, we need relational reasoning to model the high-
level correlations between different objects involved
in 3D object detection. We use two typical and
intuitive relations including semantic and spatial
relations to help the networks to learn the correlations.
Furthermore, relational reasoning should be carried
out for proposals with high objectness to avoid
misleading contexts. As shown in Fig. 3, the upper
part indicates the process of object-aware relation
reasoning. Its components are as follows.
Objectness module. The reason why we need
an objectness module to filter proposals is that poor
quality proposals usually produce misleading contexts
during relational reasoning. With NV x C proposals
in a given scene as input, the objectness module
outputs N x 2 binary labels demonstrating whether
the proposals have high enough objectness to be
qualified for relational reasoning. C' € R? denotes
the number of feature channels for each proposal
generated by the backbones. Specifically, if the
Euclidean distance d; between the center of a proposal
¢; and the center of its nearest ground-truth object
is within a certain threshold &, the objectness label
of this proposal is 1, and 0 otherwise:
d; = min(D(c;,¢q)), 9 € {1, , Ngt } (1)
where D denotes Euclidean distance, ¢, is the center
of a ground-truth object, and Ny is the number of

Proposals

0 bjectness
Module

Attention Module

ground-truth objects in a scene.

The structure of objectness module H, is
compromises of three MLPs including hq, ho, h3,
with C'/2,C/4,2 output feature channels respectively,
and each convolution layer is followed by batch
The output
of the objectness module is a binary label which

normalization and ReLU activation.

indicates whether the proposal is a single object or
not. It can be formulated as Eq. (2):

lobj = argmaX(HtP(pi))vi € {17"' 7N} (2)
where [oh; denotes the objectness prediction of
proposal p;, and H,(p;) indicates the binary logits of
the last layer.

Matching and processing. Since the objectness
module provides an objectness prediction for each
proposal, it is simple to select Ny x C' high-quality
proposals. We argue that pair-wise relation contexts
benefits the detection of each proposal to the full
extent if the context is extracted from proposals
with high objectness. Each proposal is matched
with N proposals among the N, ones selected by
the objectness module in the same scene at random.
The strategy of random matching is intended to
increase the diversity of object-wise relation contexts,
while the attention module in Section 3.3 is able
to choose the more useful ones.
sampling strategies like farthest point sampling (FPS)
or k-nearest neighbors (k-NN) to select proposals
for matching, we argue that the selection results

Instead of using

Cpairs XNk N X C XN
N x Nk X2
— MLP,

..?_e,lfff @. ........................ . MLP ‘ ....... » Semantic/Spatial

B Relations

¢

Query

7 4 Matching &

LJ @ Processing

® Matrix Multiple

Relation Features

Fig. 3 Network architecture of ARM3D. With N proposals as input, the objectness module, mainly composed of MLPs, firstly outputs binary
labels to select N proposals with high objectness. C' indicates the feature channels. Each proposal is matched with a certain number of selected
proposals at random, and further operations, including matrix subtraction and concatenation, are performed on these object pairs to obtain

their differences. Pair-wise features corresponding to the same proposal go through the MLP labelled gy. The extracted pairs of features are
then transposed and fed into other MLPs to reason about semantic or spatial relations: see Section 3.2. Moreover, the original N x C proposals
and pair-wise proposals go through two MLPs named Query and Key MLPs which output the matrices that are multiplied to compute the
attention matrix. SoftMax activation follows, which is then multiplied by pair-wise features. Processed by the fs MLP, the relation module

outputs relation features for each proposal.
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are relatively unchanged for these sampling methods.

Modeling the accurate correlation between proposals
is a great challenge and we use random sampling to
increase the diversity for better understanding since
we have an attention module to keep the relation
contexts stable and useful. In our experiments,
other sampling strategies work less well than random
sampling. To process a pair of proposals (p;,p;),
from the features of p; we subtract those of p; to
obtain the difference, which is concatenated with
p;, and formulated as features of proposal pairs
N x Cpairs X Nk.

To decide on the informativeness of context
provided by proposal pairs, we leverage MLPs
called gy to exploit the semantic or spatial relations
within them. These pair-wise features are sent to
the classification MLPs named Ry to predict their
semantic or spatial relation labels. For proposal p;,
the relation label [, of itself and its matched proposal
p;j can be formulated as follows:

Iy = Ro(90(Cy(pis A(pi, 1)), pj € P (3)
where Cy, denotes the concatenation of features, and
A indicates subtraction. Pj denotes the randomly
matched proposals for p;.

Semantic and spatial relations. Motivated by
Relation Networks proposed in Ref. [14], Ref. [10]
adapts it to 3D object detection and explicitly
performs relational reasoning on individual objects
instead of on the entire scene. The main differences
between our method and Ref. [10] are that we simplify
the semantic relations to exclude relations between
the same instance, and we use an attention module
combined with an objectness module to make full use
of the relation contexts to avoid redundant contexts

[ semantic relations

and provide better performance. In this paper, the
original relations presented in Ref. [10] including
group, same as, support, hang on are simplified. Since
only proposals with high objectness are selected for
extracting relation contexts, relations like same as
which indicates that two proposals belong to the same
instance are in a minority and unsuitable in this case.
Therefore, we believe that semantic relations and
spatial relations are the most typical and beneficial
pair-wise object relation types for indoor 3D object
detection, which are exactly sufficient for gathering
nontrivial relation contexts. As shown in Fig. 4, two
types of relations indicate whether two objects are in
the same category or not, and whether one is linked
to the other horizontally or vertically.

