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Abstract In the state of the art, grayscale image
enhancement algorithms are typically adopted for
enhancement of RGB color images captured with low
or non-uniform illumination. As these methods are
applied to each RGB channel independently, imbalanced
inter-channel enhancements (color distortion) can often
be observed in the resulting images. On the other hand,
images with non-uniform illumination enhanced by the
retinex algorithm are prone to artifacts such as local
blurring, halos, and over-enhancement. To address these
problems, an improved RGB color image enhancement
method is proposed for images captured under non-
uniform illumination or in poor visibility, based on
weighted guided image filtering (WGIF). Unlike the
conventional retinex algorithm and its variants, WGIF
uses a surround function instead of a Gaussian filter
to estimate the illumination component; it avoids local
blurring and halo artifacts due to its anisotropy and
adaptive local regularization. To limit color distortion,
RGB images are first converted to HSI (hue, saturation,
intensity) color space, where only the intensity channel
is enhanced, before being converted back to RGB space
by a linear color restoration algorithm. Experimental
results show that the proposed method is effective for
both RGB color and grayscale images captured under
low exposure and non-uniform illumination, with better
visual quality and objective evaluation scores than from
comparator algorithms. It is also efficient due to use of
a linear color restoration algorithm.
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1 Introduction
Color images contain richer information than grayscale
images, and are used in many fields. However, in
practice, images are often obtained under undesirable
weather and illumination conditions. Images taken
under insufficient or non-uniform light show low
brightness, poor contrast, blurred local details, poor
color fidelity, and sudden changes in brightness, and
are often accompanied by significant noise. These
make it difficult for human or machine vision to
extract and analyze information from such images
[1–3]. Thus, many scholars have devoted themselves
to color image enhancement [4, 5].

To enhance color images taken under low
illumination, it is required to maintain the color
information without distortion while increasing the
brightness and contrast, to highlight the image
details and texture, so that the enhanced image
is bright and natural. Conventional color image
enhancement directly applies a grayscale image
enhancement method to each channel of the RGB
model. These methods include, in the spatial
domain, histogram equalization and its various
improvements [6–9], and in the frequency domain,
wavelet transform algorithms [10–12], retinex [13]
and its improvements [14–16]. However, good results
cannot be achieved by applying these grayscale image
enhancement algorithms directly to the color image,
due to strong correlation between the RGB color
channels. If each color channel is directly processed
by a grayscale image enhancement algorithm, the
different channels will be enhanced in an imbalanced
way, leading to color distortion, saturation decrease,
obvious block effects, and other issues.

To overcome these problems, some work processes
images in other color spaces such as HSI, HSV,
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YCbCr, and YUV [17–19]. In these color models,
brightness and color of the image are recorded
in different independent channels. Processing the
brightness channel does not affect the color channel,
ensuring no color shift occurs. For example, Yang
et al. [20] and Shin et al. [21] proposed an image
enhancement method in the HSV model. First, in the
value channel the illumination component is obtained
by a Gaussian filter, and the reflection component
is found by retinex theory. Then the brightness
of the illumination component is increased, and
the processed illumination component is recombined
with the reflection component, to give the enhanced
value channel image. Finally, the enhanced image
is reconverted to RGB. This method can overcome
deficiencies such as color distortion and loss of image
light details. However, due to isotropic characteristics
of Gaussian filtering (GF) when it is used to estimate
the background illumination, blurring of edges of the
resulting reflection component tends to occur, and the
enhanced image is subject to halo artifacts and low
contrast because of the non-uniform illumination of
the original image. Consequently, in order to enhance
the non-uniform illumination component under low
illumination, some researchers have attempted to
estimate the background illumination using a filter
with anisotropic characteristics such as a bilateral
filtering (BF) [22–24] or guided image filter (GIF)
[25, 26]. BF may be subject to “gradient reversal”
[21, 27, 28] when used for image enhancement,
because the Gaussian weighted average is unstable
if a pixel on an edge has few similar pixels around
it, and the efficiency of BF is poor. However, if GIF
is used to estimate the illumination component of
the image, a blurred halo and pseudo-edge effects
[29] can appear at the edges of windows with large
texture differences, as the same regularization factor
is used in all local filtering windows. Accordingly,
a variant of GIF, the weighted guided image filter
(WGIF) [30], was proposed to achieve good edge
preservation.

In recent years, with the development of deep
neural networks, many researchers have proposed
deep learning-based low-light image enhancement
methods [31–33]. Wang et al. [34] put forward a
global light awareness and detail retention network
(GladNet), which can effectively enhance image
details, but it still suffers from unsaturated color

and low contrast. Wei et al. [35] put forward a
deep retinex network (retinexNet). This method is
data-driven and introduces multi-scale cascading
technology to adjust lighting; it improves the
brightness of low-illumination images well. However,
as it ignores color information in the image, the
enhanced image can have color distortion. Zhang
et al. [36] proposed a kindling darkness (KinD)
network. It employs pairs of datasets taken under
different exposure conditions to train an image
decomposition network, a reflection component
recovery network, and a luminance adjustment
network, which can effectively remove noise, enhance
brightness, and maintain color realism. Although this
deep learning-based method has good generalization
performance and provides good results, it needs a
large-scale dataset for training, is highly dependent
on this dataset, and requires high computational
resources.

