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Abstract The technique of facial attribute manipula-
tion has found increasing application, but it remains
challenging to restrict editing of attributes so that a
face’s unique details are preserved. In this paper, we
introduce our method, which we call a mask-adversarial
autoencoder (M-AAE). It combines a variational
autoencoder (VAE) and a generative adversarial
network (GAN) for photorealistic image generation.
We use partial dilated layers to modify a few pixels
in the feature maps of an encoder, changing the
attribute strength continuously without hindering
global information. Our training objectives for the
VAE and GAN are reinforced by supervision of face
recognition loss and cycle consistency loss, to faithfully
preserve facial details. Moreover, we generate facial
masks to enforce background consistency, which allows
our training to focus on the foreground face rather than
the background. Experimental results demonstrate
that our method can generate high-quality images with
varying attributes, and outperforms existing methods
in detail preservation.

Keywords face attribute manipulation; generative
adversarial network (GAN); variational
autoencoder (VAE); partial dilated lay-
ers; photorealism

1 Introduction
The task of facial attribute manipulation aims to
edit facial attributes shown in an image, e.g., hair
color, facial expression, age, and so on. It has a wide
range of applications, such as data augmentation and
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age-invariant face verification [1–4]. Essentially, this
is an image generation problem. With the advent of
generative adversarial networks (GANs), the quality
of generated images has improved over time [5, 6].
The family of GAN methods can be mainly divided
into two categories: one with noisy input [7, 8], and
the other conditioned on input images [9–11]. Our
method falls into the second category, aiming to
change facial attributes in the input image while
preserving high-frequency detail.

Normally, a neural network generates result im-
ages by manipulating all pixels of the input image.
However, unlike the style translation task [12, 13],
the attribute manipulation task is more challenging
due to the restriction of only modifying some image
features while keeping others unchanged (including
the image background). In this paper, we improve
the quality of such manipulated images in three ways:
concentrating attribute manipulation, preserving
facial details, and the photorealistic mechanism.

The manipulation method aims to concentrate
attribute manipulation, i.e., focus on modifying the
target attributes while keeping common features
unchanged. One simple choice to achieve this goal
is to use a conditional GAN framework [7, 14],
which concatenates the input image with a one-hot
attribute vector encoding the desired manipulation.
Another option is to directly learn the image-to-image
translation with respect to attributes. CycleGAN [15]
learns such a translation rule from unpaired images
with a cycle consistency constraint. However, such
global transformations can neither guarantee common
feature preservation, nor make continuous changes in
attribute strength.

Although achieving promising results, the above
methods have a common drawback: there is no
mechanisms to preserve facial details, i.e., to keep
unique facial traits while editing whole images. Non-
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targeted features beyond the background may still
be changed, which is undesirable. We especially note
the importance of keeping the background unchanged:
in practice it is often observed to change along with
the foreground face. This suggests some efforts of
facial attribute manipulation are wasted on irrelevant
regions. Moreover, the post-process of overriding
generated background with the original by means of
a background mask is undesirable, as it needs careful
handling along the boundaries to avoid visible seams.

The realism of the generated image is one of the
most important aspects of the image generation
algorithm, including the fidelity of facial features,
the clarity of the image, and so on. Since the
features are varied, different methods have been
proposed to fit special tasks. The method of
Ref. [14] provides a partial remedy by feeding the
face images before and after attribute manipulation
into a face recognition network and penalizing their
feature distance. This provides a good way to
preserve facial identify information. The recent UNIT
method [16] uses generative adversarial networks
(GANs) and variational autoencoders (VAEs) for
robust modeling of different image domains. A
cycle consistency constraint is also applied to learn
the domain translation effectively. The method
of Ref. [17] proposes to only learn the residual
image before and after attribute manipulation by
using two transformation networks, one for attribute
manipulation and the other for the dual operation.
However, the methods mentioned above focus on a
single task.