With regard to semantic relations, there are usually
various types of objects in indoor scenes. If two
objects are in the same category, the semantic
relation label is 1, and 0 otherwise. For each object,
distinguishing semantic categories from other objects
implies rich semantic information. The goal of
semantic relations is to capture the semantic class-
specific properties between objects. Objects in the
same category usually have similar structures and
parts, which helps the objects to better recognize
themselves with semantic context. In contrast, for
objects of different categories, an object can learn
differences from their structures and appearance
through the semantic relations.  Although the
principle of semantic relations is simple, it is useful
and informative for 3D object detection.

As for spatial relations, we combine the relations
of support, hang on proposed in Ref. [10] together
as spatial relations. In this paper, spatial relations

. Spatial relations

Fig. 4 Semantic and spatial relations. The orange bounding boxes indicate semantic relations, and the blue bounding boxes show spatial
relations. (a) Semantic relations in different categories between a chair and the table. (b) Semantic relations in the same category between
these two chairs. (c) Vertical spatial relations between the sink and the cabinet. (d) Horizontal spatial relations between the toilet and the

garbage bin beside it. Best viewed on screen.
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indicate that two objects are adjacent to each other
horizontally or vertically, which can indicate that one
is supporting or linked to the other one. In reality,
objects are more or less spatially related, especially
for those with 3D representations. For example, a

chair is under a table, or a bookshelf is beside a wall.

Such cases are typical spatial relations for indoor
object pairs, which provide intuititive and meaningful
contexts for object detection. We define that a
spatial relation exists only if two proposals satisfy two
conditions. First, the relative height H, or horizontal
distance L, of two proposals should be lower than a
threshold 74. This means that the nearest distance
between points of two proposals should be small
enough, either horizontally or vertically. Second, the
overlap ratio of bounding boxes for two proposals
should be larger than a threshold 7, either on the
x — y plane, the y — z plane and the z — x plane
with respect to the first condition. Take the z — y
plane as an example. The overlap ratio r; ; can be

calculated as
S (Qxy(piapj) me(Pupj)) (1)
Pxy (pz) Pzy (pj)
where (2;,(-,-) denotes the area of intersection in
projection for two proposals on the horizontal plane,
and ¢4y (+) is the projected area of a proposal on the
horizontal plane.

If the overlap ratio 7; ; is lower than 7, the pair of
proposals (p;, pj) is supposed to have spatial relations,
similarly for the y — z plane and the z —x plane. Such
compact spatial relations are helpful for 3D object
detection as well as scene understanding.

3.3 Attention module

Although relation contexts are generally beneficial
for detection, not all contexts from other objects are
essential and helpful for a single object. It is common
and inevitable that some pair-wise relation contexts
are misleading and even useless for specific objects
(see Fig. 1). The attention mechanism, which has
become a focus in 3D vision recently, is appropriate
for solving this problem.

In order to make our relation module more
expressive and robust, we adapt the attention module
based on Transformer in Ref. [60] for analyzing the
importance of different pair-wise relation contexts for
every single object. Unlike Transformer in Ref. [60]
which leverages self-attention to extract features of
point clouds, our attention module is designed to

weigh different pair-wise relation contexts. As shown
in Fig. 4, to be specific, the N x C' original proposals
first go through MLPs named Query and the feature
channel is downsampled to C,. A similar operation
is performed on N x C' x Nj pairs of proposals that
are matched with the original N proposals. After
the MLPs called Key, the pairs of proposals are
transposed into N x N x Cy, and multiplied by
the Query proposals to obtain the N x N} attention
matrix. Note that we use tanh activation to normalize
the outputs before multiplication. Each row of the
attention matrix corresponds to a proposal in the
scene. Values in each row give the importance of
relation contexts from different pairs of proposals,
respectively. After SoftMax normalization, the
attention matrix is used to assign different weights
to the N x C' x Nj pairs of proposals; the sum of
these values is used to compute the weighted average
relation contexts. Last, the weighted relation contexts
for each original proposal is fed into MLPs called f4
to output the final relation features. The process of
obtaining the relation features R; of proposal p; can
be formulated as follows:

W = O(N(K™) x T(@)) )
Ri:qu(ZWi,jX(pi,pj)>,j€{17“‘7qu} (6)
v

where @ is the Query output matrix and K is the Key
output matrix; I" denotes the tanh activation function;
© is SoftMax normalization; and W indicates the
attention matrix of different pairs of proposals (p;, p;).
Further details are provided in Algorithm 1.