In this paper, we present a novel color image
enhancement method for low and non-uniform
illumination images. Our main contributions are
based on the following.
• GF possesses anisotropic characteristics, so

gradient inversion can be effectively avoided by
using it to estimate illumination. Thus, WGIF
introduces adaptive regularization parameters,
to better avoid halos and pseudo-edges as the
edge gray difference is large. Therefore, we use
WGIF instead of GF to estimate the illumination
component and denoise the reflection component,
which better maintains the edge and detail
information, and avoids local blurring, halos, and
noise amplification.

• Only the intensity channel in HSI color space is
processed, and a linear color restoration algorithm
is used to calculate the luminance gain coefficient
to accurately restore the color of each pixel. This
is efficient while avoiding color distortion.

• The illumination component and the fused image
are enhanced by adaptive gamma correction and
an S-hyperbolic tangent function to improve
image contrast and enhance image details.

The rest of this paper is organized as follows.
Section 2 gives a brief review of related work. In
Section 3, we explain the proposed method. Section
4 presents and analyzes experimental results, and
conclusions are drawn in Section 5.
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2 Related work
Our proposed method converts low and non-uniform
illumination color images to the HSI model. Only
dark areas of the intensity channel are enhanced to
improve the brightness and clarity of the color image:
enhancement of the intensity channel is the core of the
proposed method. The key issue is how to maintain
rich information, while avoiding phenomena such
as blurring, halos, and over enhancement, causing
illumination artefacts as the brightness of the image
is enhanced.

Human perception can construct a visual
representation with vivid color and detail across a
wide dynamic range regardless of lighting variations,
which is called color constancy [37, 38]. Some
scholars have proposed various image enhancement
algorithms under low illumination by considering
the perceptual characteristics of the human visual
system, among which retinex [39, 40], based on
color constancy, has attracted much attention.
Many improved versions have emerged [24, 41, 42].
According to the illumination–reflection model, the
human visual perception of color depends on the
reflection characteristics of the object’s surface; the
image can be mathematically represented as the
product of the illumination component and reflection
component:

Sc(x, y) = Lc(x, y)Rc(x, y) (1)
where c is one of the RGB channels: c ∈ {R, G, B}.
S, L, and R are the original image, illumination
component, and reflection component, respectively.

The main idea of retinex theory is to calculate
and eliminate the illumination component from the
original image. To find the illumination component,
however, an under-determined equation system has to
be solved, which only can be estimated approximately
instead of being accurately calculated. Jobson et
al. [39] put forward the single-scale retinex (SSR)
algorithm, using GF as the center–surround function
to estimate the background illumination. The
scale parameter in the Gaussian function is the
only input parameter to the SSR algorithm; for
smaller values, the dynamic range of the image is
compressed, and for large values, image contrast
is enhanced. Subsequently, the multi-scale retinex
(MSR) algorithm [40] was proposed, which combines
dynamic range compression and tonal rendition, with

a weighted sum of several different SSR results. In
practice, the MSR just approaches human visual
performance in dynamic range compression. It fails
to process images with local or global graying-world
violations effectively. In some cases, the “graying out”
effect is severe and unexpected color distortion may
occur. Therefore, a multi-scale retinex algorithm with
color restoration (MSRCR) was proposed by Rahman
et al. [41], which improves MSR with a universally
applied color restoration factor to eliminate color
distortions and evident gray zones.

In the classical retinex methods mentioned above,
the lighting is usually considered to be uniform, so a
GF is used as a center–surround function to estimate
the illumination component. However, illumination
change may occur at the edge of an object in the
image, so the gradient variation in all directions
around the pixels would be different. If an isotropic
filter such as a GF is used to estimate the illumination
component, inaccurate results will be produced in
the light change region, leading to a halo defect
[22]. In fact, we need to preserve the edges of
illumination while smoothing other small fluctuations
unrelated to light. Thus, many studies have focused
on estimating the illumination component by low-pass
filters with anisotropic properties. They preserve
edge images related to light jumps, and smooth
useless details and textures independent of the light
change. If BF is used to estimate the illumination
component [23, 24, 42], the halo effect may be
overcome to some extent. However, on one hand,
BF may be subjected to “gradient reversal” in image
enhancement: because global mapping is adopted, the
Gaussian weighted average is unstable if a pixel on
an edge has few similar pixels around it, and detailed
information about the illumination component will
be lost. On the other hand, the efficiency of BF is
poor. Wang et al. [43] put forward a bright-pass filter
to estimate the illumination component, which was
further optimized by using a relative illumination
error function, thus preserving naturalness while
enhancing image details. Sun et al. [44] proposed to
estimate the illumination component using a guided
image filter in the gradient domain (GDGIF) and to
correct it by using gamma and sigmoid functions,
effectively avoiding edge artifacts and enhancing
contrast. Nevertheless, noise often exists in low
illumination components, and noise amplification
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tends to occur on enhancement. To avoid noise
amplification, Liu et al. [45] put forward a structure-
revealing enhancement method based on a robust
retinex decomposition model, using fidelity terms,
region smoothing terms, and structure information
terms to construct an optimization function. This
method can effectively suppress noise, but results in
an image with regional blurring, and loss of detailed
information. Yu and Zhu [46] proposed a physical
lighting model to recover low-illumination images.
Having iteratively adjusted the environmental light
and light-scattering attenuation rate by information
loss constraints, WGIF is used to refine them, which
effectively removes noise interference, highlights
texture details, and maintains relatively natural colors.