In this paper, we train a neural network to
simultaneously manipulate the target attributes of
a face image and keep its background untouched.
Firstly, we propose a partial dilated layer to modify
the minimum number of feature map pixels from our
encoder. This allows us to maximally preserve global
image information and enables attribute change
in a continuous manner. Secondly, we feed the
background mask into the network to coherently
penalize differences before and after facial attribute
manipulation. Finally, our method is based on the
VAE–GAN framework [14, 16] for strong modeling of
photorealistic images. To avoid loss of unique facial
details during attribute editing, we employ a face
recognition loss and a cycle consistency loss (to ensure
image consistency after two inverse manipulations).

We call the proposed method a mask-adversarial
autoencoder (M-AAE). Our experimental results
demonstrate its effectiveness.

In summary, the contributions of this paper are:
(i) partial dilated layers to modify a few pixels in
our learned feature maps, to realize continuous mani-
pulation of facial attributes, (ii) a mask-adversarial
autoencoder strategy to ensure faithful facial detail
preservation as well as background consistency, and
(iii) combining the GAN, VAE, mask loss, ID loss, and
cycle consistency loss to generate the photorealistic
facial images. The proposed method achieves state-
of-the-art performance in photorealistic attribute
manipulation.

2 Related work
2.1 Facial attribute manipulation
Considerable progress has been made in facial at-
tribute manipulation [18–23]. Most methods of
facial attribute manipulation are based on generative
models. There are two main groups of methods:
ones using an extra input vector [9, 14, 24, 25], and
the others that directly learn the image-to-image
translation along attributes [15, 16]. The first group
often takes an attribute vector as guidance for mani-
pulating the desired attribute. The CAAE method [14]
concatenates a one-hot age label with latent image
features for feeding into the generator for age
progression purposes. StarGAN [9] takes a one-hot
vector to represent domain information for domain
transfer. However, such global transformations based
on external codes generally do not preserve facial
details well after attribute manipulation. Methods
in the second group only operate in image domains
and learn the image-to-image translation directly.
CycleGAN [15] and the UNIT method [16] are
such examples, supervised by a cycle consistency
loss that maps the manipulated image back to the
original image. Ref. [17] further proposed to only
learn the residual image before and after attribute
manipulation, which can be easier and lead to
higher-quality image prediction. Unfortunately, these
methods still have difficulty in manipulating the
target attribute while keeping others unchanged.

2.2 Image generation algorithm
The VAE [26] and GAN [5] nowadays provide the
backbone for image generation tasks such as image
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reconstruction [27–30], image synthesis [8, 31, 32],
and image translation [33–35]. In a VAE, the encoder
maps images into a latent feature space which is then
mapped back to the image domain through a decoder.
The latent space contains global features extracted
from input images. The more recent GAN consists
of generator and discriminator networks which play
a min–max game. Specifically, the generator tries to
synthesize images to fool the discriminator, which in
turn distinguishes synthetic images from real ones.
GAN-based methods have shown remarkable results
in image generation, and many improvements have
followed. DCGAN [31] trains stably in a purely
convolutional setting, while CGAN [7] generates
visually compelling images conditioned on extra input
such as class labels. CycleGAN [15] and the UNIT
method [16] introduce a cycle consistency loss to
learn between image domains with even unpaired
images. A recent trend is to combine a GAN with
a VAE for robust image modeling. For example,
Ref. [19] combines GAN and VAE by collapsing the
VAE decoder and GAN generator into one. One
can tweak the generated images by manipulating
features in the latent feature space. Such a joint
VAE–GAN model is also applied in Refs. [14, 16] for
image translation. Recently, high quality generation
of human face images uses GANs [36, 37]. Kim et
al. [38] proposed utilizing a GAN to transfer a full
3D head expression from a source actor to a target

actor in video. We use the VAE–GAN model for
facial attribute manipulation, and propose a working
method to modify latent VAE features so as to change
facial attributes but not irrelevant details.

3 Methodology

3.1 Goals
Our goal is to manipulate the attributes of an input
face image and generate a new one, e.g., to change the
hair color from black to yellow. However, it is difficult
to generate photorealistic images as well as to keep the
face faithful: the generated image should look real and
its unique details should be preserved, including the
background. To address these challenges we propose
an M-AAE method.