Algorithm 1 Pseudo-code for attention-based relation
features formulation

Input: Proposal p;, Nj pairs of proposals (p;,p;), and
MLPs fy, Key, Query.
Output: Weighted relation features R;.
Initialize: R, =0, W = 0.
for all j € {1,--- Ny} do
matrix Q = Query (p;), matrix K = Key ((pi, p;));
Q = tanh(Q), K = tanh(K);
Wi; =K' xQand W « W, ;.
end for
Normalize W matrix by SoftMax; j = 0.
while 7 < Ni do
Rimp = fo(Wij % (pi,pj));
Ri=R;+ Rimp; j=7+1
end while
Return the weighted relation features R;.
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3.4 Application and loss function

To examine the effectiveness of our method, we
have applied our attention-based relation module
ARMS3D to two state-of-the-art 3D object detectors:
VoteNet [6] and MLCVNet [7]. Taking the grouped
clusters as proposals, ARM3D predicts the pair-wise
semantic or spatial relations between those with
high objectness and outputs the beneficial relation
features to boost the performance of 3D object
detection.

The loss of ARMS3D is simply made up of the
objectness loss as well as the relation prediction
loss, corresponding to Section 3.2 and Section 3.3
respectively. The objectness loss is formulated as
Lonj, which is used to supervise the module to
predict the accurate objectness of each proposal. The
relation prediction loss is formulated as L,,, which
refers to the prediction loss of semantic or spatial
relations between proposal pairs, using the binary
cross entropy. For the better selection of objectness,
we set different weights: wq for those proposals whose
ground-truth objectness labels are false, and w; for
the true ones. Similar strategies are adopted for
L, too. L., represents the loss for a single type
of relation (semantic or spatial relations). The final
relation loss £, is the sum of these two losses. L, is

formulated as follows:
N,

Lon=— ;,p ;wl ~yi - log(p(yi))+
wo - (1 —y;) - log(1 — p(y:)) (7)

where N, is the number of proposal pairs with N, =
N x Np, in this paper. y; indicates the positive ground-
truth semantic or spatial relation label of the proposal
pair, and p(y;) is the predicted possibility of the
relation of this pair to be positive. wg and w; are the
weights as above.

Previous methods only calculate the objectness loss
of proposals that are either within a small distance
or beyond a large distance. Since the accuracy
of objectness prediction makes a difference to our
method, we calculate the objectness loss for all
proposals and assign more weight to positive instances
while training.

Following Refs. [6, 7], when using our ARM3D, the
network is trained in an end-to-end manner by using
a voting loss Lyote, @ 3D bounding box regression
loss Lyox, and a semantic classification loss L,

Q@f} EN?VIEIISSEY%IEI{:?S @ SPI‘lnger

in addition to the objectness loss Lop; and relation
prediction loss. The overall 3D object detection loss
is formulated as

loss = /\lﬁvote + /\2£0bj + /\SEbox + /\4£cls + )‘5£r (8)

where in our experiments, we set A\y = 1.0, Ay =
0.5, A3 = 1.0, 4 = 0.1, \5s = 0.1.

4 Implementation details

In this section, we first describe the implementation
details about the network architecture and the
corresponding parameters for ARM3D. Then we
explain how to apply our ARM3D to two 3D object
detectors, VoteNet [6] and MLCVNet [7], as well as
the overall training strategies.

Details in ARMS3D. Proposals are object
candidates for 3D object detection. Our ARM3D
selects proposals with an objectness module, and
relation contexts can be extracted from these
relatively reliable ones.  For the ground-truth
objectness labels, we set the distance threshold & =
0.3. Objectness of proposals within & with respect
to their ground-truth objects is set to 1. Unlike
previous methods that only compute the objectness
loss of proposals within the near distance threshold
or the far threshold, we focus on the objectness of
all proposals.
entropy loss with different weights of wy = 0.2 and
wy = 0.8 for the negative or positive cases respectively,
since the backbone network initially produces few
sufficiently good proposals. The same strategies and

For Luj, we use the binary cross-

designs are applied to L, since there are relatively
fewer positive samples.

As for the strategies of matching different proposals
to obtain pair-wise features, we randomly choose
N = 8 proposals from the ones selected by the
objectness module for the ScanNetV2 dataset and
SUN RGB-D datasets.
good trade-off between speed and results. Moreover,

This strategy provides a

random matching can diversify the relation contexts.
For matched proposal pairs, we set the distance
threshold 74 = 0.1 and the ratio threshold 7. = 0.5
to compute the ground-truth spatial relation labels.

For the attention mechanism used in ARM3D, the
Query and Key MLPs are both composed of one
convolutional layer to downsample the input feature
from C to Cy, = C/4 followed by a tanh activation
function. Different from other methods, these two
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MLPs do not share weights. The function fy is a
fully connected layer with C' channels as output.

The computational requirements of our method
are indicated in Table 1. We compare VoteNet [6]
to VoteNet using our ARM3D and the model size of
our method is 14.2 MB. The inference time using our
method is 0.14 s and 0.09 s on ScanNetV2 and SUN
RGB-D datasets respectively, which is comparable
to that for VoteNet alone. This demonstrates
the efficiency of our method as a lightweight but
useful plug-and-play module. The complexity of
the calculation of semantic and spatial relations is
relatively low-cost since we use matrix multiplication
instead of loops in experiments.