GIF [25] is an image filtering method with
anisotropic characteristics. It consists of a local
linear transfer model between a guidance image and
the output image, such that the gradient direction
of the output image is the same as that of the
guidance image, effectively avoiding the gradient
reversal problem in BF [47, 48]. The regularization
hyper-parameter of the cost function is set by the
user to determine the relative edge-preserving and
smoothing effects of the image. Generally speaking,
in high variance regions, lower regularization hyper-
parameter values are chosen to penalize the linear
coefficients’ amplitudes, whereas in flat regions,
a higher regularization hyper-parameter value is
preferred to ensure lower approximation error.
However, this hyper-parameter is most often fixed for
all local windows, and when GIF is used to estimate
the illumination component of the image, blurred
edges can occur in windows with large texture
differences. WGIF [30] combines the advantages
of both global and local filtering by adaptively
adjusting this regularization hyper-parameter based

on the variance of the current window. Therefore,
WGIF as used in this paper can also be considered as
estimating the illumination component by removing
noise from the reflection component.

3 Method

3.1 Background
In this paper, a novel low and non-uniform
illumination color image enhancement method based
on WGIF is proposed. First, the original color
image is transferred from an RGB color model
to an HSI color model, with intensity, hue, and
saturation channels. We only use WGIF to estimate
the illumination component of the intensity image
and remove the noise contained in the reflection
component. Ultimately, a linear color restoration
method is used to transform the enhanced intensity
image back into the original RGB color model to
give the final enhanced color image. An outline
of the proposed method is shown in Fig. 1. The
area surrounded by the dashed box is the core
of the proposed method, which is the process of
enhancing the original intensity image based on
WGIF. Firstly, the WGIF is used to obtain the
illumination component of the intensity image,
and adaptive brightness equalization methods of
gamma correction and linear stretching are used
to process the obtained illumination results. Then,
the reflection component is calculated using the
illumination component, and noise is also removed
by WGIF. Finally, the new illumination component
and reflection component are fused and the obtained
result is globally enhanced. Pseudocode for the
proposed method is shown in Algorithm 1.

From the above, it can be seen that enhancement
of the intensity channel and linear restoration are the

Fig. 1 Overview of the proposed method. Orange boxes: methods. Blue boxes: input or output images of each stage.
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Algorithm 1 WGIF-based color image enhancement method
Begin

1) Load original RGB color image S(x, y), convert to HSI color model, select intensity image SI(x, y).
2) Enhance intensity image

Compute and process illumination component
� Use WGIF to estimate illumination component of intensity: SILi(x, y) = aiSIi(x, y) + bi

Adaptive brightness equalization
� Correct the illumination component using adaptive gamma function: SILG(x, y) = SIL(x, y))φ(x,y)

� Perform global linear stretching: SILGf (x, y) = SILG(x,y)−min(SILG(x,y))
max(SILG(x,y))−min(SILG(x,y))

Compute and process reflection component image
� Compute the reflection component: SIR(x, y) = SI(x, y)/SIL(x, y)
� Denoise the reflection component using WGIF: SIRHi(x, y) = aiSIR(x, y) + bi

3) Image fusion
Fuse the processed illumination component and reflection component

� Compute the enhanced intensity image: SIE(x, y) = SILGf (x, y)SIRH(x, y)
� Improve the brightness of the fused image using the S-hyperbolic tangent function:

b = 1
mn

m∑
x=1

n∑
y=1

SIE(x, y) SIEf (x, y) = 1
1+exp (−8(SIE−b))

4) Color restoration
� Calculate the brightness gain coefficient: α(x, y) = SIEf (x, y)/SI(x, y)
� Convert the enhanced HSI image to RGB by linear color restoration

R1(x, y) = α(x, y)R0(x, y) G1(x, y) = α(x, y)G0(x, y) B1(x, y) = α(x, y)B0(x, y)
End

key points of our method. Intensity enhancement
mainly consists of illumination estimation, local
brightness enhancement, and image fusion; details
are described below.

3.2 Illumination estimation
In the proposed method, WGIF is applied to estimate
the illumination component. Both the guide and
input images are the intensity image SI , and the
output q̂i is the estimated illumination component,
denoted SIL:

SILi(x, y) = q̂i(x, y) = akSIi + bk, ∀i ∈ wk (2)
where ak and bk are linear coefficients. The loss cost
function is

E(ak, bk) =
∑

i∈wk

[
(akSIi + bk − pi)2 +

ε

ΓSI
(i)

a2
k

]
(3)

where ε is a regularization factor penalizing large
ak, which is the criterion for a flat patch or a high
variance area. An edge-aware weighting ΓSI

(i) is
defined in the local window wk centered on pixel i as
follows:

ΓSI
(i) =

1
N

N∑
i′=1

σ2
I (i) + ζ

σ2
I (i′) + ζ

(4)

where I is the guidance image, σ2
I (·) is the variance

of I in a 3 × 3 local window, and N is the number of

pixels; ζ is a constant selected to be (0.001L)2 and
L is the dynamic range of the input image; i′ ranges
over all pixels of the image.

For a pixel i in a high variance region with
large texture variation and rich information, the
corresponding edge weight ΓSI

(i) is large, giving a
smaller regularization term ε

ΓSI
(i) in Eq. (3), so image

edges are well preserved. If pixel i is in a flat area,
the edge weight ΓSI

(i) is small, and ε
ΓSI

(i) is large,
giving more smoothing.

Thanks to the adaptive adjustment of the
regularization term, results of WGIF are more stable
than for GIF. Estimating the illumination component
of the image by WGIF not only better preserves edge
details in the image, but also avoids artifact edges
in the image, and the reflection component can be
also calculated more accurately. Nevertheless, the
computational complexity of WGIF is the same as
for GIF: O(N).