3.2 Framework overview
Our M-AAE method is based on a VAE–GAN
framework, as shown in Fig. 1. The encoder–decoder
De(En(x)) of the VAE for input image x is treated as
the GAN’s generator G(x). The discriminator D(·) of
the GAN tells the generated image G(x) apart from
real images. To manipulate the attributes of the input
image x, we use a simple but effective mechanism to
uniformly modify the encoded features En(x) by a
relative value ±δ, which is fed into the decoder to
control the attribute strength present in the output
G+(x)/G−(x).

Fig. 1 Framework of our M-AAE method. The encoder–decoder De(En(x)) of the VAE for input image x is treated as the generator G(x) of
the GAN, with a discriminator D(·) telling fake from real. We manipulate attributes by modifying the encoded features En(x) by a relative
value ±δ, trained using image pairs with opposite facial attributes. The encoded features En(x) come from the partial dilated layer. Training is
supervised by 5 loss functions to both preserve facial details and ensure background consistency. We test only using the generator G(·).
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We propose partial dilated layers to manipulate the
facial features continuously while preserving the con-
sistency of the global features during manipulation.
Furthermore, a mask-aware method is utilized to
separate the foreground and background of the input
image. Thus, the method can focus on the foreground
images and manipulate the chosen features only in the
foreground, reducing the influence of the background.
Modifying image features by using a small number of
features instead of modifying all pixels of the image
can protect image features. The proposed losses focus
on different aspects, including the identity and age
of the face, the clarity of the image, and so on. The
combination of these losses leads to better image
quality.

3.3 Partial dilated layers for attribute ma-
nipulation

To manipulate facial attributes, rather than take a
one hot attribute vector as in Refs. [9, 14], we choose
to modify the hidden features in our encoder: this
allows us to continuously change attribute strength.
One intuitive way is to uniformly increase or decrease
the responses of the entire feature map by a relative
value δ. We empirically observed a global change in
image tone by doing this. Instead, we propose to only
modify a minimum number of latent feature map
pixels in the CNN whose receptive field covers the
whole image in image domain. Figure 2 illustrates

how to find such a minimum set of pixels in the
partial dilated layer (the last layer of the encoder)
recursively from the bottom layer. In this way, image-
level manipulation can operate efficiently with modest
feature modification. More importantly, we avoid a
huge loss of image information. Our experiments
show the efficacy of information preservation during
attribute manipulation.

In practice, the relative value δ is chosen as half the
value range of the feature map pixels to reverse one
particular attribute (δ ≈ 5 in our scenario). Then the
modified features are fed into the decoder to generate
an output image G+(x) or G−(x) with strengthened
or weakened attribute. Adding δ strengthens the
facial attribute, and subtracting weakens it. We
change the value in the training process (when we
apply the cycle consistency loss) to enforce saving
strength information in it.

3.4 Mask-aware algorithm for facial detail
preservation

In some cases, we observed that the image background
would change along with the foreground face using
the previous attribute manipulation method. This
is not visually pleasing and also suggests some
manipulation efforts are wasted in the wrong regions.
We claim that pasting the original background
around the manipulated face is not ideal: because
pixels in the final image coming from images with

Fig. 2 Receptive fields of the four kinds of partial dilated layers (from bottom to top) of our encoder (K, S, P denote kernel size, stride, and
padding, respectively; see Table 1 for details). The padding in each layer during recursive calculation does not belong to the receptive field. At
bottom right, the global receptive field in raw pixels and modified pixels in the partial dilated layer are shown. Our goal is to find the minimum
number of feature map pixels in the partial dilated layer whose receptive field covers the whole image in the image domain.
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different distributions, they seem incompatible. More
importantly, it is better to mask out the background
at the algorithm level to focus our manipulation
efforts on the foreground face. As a side effect, the
background remains unchanged. Here we propose a
mask loss to learn to change the foreground facial
attribute and keep the background the same in a
coherent way. We generate a facial mask (and thus
background mask as well) by using FCN [39], and
penalize the background difference between the input
x and generated result G(x):

Lmask = ‖Mask(G(x)) − Mask(x)‖1 (1)
where Mask(·) is the masking operator using the
generated background mask. Note that the back-
ground mask of input x is shared for both input x

and output G(x). We do not generate a separate
mask for G(x) which leads to an inconsistent penalty.