Details in training. We apply our ARM3D
relation module to VoteNet [6] and MLCVNet [7]
to examine whether our method is effective and
widely applicable. The number of feature channels
C' of proposals generated by these two methods
is 128.
strategies, including the base learning rates, decay

Generally, we keep the same training

steps, max training epochs, and so on, as in the
original papers [6, 7]. The only difference is that,
when applied to VoteNet on ScanNetV2, the maximal
training epoch is 180, and the batch size is kept as 4
for the first 80 epochs while the batch size is changed
to 8 for the remaining epochs. For MLCVNet, we
keep the batch size as b = 8 from beginning to end.
We implement our approach using PyTorch [62] on a
single NVIDIA TITAN V. During training, we find
that the mAP results fluctuate slightly, so the mAP
results given here are mean results over three runs.

Table 1 Model size and processing time (per frame or scan) for
VoteNet, and VoteNet with our method ARM3D

Method Model size (MB) ScanNetV2 (s) SUN RGB-D (s)
VoteNet 11.2 0.12 0.08
VoteNet+ARM3D 14.2 0.14 0.09

5 Experiments

In this section, we evaluate the proposed attention-
based relation module ARM3D applied to two 3D
object detectors, VoteNet [6] and MLCVNet [7].
With point clouds of indoor scenes as input, the
experiments are performed on two large 3D indoor
scene datasets and evaluated on the corresponding
detection benchmarks (see Section 5.1). The

evaluation metric we use is demonstrated in

Section 5.2. In Section 5.3, we analyze the performance
improvement after applying our attention-based
relation module ARM3D to the above two 3D object
detectors. An ablation study for different components
of our method is performed mainly with VoteNet
on ScanNetV2 dataset (see Section 5.4). Note
that VoteNet depends on Deep Hough Voting for
object detection, while MLCVNet extends VoteNet
with additional three-level useful contexts; it is
challenging for the effectiveness of the relation
contexts from our ARM3D. Experimental settings
are the same when applying our ARM3D to these
detectors. Both quantitative and qualitative results
show the effectiveness and generalization ability of
our ARM3D.

5.1 Dataset and benchmarks

We use two widely used datasets that provide 3D
point clouds of indoor scenes to evaluate our methods:
ScanNetV2 [16] and SUN RGB-D [17].

ScanNetV2 is a large RGB-D 3D indoor scene
dataset with densely annotated 3D reconstructed
meshes. There are approximately 1.5k scanned indoor
scenes where both the semantic segmentation and
bounding boxes of objects are given. The scanned
indoor scenes are relatively complete, which makes
it suitable for our method to extract the relation
contexts.

SUN RGB-D is a well-known public single-view
RGB-D dataset for scene understanding, which
contains about 10k RGB-D images.
are captured by four different sensors, providing

The images

accurately annotated oriented bounding boxes in 37
categories. Since it does not provide reconstructed
point clouds, we convert the depth images to point
clouds using known camera parameters. Most scenes
are captured in household environments. Occlusion
is common in the SUN RGB-D dataset, and there
are fewer ground-truth objects in each scene, making
it quite challenging for 3D object detection as well as
relational reasoning.

5.2 Evaluation metric

The evaluation metric we take is the average precision
of the detected object bounding boxes against those of
ground-truth objects. We use two IoU thresholds of
0.25 and 0.5, in our experiments. The mean average
precision mAP is the macro-average of the average
precision across all test categories.

iy .
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5.3 Evaluation on two detectors

5.8.1

We apply our ARMS3D to two 3D object detectors,
which are VoteNet [6] and MLCVNet [7]. These two
methods are regarded as our baselines to examine
the effectiveness and improvements of our method
ARM3D. We also compare the effects of applying
3DRM [10] to these two detectors. We first analyze
the improvement of VoteNet equipped with our

Overview

ARMS3D, which is denoted VoteNet+ARMS3D.

Then we analyze the increased performance after
applying our ARM3D to MLCVNet, which is denoted
as MLCVNet4+ARM3D. A brief introduction to
these two baselines and a pair-wise relation module
for 3D object detection are given below.

e VoteNet [6]: An end-to-end trainable 3D object
detection framework that takes advantage of
deep Hough voting and aggregation to generate
proposals for scenes. The aggregated clusters are
used to perform classification and bounding box
regression.

e MLCVNet [7]: A method that utilizes three
levels of implicit contexts to enhance the
performance of VoteNet, including patch-wise,
object-wise, and global contexts.

e 3DRM [10]: A pair-wise plug-and-play relation
module for 3D object detection, which takes
advantage of four types of relations to improve
the performance of 3D object detectors.

5.3.2  Comparison to baselines

We evaluate our method against VoteNet, MLCVNet,
and methods of applying 3DRM [10] to these
detectors. Table 2 reports the average precision
on the ScanNetV2 and SUN RGB-D datasets with
mAP@O0.5 and mAP@OQ.25 respectively. Our methods

Table 2 Comparison of our approach against VoteNet and
MLCVNet on 3D object detection on ScanNetV2 and SUN RGB-
D val sets. VoteNet+3DRM and MLCVNet+3DRM* use 3DRM [10].
VoteNet+ARM3D and MLCVNet+ARMS3D indicate VoteNet and
MLCVNet equipped with our ARM3D

ScanNetV2 SUN RGB-D

mAP@0.25 mAPQ@0.5 mAP@0.25 mAP@0.5

VoteNet 58.6 33.5 57.7 33.7
VoteNet+3DRM 59.7 37.3 59.1 35.1
VoteNet+ARM3D 62.6 41.3 59.3 37.1
MLCVNet 64.5 41.4 59.8 —

MLCVNet+3DRM* 63.6 40.2 58.4 34.3
MLCVNet+ARM3D 64.8 44.8 60.1 35.8
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VoteNet+ARM3D and MLCVNet+ARM3D
achieve the best performance on ScanNetV2 val set
and SUN RGB-D val set both.