In the classic retinex algorithms, Eq. (1) is
transformed into the logarithmic domain, and
multiplication is replaced by addition. This can
simplify the calculation, but may cause the loss
of gray information in the image. Therefore, the
reflection component is SIR obtained directly from
the estimated illumination component SIL according
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to Eq. (1):
SIR(x, y) = SI(x, y)/SIL(x, y) (5)

3.3 Adaptive brightness equalization
To avoid loss of gray information, the proposed
method does not directly remove the illumination
component in the logarithmic domain, but corrects
the illumination component. The brightness of the
estimated illumination component SIL is often very
low, so the proposed method uses adaptive gamma
correction [49] to correct SIL, which maps the input
dark color in a narrow range to a wider range,
correcting the illumination component SILG:

SILG(x, y) = SIL(x, y)φ(x,y) (6)

φ(x, y) =
SIL(x, y) + a

1 + a
(7)

a = 1 − 1
mn

m∑
x=1

n∑
y=1

SIL(x, y) (8)

where SILG(x, y) is the corrected illumination
component, and m, n are the height, width of the
original image, respectively. φ(x, y) is the gamma
correction function, and parameter a is adaptively
derived from the mean gray value of SIL.

It can be seen from Eqs. (6)–(8) that the parameters
of gamma correction can be adaptively adjusted
by the values of the illumination component in
the proposed method. The intensity values are
obviously enhanced in dark regions, while in bright
regions, enhancement is suppressed. Thus, details
are enhanced in dark areas, while over-enhancement
does not occur in bright areas. The adaptive gamma
brightness correction curve is shown in Fig. 2: y = xr

is the gamma correction function, r = (x + a)/(1 + a)
is the parameter of the gamma function, and a =
1 − ∑n

i=1 xi is the mean of input x.
After adaptive gamma correction, the dark area of

the image is effectively enhanced, and the dynamic
range of the image is also compressed, so the contrast
of the image is reduced. It is necessary to enhance
the global contrast of the brightness-adjusted image.
Thus the corrected illumination component SILG is
stretched linearly to obtain the result image SILGf .

SILGf (x, y) =
SILG(x, y) − min(SILG(x, y))

max(SILG(x, y)) − min(SILG(x, y))
(9)

where min and max are the minimum and maximum
pixel values in image SILG respectively.

Fig. 2 Adaptive gamma correction curve and alternatives, including
parameter a fixed to a = 0.7 and a = 1.4.

3.4 Image fusion
Noise must be removed to avoid its amplification
before image fusion. Since noise mainly exists in the
reflection component SIR, the reflection component
SIR obtained by Eq. (5) is processed by WGIF, giving
the denoised reflection component is SIR.

SIRH = q̂SIRi
= aiSIR + bi (10)

Then, the processed illumination component SILGf

is multiplied by the denoised reflection component
SIRH to give the fused intensity image SIE .

SIE(x, y) = SILGf (x, y)SIRH(x, y) (11)
Finally, the S-hyperbolic tangent function [50] is used
to improve the brightness of the fused image SIE ,
and the enhanced intensity image SIEf is obtained.

SIEf (x, y) =
1

1 + exp(−8(SIE − b)) (12)

b =
1

mn

m∑
x=1

n∑
y=1

SIE(x, y) (13)

where b is the mean intensity of SIE , and m, n are
the height and width of SIE , respectively.

3.5 Color restoration
After the above steps have given the enhanced
intensity image, it is necessary to re-convert it
to RGB to provide the final enhancement output.
Therefore, in order to avoid the color distortion
caused by inconsistent increase of RGB channels [51],
the brightness gain coefficient α [51–53] is calculated
from the original and enhanced intensity images using
a linear method as follows:

α(x, y) = SIEf (x, y)/SI(x, y) (14)
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Then, α is used to convert the enhanced image back
to RGB, preserving linear proportions of the original
and enhanced color images in the RGB channels. The
linear color restoration process is performed using:⎧⎪⎪⎨

⎪⎪⎩
R1(x, y) =α(x, y)R0(x, y)
G1(x, y) =α(x, y)G0(x, y)
B1(x, y) =α(x, y)B0(x, y)

(15)

where the RGB channels of the original and
enhanced color images are denoted [R0, G0, B0] and
[R1, G1, B1], respectively.

4 Experiments and discussion
In order to verify the effectiveness of proposed
method, experiments on illumination estimation,
reflection denoising, and image enhancement were
carried out. MATLAB 2019b was adopted for
programming, and a computer with an eight-core,
Intel 3.6 GHz CPU with 8 GB RAM, running on
Windows 10, was used.

4.1 Illumination estimation
In order to verify the effectiveness of WGIF in
estimating the illumination component, we used GF,
BF, GIF, and WGIF to estimate the illumination and
reflection components of an image. The results are
shown in Figs. 3 and 4.

Figure 3 illustrates some examples of the
illumination estimated by different image filters. GF
results in blurring at the step edge, which would
lead to halos. The edge preserving effects of BF
and GIF are better than for GF, but many details
unrelated to light are also preserved. In the WGIF
result, the strong edges are well preserved while
weaker textures are smoothed. Therefore, a more
accurate illumination component can be obtained
using WGIF than for the other filters.

Figure 4 shows resulting illumination and reflection
components obtained using GIF (Fig. 4(b)) and
WGIF (Fig. 4(c)) on the intensity image SI in
Fig. 4(a). The illumination component estimated by
GIF preserves more texture detail, so there are few
details in the reflection component. In comparison,
the illumination component estimated by WGIF is
clear at the step edge, while more details are preserved
in the reflection component.