3.5 Photorealism mechanism
3.5.1 VAE loss
The VAE consists of an encoder that maps an image x

to a latent feature z ∼ En(x) = q(z|x) and a decoder
that maps z back to image space x′ ∼ De(z) = p(x|z).
The VAE regularizes the encoder by imposing a prior
over the latent distribution p(z), where z ∼ N (0, I) is
often assumed to have a Gaussian distribution. The
VAE also penalizes the reconstruction error between
x and x′, and has loss function:

LVAE = λ1KL(q(z|x)‖p(z))
− λ2Ex∼pdata(x)[log p(x′|x)] (2)

where λ1 and λ2 balance the prior regularization
term and reconstruction error term, and KL is the
Kullback–Leibler divergence. The reconstruction
error term is actually equivalent to the L1 norm
between x and x′, since we assume p(x|z) has a
Laplacian distribution.
3.5.2 GAN loss
The GAN loss is introduced to improve the photo-
realism of the generated image. Since the encoder–
decoder of the VAE is treated as the GAN generator,
we use the input image x and generated image
G(x) from the VAE as the real and fake images for
discriminative training. The GAN loss function is

LGAN = Ex∼pdata(x)[logD(x)]
+ Ex∼pdata(x)[log(1 − D(G(x)))] (3)

The weights of the generator and discriminator are
updated alternatively in the training process.

3.5.3 Cycle consistency loss
Other than identity consistency, the consistency of
facial characteristics is an important constraint for
attribute manipulation. Since it is hard to keep track
of those characteristics without supervision, we adopt
cycle consistency, following Refs. [15, 16]. Specifically,
we impose the cycle consistency constraint along
the dimension of attribute. We apply two inverse
transformations G+(·) and G−(·) with attribute
strength +δ and −δ to an image x, and ensure the
resulting image G−(G+(x)) resembles the input x.
The cycle consistency loss is defined as
Lcycle = ‖G−(G+(x1))−x1‖1 +‖G+(G−(x2))−x2‖1

(4)
where x1 and x2 are a training image pair with
opposite attribute labels, and we impose the cycle
consistency constraint for both of them. The L1 norm
is used to measure image distance.
3.5.4 ID loss
For facial attribute manipulation, it is not good
enough to make the generated image look photo-
realistic. Considering an extreme case where one
perfectly realistic generated image does not keep
any unique traits about the face, it simply does
not look alike the original face at all. This is not
acceptable for faithful face manipulation. To preserve
personal information as much as possible, we use a
face recognition network [40] to penalize the shift of
face identity, which is one of the most important facial
features. Specifically, we extract identify features
from images before and after attribute manipulation,
and enforce them to be close to each other. The ID
loss function is then defined as

LID = ‖FID(x) − FID(G(x))‖2 (5)
where FID(·) is the feature extractor from the face
recognition network.

3.6 Overall training procedure
Our overall training objective is defined as

min
G

max
D

α1LVAE + α2LGAN

+α3LID + α4Lcycle + α5Lmask (6)
where the weights of α1–α5 balance the relative
importance of the 5 loss terms. The encoder–decoder
forming the GAN generator are trained jointly, while
the GAN discriminator is trained alternately. Further
details of the networks may be found in Table 1.
The face recognition network is only used to extract
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Table 1 Network architecture of our encoder, decoder, and GAN discriminator (number of channels, kernel size)

Encoder En(·) Decoder De(·) GAN discriminator D(·)
Conv2d (64, 7×7) + LeakyReLU Residual Block (512, 1×1) Conv2d (64, 3×3) + LeakyReLU

Conv2d (128, 3×3) + LeakyReLU Residual Block (512, 1×1) Conv2d (128, 3×3) + LeakyReLU