From the comparison in Table 2, our method
significantly outperforms VoteNet by not only 4%
and 7.8% on ScanNetV2 but also 1.6% and 3.4%
on SUN RGB-D for mAP@0.25 and mAP@O0.5
respectively. Note that MLCVNet+3DRM™* means
that we retrain 3DRM [10] on MLCVNet since 3DRM
does not have this application. Compared to applying
3DRM to VoteNet, our method outperforms it by
2.9% and 4% on ScanNetV2 as well as by 0.2% and
2% on SUN RGB-D for mAP@0.25 and mAP@0.5
respectively. This shows that our attention-based
relation module can extract more robust and accurate
relation contexts to benefit the 3D object detectors
for better classification and regression. Note that the
increased performance on SUN RGBD val dataset
is slightly lower than on the ScanNetV2 validation
dataset, since SUN RGBD is a single-view RGB-D
dataset. Most scenes in the SUN RGB-D dataset are
in household environments, and have fewer objects.
Occlusion is more common in SUN RGB-D dataset
than in ScanNetV2, making it quite challenging
for detection as well as extracting relation contexts
for our method. However, Table 2 illustrates that
our method ARMS3D can reliably reason about the
relational context even in challenging scenes and
environments.

While MLCVNet uses three levels of contexts to
boost its performance, our method ARM3D can
still improve its performance on 3D object detection
via fine-grained relation contexts from ARM3D.
Equipped with ARM3D, our method improves
MLCVNet by 0.3% and 3.4% on ScanNetV2 for
mAP@0.25 and mAP@O0.5 respectively. Our method
also outperforms MLCVNet by 0.3% on SUN RGB-
D in terms of mAP@0.25. In contrast, applying
3DRM [10] to MLCVNet reduces the performance of
MLCVNet due to the equal weights towards relation
contexts from different proposal pairs, which may
contain some misleading contexts. It is noteworthy
that our method ARMS3D still can improve the
performance of MLCVNet which already fuse various
contexts to help the detection while 3DRM cannot
do this. This further explains the effectiveness and

universal benefits of relation contexts extracted by
our ARMS3D.
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5.8.8  Qualitative results and discussion

Qualitative results for different methods and ground
truth for ScanNetV2 are shown in Fig. 5. We visualize
the results of ground-truth (the first column), our
method (the second column), VoteNet (the third

column), and VoteNet+3DRM (the last column).

Thanks to ARM3D, our method obviously detects the
objects more accurately and robustly. For example,
there are four chairs and a table in the scene of the

[ cabinet Chair Sofa

Picture . Counter . Desk

M Table
. Curtain

third row. Our method can detect the ground-truth
objects with almost the same bounding boxes, while
other methods produce many redundant bounding
boxes with even wrong category labels. Note that the
results of VoteNet+3DRM are better than that of
VoteNet while our method achieves the best results,
showing the effectiveness of our method.

Figure 6 displays a qualitative comparison of results
from our method and other methods on the SUN

VoteNet

[ poor

. Refrigerator Sink

Window . Bookshelf

. Other furniture

Fig. 5 Qualitative comparison results of 3D object detection on the ScanNetV2 val set. Columns left to right: ground-truth, our method,
VoteNet, VoteNet+3DRM. The detailed comparison demonstrates that our method ARM3D enables more accurate and reasonable detection.

Image GT

Ours

VoteNet VoteNet+3DRM

Fig. 6 Qualitative comparison results of 3D object detection on SUN RGB-D val set. Columns left to right: RGB image of the scene,
ground-truth, our method, VoteNet, VoteNet+3DRM. Our method VoteNet+ARM3D provides better results. Color is for depiction, not used

for detection.
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RGB-D dataset. Using our method leads to better
object detection with more accurate bounding boxes,
while results from other methods are ambiguous or
redundant. We argue that this is beneficial from our
robust attention-based relation module ARM3D.

In Fig. 7, more comparison details are displayed,
and it is clear that our method achieves more robust
and accurate 3D object detection. Note that the green
rectangles point out the main difference between these
methods, which are shown in close up in the second
row. Further qualitative comparisons can be found
in the Appendix.

The visualization of the attention examples is
shown in Fig. 8. On the left is the 8 x 8 attention
matrix, and on the right are weights of different
proposals (dots in different colors) towards the

proposal (the red dot) in the second row of the matrix.

It can be seen that the proposal of a chair (the red
dot) pays more attention to the sofa (the green dot)
and the desk (the blue dot), corresponding to the
semantic (different categories) and spatial relations
(horizontal adjacency) respectively.