4.2 Reflection denoising
To verify whether reflection component denoising
affects the enhancement results, comparisons of
the final image were made with and without
denoising; experimental results are shown in
Fig. 5. Figures 5(a)–5(e) show the original image,
the reflection component, the denoised reflection
component, the result image without denoising,

Fig. 3 Illumination component estimated by GF, BF, GIF, and WGIF.
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Fig. 4 Illumination and reflection components estimated by GIF and WGIF for the I channel in HSI color space.

Fig. 5 Results with and without reflection component denoising.

and the result image with denoising in turn. It
can be seen that there is significant noise in the
reflection component because the original image was
taken under low illumination. After denoising the
reflection component using WGIF, most noise in the
ground and the entrance to the right hand building is
removed; the final result after denoising is obviously
better than the result image before denoising.

4.3 Image enhancement
4.3.1 Data and methods
In this paper, we use low-light color images and
grayscale images with uniform and non-uniform
illumination showing different scenes as test data.
To ensure the diversity of data sources, we randomly
selected various public datasets of color images from

NASA Research Center, LIME-Data (low-light image
enhancement data) [54], DICM (digital camera data)
[55], and MEF (multi-exposure image fusion data)
[56]. For enhancement of grayscale images, Face1
and Face3 were used from the CMU-PIE dataset,
and Face2 and Face4 from the YaleB dataset. In our
work, we are only interested in illumination, so we
just select Face2 and Face4 with same pose (P00)
and different lighting (0◦–77◦) from the YaleB face
dataset.

We compare our method to various traditional
and deep learning-based methods, including MSR
[40], MSRCR [41], CLAHE [9], NPE [43], Liu
[45], retinexNet [35], GladNet [34], and KinD [36]
for colour enhancement, and for grayscale image
enhancement, we use SSR [39], MSR [40], and
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CLAHE [9] as comparators. To ensure the fairness
of the experiments, the relevant methods were
downloaded from the authors’ websites, and default
parameters in the authors’ articles were used in the
experiments. The parameters for our method were
set as follows: window radius r = 5, regularization
factor ε = 0.12, ζ = 0.065536 in WGIF.

4.3.2 Subjective evaluation
Figures 6 and 8 respectively show the results of
the proposed method and the traditional methods
for uniform and non-uniform low-illumination color
images. Figure 7 shows close-ups of the images in
Fig. 6. Figure 9 compares results of the proposed
method and deep learning-based methods. Due to
the limitation of space, only representative results
are shown.

It can be seen that the brightness enhancement
effect of the MSR algorithm is distinctive: MSR
algorithm overenhances the image, resulting in loss

of detail in brighter areas, the occurrence of strong
noise, and obvious haloing in the step edge (the sky
in the Tower image of Fig. 6, the clouds in the Girl
image of Fig. 8). Compared to MSR, the MSRCR
algorithm improves brightness and preserves the color.
However, the contrast of the enhanced image is low
and some details are lost. Moreover, MSRCR is
subject to the most severe haloing (the chandelier
in the Coffee House image of Fig. 6, the candle
wick in the Candle image of Fig. 8). Although the
CLAHE algorithm provides appropriate brightness
enhancement and is close to the true color, it appears
blurred with unnatural color in dark and detailed
areas (the wooden floor in the Factory image of
Fig. 6, the idol of the Madison image in Fig. 8). The
enhanced images of NPE, Liu [45] and our proposed
method are obviously better than others in terms of
visual effects, and the images are more natural and
realistic. However, some of the images enhanced by
NPE are too vivid in color and the noise is amplified,

Fig. 6 Comparison of the proposed method to traditional methods on low illumination color images with uniform light. Leftmost column:
original image, named in the left corner and close up area (see Fig. 7) indicated in the red box.
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Fig. 7 Close-ups of selected areas in Fig. 6.

resulting in the loss of detailed information and severe
haloing (the robot arm in the Robot image of Fig. 6,
the wall and light in the Factory image of Fig. 6). The
enhanced image of Liu’s method has natural colors
and effectively removes noise, but has some blurred
details (the distant tall buildings in the Apartment
image of Fig. 6, the stone gate in the Eiffel Tower
image of Fig. 8).

Figure 9 shows that the retinexNet algorithm
effectively improves the overall brightness of the
image, but noise is obviously amplified after
enhancement, resulting in serious color distortion
and a poor visual effect. Compared to retinexNet,
the brightness of GladNet and KinD algorithms is
better, and the details of dark areas are clear, but
the color of the enhanced image is unsaturated and
the overall contrast is low.

Further considering the detail in Fig. 7, it can
be seen that our proposed method adaptively
improves the local brightness and contrast, effectively
enhancing the dark area, with well-preserved detail
in bright areas. In addition, the halo problem is also
avoided, noise is not significantly amplified, and the
color of the enhanced image is vivid and natural.
However, detail enhancement is poor when the light
is extremely non-uniform and the dark area is too
dark (the bookshelf in the Cadik image of Fig. 8).

Figures 10 and 11 are the results of low illumination
grayscale image enhancement with uniform and non-
uniform lighting, respectively. Figure 12 is a close up
of the Face1 image in Fig. 10. It can be seen that
the SSR algorithm improves the brightness of images
under uniform illumination, but its effect is poor
with amplified noise under non-uniform illumination.
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Fig. 8 Comparison of the proposed method to traditional methods on low illumination color images with non-uniform lighting.