Conv2d (256, 3×3) + LeakyReLU Residual Block (512, 1×1) Conv2d (256, 3×3) + LeakyReLU

Residual Block (512, 1×1) Conv2d (256, 3×3) + LeakyReLU Conv2d (512, 3×3) + LeakyReLU

Residual Block (512, 1×1) Conv2d (128, 3×3) + LeakyReLU Conv2d (1024, 3×3) + LeakyReLU

Residual Block (512, 1×1) Conv2d (64, 7×7) + LeakyReLU Conv2d (1, 2×2) + Sigmoid

features and its weights are frozen. We use the first 11
layers of the recognition network [40] as the feature
extractor.

4 Experiments
In this section, we first introduce the dataset used
and implementation details. Our M-AAE is compared
against state-of-the-art methods both qualitatively
and quantitatively to show our advantage. An
ablation study is conducted to demonstrate the

contribution of each component of our framework.

4.1 Dataset and implementation details
4.1.1 Dataset
We evaluated methods on the CelebA dataset [41]. It
contains 202,599 facial images of 10,177 celebrities.
Images are cropped and re-scaled to 348 × 348 pixels.
Each image is labeled with 40 binary attributes,
including hair color, age, gender, and pale skin. We
chose 7 typical attributes (see Fig. 3) for our attribute
manipulation experiments. For each attribute, we

Fig. 3 Facial attribute manipulation results for the 7 typical attributes from the CelebA dataset. We compare the state-of-the-art results of
(a) residual image GAN, (b) UNIT, (c) StarGAN, (d) AttGAN with (e) ours (M-AAE). In each case, the attribute manipulated is indicated in
(f), with key in Fig. 4.
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Fig. 4 Manipulated attributes.

selected 1000 test images and train with the remaining
images in the dataset.
4.1.2 Implementation
During training, the face identification network is
a model pretrained using VGG16, which is fixed in
the process. Other network weights are initialized
from a zero-mean normal distribution with standard
deviation 0.02. The learning rate is fixed at 0.0001.
The loss weights in Eq. (6) are α1 = 0.1, α2 = 10,
α3 = 20, α4 = α5 = 80, and the weights in Eq. (2) are
λ1 = 0.1, λ2 = 80. For training, we use a batch size
of 64 and the ADAM [42] optimizer, with a learning
rate of 0.0001, betas of 0.5 and 0.999. We treat multi-
labels as independent single labels. We separately
train one network for each attribute using its available
positive–negative sample pairs. During testing, we
sequentially edit multi-labels, so for example we
first change the hair color using the corresponding
network, and use the generated result as the input
to another network that edits the skin color. This
avoids enumerating all label pairs, which is infeasible.
In inferencing, only the generator (encoder–decoder)
is used for image generation with varying attributes.
4.1.3 Training
Besides training with the VAE and GAN loss func-
tions, we also use the face recognition loss and cycle
consistency loss for faithful preservation of facial
details. The face recognition module extracts features
from images before and after attribute manipulation,
and penalizes their feature discrepancy to preserve
identity information. The cycle consistency loss
aims to preserve other unique facial information by
penalizing the difference between the input image x

and the generated image after two inverse attribute
transformations G+(x) and G−(x). To ensure

background consistency, we further generate facial
masks to penalize the background difference between
input x and output G(x).
4.1.4 Testing
We simply feed the input image x through our
generator G(x) = De(En(x)), changing the relative
attribute strength δ in the latent features En(x).

4.2 Qualitative evaluation
Figure 3 compares our M-AAE method qualita-
tively with state-of-the-art methods: residual image
GAN [17], UNIT [16], and StarGAN [9]. The
recent residual image GAN and StarGAN achieve
top performance in image translation and attribute
manipulation. The UNIT method is similar to
ours in using the VAE–GAN framework and cycle-
consistency constraint. We can see that all these
methods produce artifacts or lose personal features
to some extent. Their performance is usually
good on single attribute manipulation or multi-
attribute manipulation when the target attributes
are correlated (e.g., pale skin and gender). However,
the performance deteriorates in more complex sce-
narios. In particular, residual image GAN totally
collapses while generating images with spectacles.
The backgrounds generated by previous methods are
indistinct and its color is changed. In particular,
residual image GAN and UNIT generate an unseen
background when we change the spectacles attribute.
In comparison, our M-AAE method (rightmost,
bottom row) consistently produces photorealistic and
faithful images with different attributes.