5.4 Ablation study
5.4.1 Effects of different components

We analyze the effects of the two main components of
our method including the objectness module to select
proposals and the attention module. The design
of the objectness module is simple but useful. It
aims to select proposals with high objectness and
therefore our relation module can extract reliable and
robust relation contexts among these proposals. The

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 8 Attention in VoteNet+ARMS3D. (a) 8 X 8 attention matrix.
Each row represents a proposal and corrsponding columns represent
weights of other proposals towards it. (b) Visualization of the second
row in (a), which is numbered 1-8 as for the key proposal (the red dot).
The other eight proposals are shown in dots with weighted colors.

attention module is to distribute different weights
towards the relation contexts extracted from the
former part since not all relation contexts are useful
for each single proposal and some context is confusing.
The objectness module and the attention module is
simplified as OBM and ATM respectively in Table 3.

Table 3 Comparison of our approach with different components
against the baseline of VoteNet+3DRM on ScanNetV2 val set. We
denote OBM as the objectness module and ATM as the attention
module. VoteNet+ARMS3D indicates applying our method ARM3D
to VoteNet. Note that we only utilize the semantic relations in this
experiment

ScanNetV2
Method OBM ATM
mAP@0.25 mAP@O0.5
Baseline 59.7 37.3
VoteNet+ARM3D v 60.9 38.7
VoteNet+ARM3D v 61.5 37.8
VoteNet+ARM3D Vv v 62.9 40.9
MLCVNet MLCVNet+3DRM

Fig. 7 Qualitative comparison results of 3D object detection on ScanNetV2 val set. The detailed comparison in the second row with green
rectangles demonstrates that our ARM3D enables more accurate and reasonable detection. Color is for depiction, not used for detection.
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The first row is the baseline of VoteNet+3DRM. The
second row is the our method with only the objectness
module and the third row is our method with only the
attention module. The last row is our full method. It
is noteworthy that using only OBM or ATM achieves
a slight improvement. However, using both OBM
and ATM, our method obtains a larger improvement.
This is attributed to our novel designs which support
each other and jointly boost the performance.

5.4.2  Comparison of different relations

The effects of different relation types we take on
ScanNetV2 val dataset in terms of mAP@Q0.5 with
regard to applying ARM3D to VoteNet are displayed
in Table 4. We denote VoteNet+ARM3D as our
method by applying our ARM3D to VoteNet. The
third row is our method with semantic relations
only and the fourth row is our method with spatial
relations only. The last row is our method with
these two types of relations both. Using both
semantic and spatial relations achieve the best
performance of 7.8% improvement against VoteNet.
Our method improves the categories of counters,
showercurtains, sinks, tables, and chairs by a large

margin. Moreover, the detailed average precision
of each category shows that different categories of
objects pay attention to different types of relations.
For example, windows are more sensitive to spatial
relations and refrigerators pay more attention to
semantic relations with others, while challenging
categories for detection like showercurtains and
curtains need both of semantic and spatial relations
for better detection. This illustrates the effectiveness
and significance of both semantic and spatial
relations. A comparison of different relations of
applying our method to MLCVNet on ScanNetV2
val dataset in terms of mAP@0.25 is demonstrated
in Table 5. Similarly,
semantic and spatial relations achieves the highest
performance. However, MLCVNet+3DRM* reduces
the performance of MLCVNet. MLCVNet is a
method with three levels of rich context. The
improved mAP further demonstrates the benefits

our method using both

and robustness of our method. The comparison on
SUN RGBD val dataset for the effects of different
relations to VoteNet+ARMS3D in terms of mAP@0.5
can be found in Table 6. Further comparative results
are demonstrated in the Appendix.

Table 4 Comparison to VoteNet and VoteNet+3DRM with mAP@0.5 on ScanNetV2 val set for our method with different relations. We

denote VoteNet+ARM3D as VoteNet equipped with our ARM3D

wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP
VoteNet 6.4 76.1 9.5 688 424 100 11.7 16.8 1.3 67.2 37.5 11.6 27.8 153 86.5 28.0 78.9 81 33.5
VoteNet+3DRM 12.3 80.6 14.6 71.8 41.3 104 13.4 29.5 0.1 67.7 34.7 17.0 37.8 15.7 90.0 44.2 83.0 8.0 37.3
VoteNet+ARM3D (semantic) 10.3 82.4 32.0 76.2 51.9 14.4 20.9 32.3 0.2 75.0 48.4 14.7 40.2 20.0 85.9 40.9 77.6 12.9 40.9
VoteNet+ARM3D(spatial) 12.9 80.7 24.1 73.5 55.1 11.7 20.6 28.1 2.1 76.5 43.7 17.7 36.2 20.3 85.3 36.6 77.5 14 39.8
VoteNet+ARM3D (all) 9.1 782 282 712 54.0 24.4 187 259 2.8 75.6 44.1 23.9 37.6 21.9 92.0 43.1 79.1 13.4 41.3