Fig. 9 Comparison of the proposed method to deep learning-based methods.
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Fig. 10 Low illumination grayscale image enhancement with uniform
light.

Fig. 11 Low illumination grayscale image enhancement with non-
uniform light.

The MSR algorithm overenhances the image, thus
decreasing contrast, and some details are lost. A
noticeable halo appears in the sharp edge (see Fig. 12),
and noise is very obvious. The enhanced image of
CLAHE has clearer details of the face, but its tones
are uneven with halos at the edges. In comparison,
the proposed method improves both brightness and
contrast, resulting in a bright and clear image. For
images under very non-uniform lighting, however, the
enhancement effect in dark areas is still limited.

Figure 13 shows the 30th scanline of pixels for image
Face1 processed by the aforementioned algorithms.
It can be seen that the pixel intensity values in
the original image are the lowest. Hopefully, they
are improved significantly after processing by SSR,
MSR, CLAHE, and the proposed method. Among
them, MSR algorithm improves the brightness values

most, but the scanline is flattest, meaning the image
contrast is the lowest. SSR and CLAHE algorithms
have poor smoothing effects in the low frequency
region: the denoising effect is poor. The proposed
method improves the intensity values significantly in
the high frequency region, while in the low frequency
region they are well smoothed. Thus the details in
the dark areas are presented and noise removed. In
addition, brightness is moderately improved by the
proposed method.
4.3.3 Objective evaluation
In this section, objective criteria including information
entropy, brightness, contrast, mean gradient, edge
intensity, and the Std×Gray [53] are used to
objectively evaluate the different enhancement
algorithms. To calculate Std×Gray, each image is
divided into several non-overlapping blocks of the
same size, the average deviations and average gray
of all blocks are calculated, and the product of the
two averages is Std×Gray. The greater its value, the
higher the quality of the image.

In order to evaluate color images, the indicators
ΔB [53], ΔC [53], and ΔH [57] are used to measure
rates of change of brightness, contrast, and hue,
calculated as follows:

ΔB =
Mean(Iout) − Mean(Iin)

Mean(Iin)
(16)

ΔC =
Var(Iout) − Var(Iin)

Var(Iin)
(17)

ΔH =
∣∣∣∣Mean(Hout) − Mean(Hin)

Mean(Hin)

∣∣∣∣ (18)

The objective evaluation results of for color and
grayscale image enhancement in low illumination
environment are shown in Tables 1–3. Bold fonts
represent the best result in each group of experiments.
ΔH for CLAHE is indicated by “\”, as CLAHE
processes only the intensity channel in HSI and keeps
the hue change ratio close to 0.

Fig. 12 Enhancement detail for Face1.
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Fig. 13 Intensity across the 30th scanline of Face1 result image.

It can be seen that compared to other algorithms,
the information entropy, ΔC, and Std×Gray of the
proposed method are obviously superior, while the
results for ΔB, ΔH, average gradient, and edge
intensity of color images are optimal or close to
optimal on most images. The proposed method
not only retains rich detail but also has good color
fidelity while significantly improving brightness and
contrast. The color images processed by MSR,

MSRCR, and retinexNet have larger ΔB, average
gradient, and edge intensity, and the image brightness
is significantly improved to show more details in
dark areas, but ΔH is generally too large and
color bias is more serious. The color fidelity of
NPE and Liu [45] algorithms is relatively good, but
the detailed performance ability, brightness, and
contrast improvement are slightly inferior to the
proposed method and MSRCR. The brightness of the
grayscale images processed by the proposed method
is lower than that of the MSR, but the visual results
show that just increasing brightness can lead to
overenhancement instead of better results.

Table 4 shows the average time for processing
low-illumination images in the LTSM dataset using
the above algorithms. The average time to process
each image by the proposed method is longer than
that for MSR and CLAHE, but significantly shorter
than for MSRCR, NPE, Liu’s method, and deep
learning-based methods, although running the latter
on the GPU can significantly reduce their processing
time. Combined subjective results with objective
analysis, the overall enhancement effect of MSR
and CLAHE is acceptable, NPE and Liu’s method

Table 1 Objective quality evaluation of different enhancement methods for low illumination color images with uniform light

Method
Indicator

Information entropy ΔB ΔC ΔH Average gradient Edge intensity Std×Gray(×104)

Tower/apartment

Original 6.64/5.44 \ \ \ 3.69/8.04 32.48/63.78 9.72/3.69
MSR 6.68/7.29 2.09/3.80 -0.09/0.70 0.0016/0.0600 4.86/11.77 41.09/88.58 24.09/27.10

MSRCR 7.12/6.27 1.18/4.94 0.61/0.11 0.0199/1.4140 8.53/10.49 74.39/83.24 34.80/22.13
CLAHE 7.07/6.67 0.67/0.96 0.13/0.57 \ 5.11/12.10 67.67/94.05 13.14/11.72

NPE 6.73/7.25 0.74/2.33 -0.06/0.49 0.0214/0.0005 5.77/15.15 48.55/113.66 14.79/20.17
Liu [45] 6.99/6.63 1.11/1.62 0.19/0.82 0.0011/0.0932 5.89/13.37 50.98/104.89 21.51/17.42

retinexNet 6.84/7.36 1.30/3.14 -0.34/0.09 0.0038/0.0084 13.72/20.94 76.74/140.78 15.05/18.04
GladNet 7.19/7.12 1.02/1.77 0.33/0.83 0.0459/0.0309 7.66/12.32 57.86/96.97 24.21/18.29