4.3 Ablation study
Figure 5 compares our various baselines to demon-
strate the contribution of our major components.
Comparing results in Figs. 5(a) and 5(b), we see
that modifying a meaningful subset of feature map
pixels can better preserve global face information
(e.g., color tone) than modifying the entire feature
map. Note the two baselines already use the cycle
consistency loss in our VAE–GAN framework, whose
efficacy is validated in similar work like UNIT [16].
Hence in Fig. 5(c), we further show that adding an ID
loss can enhance identify preservation while editing
other attributes. When we use an extra mask loss
in Fig. 5(f), the background is made sharper and
the foreground facial details are also enhanced with
higher fidelity. Comparing results in Figs. 5(d)–5(f),
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Fig. 5 Comparison of our various baseline in manipulation of the 7 attributes from CelebA dataset. From top to bottom: (a) modify entire
feature map, (b) modify feature map sparsely, (c) (b)+ID loss, (d) (c)+mask loss (concat, raw data), (e) (c)+mask loss (concat, feature),
(f) (c)+mask loss (ours). The manipulated attributes for each method are shown in the attribute chart (e).

our method performs better than concatenation ones
simply modifying a sparse set of feature map pixels.

4.4 Image fidelity evaluation
To evaluate the fidelity of our generated face images,
we directly use our GAN discriminator to output a
fidelity score from 0 to 1. Note the GAN discriminator
is trained to distinguish generated fakes from real
images, and the higher the fidelity score the better.
Table 2 compares the results of state-of-the-art
algorithms. As the number of changed attribute
increases, the fidelity score decreases, and the gap
between different methods increases. The more
attributes we change, the more changes the image
undergoes. Our joint loss boosts GAN performance,

Table 2 Image fidelity scores, 0 to 1, for different methods for the
multi-attribute manipulation task for the CelebA dataset

Number of attributes 1 2 3 4

Residual image GAN 0.483 0.325 0.330 0.250

UNIT 0.478 0.344 0.374 0.356

StarGAN 0.382 0.344 0.316 0.249

M-AAE (ours) 0.521 0.507 0.398 0.365

generating images with higher fidelity scores, both
on single and multi-attribute manipulation tasks.

4.5 User study
We performed a user study by inviting volunteers to
evaluate the attribute manipulation results. Given
a set of images generated by different methods,
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the volunteers were instructed to rank the methods
based on perceptual realism, quality of transferred
attribute, and preservation of personal features. The
images generated by different methods were shuffled
before being presented. 30 volunteers evaluated
results with the 7 attributes chosen from CelebA.
The average rank (between 1 and 7, then converted
to percentages) for each method was calculated
and is shown in Table 3. We considered from 1
to 4 manipulated attributes, leading to gradually
increasing difficulty. The results demonstrate the
effectiveness of the proposed method over other
alternatives with respect to the rank, especially in
the multi-attribute manipulation cases. Our ID loss
and mask loss help improve the results steadily due
to their preservation of foreground facial details and
background scene.

4.6 Analysis
We show the capability of continuous manipulation
of attribute strength in Fig. 6. We achieve this by
adjusting the attribute strength between [−5, 5] in latent
features, which is more flexible than prior methods that
take a fixed attribute vector as an input. Moreover, the
results in Fig. 7 demonstrate the generalizability of our

Table 3 Average AMT perceptual evaluation ranking different
methods on the multi-attribute manipulation task on CelebA. The top
cell compares state-of-the-art methods, while the bottom cell compares
several baselines for our method

Num of attributes 1 2 3 4

Residual image GAN 100% 95.8% 63.9% 33.3%

UNIT 16.7% 87.5% 55.5% 22.9%

StarGAN 33.3% 62.5% 52.3% 75.0%

Modify full feature map 8.33% 83.3% 47.2% 75.0%

Modify part feature map 100% 91.7% 75.0% 75.0%

ID loss 100% 70.8% 41.7% 62.5%

ID + mask loss (ours) 100% 95.8% 77.8% 77.1%

method. Our method performs well on the examples
with a rich combination of attributes, successfully
preserving unique facial details and the background in
the generated image with a different attribute.