Table 5 Comparison to MLCVNet and MLCVNet+3DRM* with mAP@0.25 on ScanNetV2 val set for our method with different relations.
We denote MLCVNet+ARM3D as MLCVNet equipped with our ARM3D. * denotes that we retrain MLCVNet with 3DRM since 3DRM has

not been applied on MLCVNet

wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP
MLCVNet 47.0 88.5 63.9 87.4 63.5 65.9 479 59.2 11.9 90.0 76.1 56.7 60.9 56.9 98.3 56.9 87.2 42.5 64.5
MLCVNet+3DRM* 43.6 88.0 63.6 89.2 65.1 64.0 51.3 56.2 11.9 91.3 74.5 48.0 55.0 54.4 99.0 51.8 92.7 46.2 63.6
MLCVNet+ARM3D(semantic) 48.7 88.1 58.5 90.9 68.9 64.8 51.7 61.4 13.5 91.7 75.7 49.2 56.3 58.0 98.9 53.8 89.9 46.1 64.8
MLCVNet+ARM3D(spatial)  45.6 90.1 60.9 87.2 64.1 75.3 51.4 66.0 11.8 91.5 76.5 51.3 62.3 57.2 99.4 554 91.7 46.9 65.8
MLCVNet+ARM3D(all) 46.4 89.1 67.2 89.6 69.7 75.0 49.8 58.5 11.7 92.3 78.7 52.6 56.1 56.8 96.7 54.9 92.9 47.7 65.9

Table 6 Comparison of our approach VoteNet+ARM3D against VoteNet and VoteNet+3DRM with different relations on the SUN RGB-D

val set with mAP@0Q.5

bathtub bed bookshelf  chair  desk  dresser  nightstand sofa table  toilet ~mAP

VoteNet 47.0 50.1 7.2 53.9 5.3 11.5 40.7 424 19.5 59.8 33.7

VoteNet+3DRM 45.4 51.5 8.5 55.3 5.5 16.9 36.8 48.2 20.5 62.9 35.1

VoteNet-+ARM3D(semantic) 38.7 51.8 6.4 57.9 7.1 15.9 38.4 51.2 22.8 64.8 35.5

VoteNet+ARM3D (spatial) 46.6 49.2 7.2 58.1 6.6 16.4 42.5 47.7 22.1 60.9 35.7

VoteNet+ARM3D (all) 50.4 54.3 8.4 58.7 6.4 16.9 42.5 50.0 22.9 60.9 37.1
TSINGHUA
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5.4.8 Numbers of pairs

Table 7 shows the improved performance for differenet
numbers of pairs for our method denoted as
VoteNet+ARM3D on ScanNetV2. Sampling Ny =
8 proposal pairs for a proposal achieves the best
improvement taking both mAP@0.25 and mAP@Q0.5

as well as computational efficiency into consideration.

Further intuitive results are displayed in Fig. 9.

Table 7 Comparison of our ARM3D with different numbers Ny
of proposals pairs for each one while relational reasoning on the
ScanNetV2 val set. We denote VoteNet+ARM3D as our approach by
applying our ARM3D on VoteNet

ScanNetV2
Method
mAPQ@0.25 mAPQ@O0.5
VoteNet 58.6 33.5
VoteNet+ARM3D(N;, = 2) 61.5 38.8
VoteNet+ARM3D(N, = 4) 61.3 39.8
VoteNet+ARM3D(Ny, = 6) 62.0 39.7
VoteNet+ARM3D(Ny, = 8) 62.9 40.9
VoteNet+ARM3D(N;, = 12) 61.2 38.5
VoteNet+ARM3D(N;, = 16) 60.6 37.9
. mAP@0.25
71 == mAP@0.5

o
L

w
L

Improved mAP (%)
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Number of pairs

Fig. 9 Improved percentage of mAP for different numbers of proposal
pairs for VoteNet+ARMS3D over VoteNet.

6 Conclusions

We propose an attention-based relation module
for indoor 3D object detection on large-scale
scene datasets. Using an objectness module to
select raw proposals generated by backbones, we
reason about the weighted relation contexts among
themselves. Thanks to our attention module based
on Transformer, we extract the most useful relation
features for each proposal, which enables the network
to mitigate the ambiguity and filter out those less

@ HEREITe PARaS @ Springer

relevant or even confusing contexts. We apply
our ARM3D to two 3D object detectors on two
challenging datasets for more accurate and robust
detection. The consistently improved 3D object
detection performance illustrates the generalization
ability and effectiveness of our method.

Future work. Two research directions are
On the one hand, it
is worth trying to apply the attention-based relation
module to other 3D visual tasks such as point cloud
segmentation and layout arrangement. On the other
hand, using a hierarchically designed relation module
for reasoning about the relation contexts of sub-scenes
or groups of objects is also a promising direction.

worth considering in future.

Appendix

A More analysis of experiments on Scan-
NetV2 and SUN RGB-D

More results of experiments for our method
VoteNet+ARM3D against VoteNet and VoteNet+
3DRM on ScanNetV2 and SUN RGB-D dataset are
shown in Table 8 and Table 9. More comparison
experiments of different relations of MLCVNet
equipped with our ARMS3D, denoted as ML-
CVNet+ARM3D are shown in Table 10.