KinD 7.05/7.22 1.01/1.81 -0.15/0.50 0.0299/0.0823 8.23/10.62 64.63/90.35 17.28/14.94
Ours 7.37/7.49 1.13/2.88 0.95/1.84 0.0013/0.0001 6.47/17.35 56.41/134.99 37.24/43.47

Robot/factory

Original 5.77/6.03 \ \ \ 2.42/4.08 24.67/33.47 6.43/2.26
MSR 5.57/6.84 4.33/1.54 1.01/-0.51 0.3250/0.0350 8.12/9.17 68.49/66.06 16.55/39.33

MSRCR 7.14/7.40 4.59/0.92 1.32/-0.36 3.4170/0.0680 7.35/10.83 68.86/77.37 17.59/38.96
CLAHE 6.91/7.13 0.64/1.12 0.75/1.94 \ 4.64/9.55 47.21/75.43 17.89/14.24

NPE 7.00/6.91 1.85/1.36 -0.08/0.76 0.0010/0.0123 4.61/10.85 44.86/75.67 19.23/9.41
Liu [45] 6.73/7.12 1.75/1.75 -0.16/1.63 0.0016/0.0470 3.70/7.39 36.45/64.88 17.72/16.11

retinexNet 6.85/7.06 2.25/2.33 -0.23/0.69 0.0060/0.0179 5.76/17.53 51.84/111.91 20.28/11.64
GladNet 7.02/7.55 1.45/2.61 0.38/3.86 0.0479/0.1644 4.22/11.61 42.03/86.73 22.93/36.36

KinD 6.98/7.23 1.18/2.21 0.09/2.81 0.0227/0.0425 4.68/7.08 47.77/64.99 15.84/27.36
Ours 7.24/7.50 1.05/2.72 1.91/5.69 0.0023/0.0360 5.02/15.06 51.44/114.67 36.91/57.97

Coffee house

Original 4.26 \ \ \ 1.44 12.42 9.28
MSR 5.55 2.82 -0.07 0.0400 4.83 32.98 31.29

MSRCR 6.22 3.98 -0.44 0.6200 4.50 33.64 26.26
CLAHE 5.45 0.31 -0.08 \ 2.88 22.27 10.94

NPE 5.68 1.22 -0.41 0.0300 4.45 29.59 12.77
Liu [45] 5.91 1.27 -0.12 0.0190 2.01 19.05 19.18

retinexNet 6.12 2.43 -0.38 0.0053 7.33 44.12 18.34
GladNet 6.00 0.82 0.14 0.1100 2.94 23.08 18.39

KinD 6.21 1.27 -0.08 0.1790 2.25 22.67 19.15
Ours 6.30 1.18 0.48 0.0200 4.31 35.31 33.60
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Table 2 Quality evaluation of different enhancement methods for low illumination color images with non-uniform light

Method
Indicator Information entropy ΔB ΔC ΔH Average gradient Edge intensity Std×Gray(×104)

Effiel/girl

Original 6.19/7.14 \ \ \ 8.10/8.82 65.19/67.01 6.92/30.77
MSR 7.18/7.31 2.90/1.59 0.47/-0.58 0.6500/0.0351 12.84/9.09 95.47/65.46 33.9/34.06

MSRCR 7.09/7.45 3.32/0.92 0.29/-0.36 2.6400/0.0694 13.45/15.34 108.42/114.49 30.84/38.92
CLAHE 7.19/7.62 0.93/0.30 0.47/-0.07 \ 13.29/12.44 106.57/92.87 19.26/38.49

NPE 6.92/7.48 0.82/0.37 -0.23/-0.22 0.0100/0.0002 11.20/11.47 87.72/85.07 10.03/34.32
Liu [45] 7.31/7.53 1.36/0.83 0.45/-0.25 0.1600/0.0093 13.02/13.75 102.68/97.99 23.46/44.26

retinexNet 6.98/7.60 2.59/0.83 -0.20/-0.46 0.0290/0.0182 15.95/17.84 114.95/122.76 11.85/36.40
GladNet 7.40/7.62 2.45/0.38 1.04/-0.06 0.3809/0.0386 12.14/10.23 97.23/79.27 23.41/40.37

KinD 7.44/7.66 2.31/0.62 0.57/-0.26 0.3518/0.0293 9.54/12.21 86.09/98.06 19.57/40.27
Ours 7.60/7.69 2.00/0.62 0.74/0.16 0.0400/0.0076 14.52/14.81 116.33/111.65 38.95/62.14

Madison/room

Original 5.75/6.01 \ \ \ 5.79/2.97 45.82/25.92 3.22/2.72
MSR 6.28/7.32 3.94/3.96 1.45/2.62 1.1100/0.1642 11.36/8.68 86.02/69.37 35.23/47.24

MSRCR 7.04/7.38 4.03/3.77 1.52/1.78 0.9500/0.3200 13.54/9.98 107.25/83.72 35.77/36.18
CLAHE 6.89/7.04 1.03/1.04 1.23/1.06 \ 11.51/6.78 89.76/56.76 14.80/11.64

NPE 7.26/7.31 2.13/2.15 0.97/1.65 0.0041/0.0043 15.18/8.18 112.44/66.86 19.91/22.31
Liu [45] 7.21/7.03 1.71/1.91 1.07/0.95 0.0194/0.0352 11.41/5.55 89.43/50.67 18.20/15.21

retinexNet 7.31/7.45 3.01/3.16 0.31/1.55 0.0988/0.0142 20.11/12.73 135.88/93.71 16.99/27.89
GladNet 7.42/7.68 2.42/2.85 2.18/2.45 0.2669/0.0328 12.35/8.03 98.32/68.40 32.47/34.72