5 Conclusions and future work
In this paper, we propose a mask-adversarial autoen-
coder method to manipulate human facial attributes.
Our method extends the VAE–GAN framework, and
we propose an effective method to modify a minimum
number of pixels in the feature maps of an encoder,
which allows us to change the attribute strength
continuously without hindering global information.
The proposed network is specifically designed to
maintain facial features and image background con-
sistency. We introduce a face recognition loss and
a cycle consistency loss for faithful preservation of
face details, and also propose a mask loss to ensure
background consistency. Experiments show that our
method can generate highly photorealistic and faithful
images with varying attributes. In principle, our
method can be extended to deal with other image
translation tasks such as style transformation.
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Fig. 6 Continuous manipulation of attributes of blond hair (first row) and mouth open (second row) by our method.
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Fig. 7 Further facial attribute manipulation results using our M-AAE method. The manipulated attributes for male (first row) are the same
as those in Fig. 3, while the manipulated attributes for female (second row) are shown at top-right.
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J.; Niessner, M.; Pérez, P.; Richardt, C.; Zollhöfer, M.;
Theobalt, C. Deep video portraits. ACM Transactions
on Graphics Vol. 37, No. 4, Article No. 163, 2018.

[39] Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional
networks for semantic segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 3431–3440, 2015.

[40] Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face
recognition. In: Proceedings of the British Machine
Vision Conference, 41.1–41.12, 2015.

[41] Liu, Z. W.; Luo, P.; Wang, X. G.; Tang, X. O. Deep
learning face attributes in the wild. In: Proceedings
of the IEEE International Conference on Computer
Vision, 3730–3738, 2015.

[42] Kingma, D. P.; Ba, J. Adam: A method for stochastic
optimization. In: Proceedings of the International
Conference on Learning Representations, 2015.

Ruoqi Sun was born in Weihai, Shan-
dong Province, China, in 1993. She
received her B.S. degree in digital media
technology from Shandong University in
2015. She is currently pursuing a Ph.D.
degree in the Department of Computer
Science and Engineering in Shanghai Jiao
Tong University. Her current research

interests include facial attribute manipulation, semantic
segmentation, and image classification.

Chen Huang received his Ph.D. degree
in electronic engineering from Tsinghua
University, Beijing, China, in 2014. He
was a postdoctoral fellow in the Robotics
Institute of Carnegie Mellon University,
and also in the Department of Informa-
tion Engineering, the Chinese University
of Hong Kong. He is currently a Research

Scientist at Apple Inc. His research interests include machine
learning and computer vision, with a focus on deep learning
and efficient optimization. He has published more than 20
papers in top tier conferences such as CVPR, ICCV, ECCV,
NeurIPS, and ICML.

Hengliang Zhu received his M.S. de-
gree from Fujian Normal University,
China, in 2010. He is now a Ph.D. can-
didate in the Department of Computer
Science and Engineering, Shanghai Jiao
Tong University. His current research
interests include saliency detection and
face alignment.

Lizhuang Ma received his B.S. and
Ph.D. degrees from Zhejiang University,
China, in 1985 and 1991, respectively.
He is now a Distinguished Professor
and Head of the Digital Media Tech-
nology and Data Reconstruction Lab at
the Department of Computer Science
and Engineering, Shanghai Jiao Tong

University. He has published more than 200 academic
research papers. His research interests include computer
aided geometric design, computer graphics, scientific data
visualization, computer animation, digital media technology,
and theory and applications of computer graphics and
CAD/CAM.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http:
//creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095. To
submit a manuscript, please go to https://www. editorial-
manager.com/cvmj.