Tlustrated in Table 8, we compare VoteNet+
ARMS3D with different relations against VoteNet as
well as VoteNet+3DRM on ScanNetV2 val set with
mAP@0(.25. The results show that VoteNet+ARM3D
with only spatial relations achieves the best
performance. To be specific, our method improves
VoteNet by 4.9%. We argue that objects of most
categories like windows and beds are more sensitive
to spatial relations in a lower threshold mAP@Q.25.
However, objects like toilets and refrigerators already
have distinct structures and thus need wvarious
semantic contexts for better understanding. It is
noteworthy that the improvement of our method
(VoteNet-+ARM3D) on mAP@0.25 is lower than on
mAP@O0.5. We argue that this can be attributed
to the fact that our ARM3D helps the proposals
which are within a threshold against the ground truth
objects better than those that are far away from the
centers and have poor qualities. In Table 9, and our
method with only semantic relations performs the
best on SUN RGB-D val dataset.

Table 10 shows the comparison results of
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Table 8 Comparison to VoteNet and VoteNet+3DRM with mAP@0.25 on ScanNetV2 val set for our method with different relations. We
denote VoteNet+ARM3D as VoteNet equipped with our ARM3D

wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP
VoteNet 38.1 87.9 56.1 89.6 58.8 57.1 37.2 54.7 7.8 88.7 71.7 472 454 47.3 949 44.6 92.1 36.3 58.6
VoteNet+3DRM 42.4 88.5 50.2 87.6 59.0 63.9 38.2 46.7 6.2 87.9 67.5 49.2 52.9 47.4 98.0 58.8 92.3 38.7 59.7
VoteNet+ARM3D(semantic) 41.4 89.0 61.2 92.5 63.6 67.7 43.9 56.9 8.9 90.5 70.7 47.1 58.0 52.2 99.8 54.2 90.9 44.2 62.9
VoteNet+ARM3D(spatial) 42.8 89.5 67.3 89.6 64.4 66.2 49.5 60.5 10.8 91.7 75.1 45.8 55.0 53.3 99.6 51.2 87.5 42.7 63.5
VoteNet+ARM3D (all) 41.3 88.9 574 90.3 66.1 73.1 44.0 50.7 9.2 90.9 75.3 43.5 55.3 55.3 97.1 57.9 86.1 44.6 62.6

Table 9 Comparison of our approach VoteNet+ARM3D against VoteNet and VoteNet+3DRM with different relations on SUN RGB-D val

dataset with mAP@0.25

bathtub bed bookshelf  chair  desk  dresser  nightstand sofa table  toilet ~mAP
VoteNet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
VoteNet+3DRM 77.5 84.5 31.0 75.6 25.7 28.9 63.3 65.5 50.1 88.9 59.1
VoteNet+ARM3D (semantic) 76.8 85.3 28.9 77.3  28.7 34.5 62.0 66.3 49.0 90.1 59.9
VoteNet-+ARM3D(spatial) 76.7 82.8 31.7 7.2 26.2 32.7 64.3 64.9 49.4 91.0 59.7
VoteNet+ARM3D (all) 74.0 85.1 28.4 77.3 27.7 32.2 63.4 66.4  49.1 89.7 59.3

Table 10 Comparison of differenet relations of MLCVNet+ARM3D with mAP@0.5 on ScanNetV2 val set. We denote MLCVNet+ARM3D as

MLCVNet equipped with our ARM3D

wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP

MLCVNet+ARM3D(semantic) 16.7 78.0 29.4 81.3 55.0 42.8 26.7 27.4 3.9 76.4 45.7 22.8 34.5 28.1 89.4 42.3 86.1 20.0 44.8

MLCVNet+ARM3D(spatial)
MLCVNet+ARMS3D(all)

15.2 78.7 17.0 74.1 51.2 23.1
11.4

25.0 29.1 2.1 76.6 48.4 20.8 39.5 21.9 91.4 48.1 82.7 16.6 42.3
79.1 29.9 74.8 57.1 17.5 22.0 25.7 1.9 76.9 45.7 13.8 37.1 24.0 86.5 47.4 89.1 19.0 42.2

our method (MLCVNet+ARMS3D) with different
relations on ScanNetV2 val dataset. Our method
with only semantic relations performs the best
with the improvement of 3.4% towards MLCVNet.
The improved results of MLCVNet+ARM3D indeed
illustrate the generalization ability of our ARM3D,
which can be widely applied on different 3D detection
detectors and datasets.

ﬁ] Cabinet
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. Table

B More visualization of detections on Scan-
NetV2

In Fig. 10, the comparison results on ScanNetV2
val set are shown. From the comparison of ours,
MLCVNet, and MLCVNet+3DRM, it can be found
that our methods can detect the objects more

accurately and robustly than other methods. In

MLCVNet

MLCVNet+3DRM

. Desk

Picture . Other furniture

Fig. 10 Qualitative comparison results of 3D object detection on ScanNetV2 val set in terms of MLCVNet. The detailed comparison
demonstrates that our ARM3D enables more accurate and reasonable detection
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indoor scenes, there are usually many chairs and
tables, which often results in redundant bounding
boxes while in detection. Our ARM3D can alleviate
this problem by utilizing reliable and robust relation
contexts and thus achieve better detection. More
qualitative results are shown in Fig. 11.
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