KinD 7.25/7.46 1.80/2.35 1.27/2.30 0.1819/0.0593 10.55/6.39 91.27/58.97 19.65/29.95
Ours 7.21/7.68 2.78/3.26 3.87/3.31 0.0139/0.0031 16.88/8.73 131.89/74.37 60.99/50.79

Cadik/candle

Original 5.85/5.90 \ \ \ 2.99/1.14 24.99/10.48 13.83/4.52
MSR 7.33/7.02 2.75/3.09 -0.01/0.12 0.2500/3.2500 6.21/2.44 42.23/18.86 52.57/19.52

MSRCR 7.28/7.34 2.71/3.15 -0.08/0.15 0.7377/5.2600 7.33/4.21 53.27/33.77 35.80/24.57
CLAHE 6.73/6.53 0.62/0.42 -0.08/0.06 \ 5.48/2.49 42.05/20.84 19.77/6.88

NPE 7.31/6.67 1.31/1.73 0.23/0.03 0.0041/0.2500 6.94/2.61 47.99/19.85 22.42/12.47
Liu [45] 7.03/6.74 1.25/1.80 0.07/0.02 0.0043/0.0750 4.43/1.53 36.40/14.87 34.39/12.63

retinexNet 7.36/6.55 1.72/2.28 -0.39/-0.32 0.0858/0.0266 11.09/3.53 68.04/24.39 24.00/9.68
GladNet 7.28/7.09 1.06/1.92 0.59/0.55 0.1701/0.5919 5.20/2.37 41.31/19.99 44.89/19.94

KinD 7.33/6.94 0.99/1.66 0.18/0.01 0.3553/0.2000 4.18/1.79 37.60/18.27 32.71/12.40
Ours 7.38/7.46 1.90/1.99 0.53/1.04 0.0034/0.0036 7.01/2.94 52.53/25.23 72.24/28.57

Table 3 Quality evaluation of different enhancement methods for low illumination grayscale images

Method

Indicator
Information entropy Brightness Contract Average gradient Edge intensity Std×Gray(×104)

Face1/Face2

Original 6.11/6.62 48.94/65.59 20.36/25.58 5.24/2.97 44.71/27.78 2.03/4.29

SSR 6.13/6.64 126.09/117.55 50.10/42.08 12.72/4.88 108.32/45.70 31.65/20.82

MSR 5.99/6.18 204.16/205.43 38.49/25.04 9.22/3.07 71.65/27.74 30.24/12.88

CLAHE 7.39/7.41 105.52/103.98 46.72/42.00 13.88/4.99 126.27/51.91 23.03/18.34

Ours 7.48/7.78 143.91/128.97 65.16/63.77 15.94/5.22 139.81/54.04 70.33/52.45

Face3/Face4

Original 6.79/6.32 64.06/46.69 71.73/46.81 14.20/2.76 118.31/26.11 39.26/10.23

SSR 6.72/6.42 74.31/65.00 74.75/60.69 14.79/3.51 122.64/33.29 41.52/23.94

MSR 6.28/6.08 163.32/156.26 53.13/53.59 13.27/3.58 96.32/33.50 46.09/44.87

CLAHE 7.05/7.21 93.22/74.28 62.74/61.77 13.50/4.02 121.48/44.19 36.69/28.34

Ours 7.16/7.33 100.20/116.85 90.45/82.17 16.32/4.75 137.18/46.46 81.96/78.90

Table 4 Average running time of different enhancement methods on LIME dataset (in second)

Method
Traditional method (CPU) Deep learning-based method (CPU/GPU)

Ours (CPU)
MSR MSRCR CLAHE NPE Liu [45] retinexNet GladNet KinD

Time 0.3614 3.4013 0.2732 15.2111 35.6210 3.3114/0.4819 9.1196/1.7376 6.6036/2.5538 0.6024

produce good results, but the algorithm complexity
is high, requiring much time to process each image.
Deep learning-based methods have high computing
resource requirements, and their effects are moderate.
Our proposed method can not only obtain better

results, but also take less time to process the image.
The efficiency of the color model conversion

algorithm is compared on the LTSM dataset in
Fig. 14. Obviously, the efficiency of the linear color
restoration algorithm is higher than that of the
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Fig. 14 Time comparison between linear and non-linear color
recovery methods.

non-linear color restoration algorithm. On the whole,
the proposed method in this paper improves the
brightness and contrast of images appropriately, and
the enhanced image has excellent hue retention,
natural and vivid color, and can show more details,
while being highly efficient.

5 Conclusions
A novel low and non-uniform illumination image
enhancement method based on WGIF is presented
in this paper. WGIF is adopted to estimate
illumination and remove noise, effectively overcoming
problems such as halo defects, detail loss, and
noise amplification. To avoid color distortion,
images are processed in the intensity channel of
the HSI color model, and a linear color restoration
algorithm is adopted, which not only ensures the
color is undistorted but also helps to achieve higher
efficiency. To prevent the loss of gray information, the
proposed method does not eliminate the illumination
component directly in the logarithmic domain.
Instead, it adaptively improves the brightness
according to the illumination component, which
effectively avoids overenhancement of bright areas.
Our experimental results show via subjective and
objective evaluation that the proposed method can
efficiently and effectively enhance both color and
gray images with low illumination. Nevertheless, if
the illumination is very uneven, the enhancement
effect of local dark regions is limited. Thus, further
research is needed in future.
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