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Abstract Traditional image resizing methods usually
work in pixel space and use various saliency measures.
The challenge is to adjust the image shape while
trying to preserve important content. In this paper we
perform image resizing in feature space using the deep
layers of a neural network containing rich important
semantic information. We directly adjust the image
feature maps, extracted from a pre-trained classification
network, and reconstruct the resized image using neural-
network based optimization. This approach
leverages the hierarchical encoding of the network, and
in particular, the high-level discriminative power of its

novel

deeper layers, that can recognize semantic regions and
objects, thereby allowing maintenance of their aspect
Our use of reconstruction from deep features
results in less noticeable artifacts than use of image-
space resizing operators. We evaluate our method on
benchmarks, compare it to alternative approaches, and

ratios.

demonstrate its strengths on challenging images.

Keywords image retargeting; reconstruction; deep

seam carving; image resizing

1 Introduction

The media resizing problem had been widely studied
in the last decade and many content-aware methods
have been developed [1-13]. The main objective of
these methods is to change the size of the input while
maintaining the appearance of important regions such
as salient objects, and reducing visual artifacts. These
two objectives can be seen as two quality measures
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that are sometimes contradicting. The first measures
how semantically close the resulting image is to the
original by preserving its important parts, and the
second measures the resemblance of the result to a
natural image by reducing artifacts (see Ref. [14]).

Most resizing techniques first employ a saliency
detection method to decide which regions of the
image are more important. Then, an image resizing
operator is used to create the resized image while
preserving these regions, hoping to introduce few
artifacts. Both of these steps are still challenging.
Firstly, common saliency measures account mostly for
low-level features, while disregarding important high-
level semantics. Secondly, current resizing operators
do not directly account for the second quality measure
of maintaining the natural look of the resulting image.

In this work we present deep network resizing
(DNR) as a method that deals with the two
aforementioned challenges using neural networks.
First, we exploit the ability of pre-trained networks
to analyze and encode both low-level and high-level
features to identify important parts of the image.
In addition, we employ a back-propagation aided
optimization method to directly preserve both the
structures of important regions and the natural
appearance of the result. This results in a reduction
in artifacts compared to those arising in traditional
approaches, and integrates analysis and synthesis
based on neural networks in an image resizing
technique.

The key idea of DNR is that instead of applying
image resizing operators to the pixels of the image,
they are applied in feature space, to the feature maps
of deep layers of a pre-trained convolutional neural
network (see Fig. 1). This draws content removal
to regions of the image that are semantically less
important. We show that DNR discards insignificant
parts, which in turn, preserves the semantic encoding
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Fig. 1 Conventional resizing approaches act in image space (blue
arrow), while our deep-resizing approach (red) applies resizing in the
semantic feature space. We map image Z to feature maps F(Z) in
feature space using a CNN. Then, we resize in feature space to create
F(O). Lastly, we use back propagation optimization to reconstruct O.
In other words, instead of reconstructing the original image Z from
F(Z) (green arrow), we reconstruct the resized image O from F(O),
which is the hypothetical mapping of O to feature space.

of the input image. The operators we demonstrate our
approach with are seam carving [1] in combination
with warping.

Finally, after the image is reconstructed by
optimization we perform a refinement step. In this
step, a grid-sampler layer is used, allowing only
changes in the mapping of pixels and not their color,
while optimizing using the same objective. This step
increases the natural appearance of the resulting
image, by further reducing artifacts.

Our main contributions are:

e utilizing the semantic guidance of deep layers of
a CNN for image importance in resizing,

e applying seam-carving in feature-space instead of
image-space,

e reducing artifacts in reconstructed images by
optimization using grid-sampling, and

e deep network resizing, a method for image resizing
using neural networks.

2 Related work

2.1 Image processing techniques

Considerable work on content-aware media retargeting
has been carried out in the field of image processing,
and it is common to classify it into discrete methods
[1, 3, 5, 8] and continuous methods [2, 4, 6, 7, 9, 10]
(refer to Refs. [15, 16] for comprehensive coverage of
content-aware retargeting).

2.1.1 Discrete methods

Seam carving was introduced by Avidan and Shamir
[1], performing retargeting by repeatedly inserting
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or removing connected paths of pixels called seams,
passing through low importance regions of the image.
Later, Rubinstein et al. [3] improved seam carving
using a look-forward energy map, which measures
the amount of energy introduced by seam removal
Pritch et al. [5] introduced shift-
maps for pixel re-arrangement, and formulated a

or insertion.

graph-labeling problem for various image editing
applications, including retargeting. Rubinstein et
al. [8] combined different retargeting operators by
finding sequences in a multidimensional space of
retargeting operations on the input media.

2.1.2  Continuous methods

Wolf et al. [2] introduced a map that is determined
by three importance measures in order to devise a
system of linear equations that defines a mapping
of source pixels into their corresponding location
in the target image. Wang et al. [4] computed
a deformed mesh-grid by assigning a scale factor
for each quad in the grid.
penalties that encourage their solution to linearly
scale quads of high-importance and allow higher
deformation of low-importance quads. Krahenbiihl
et al. [7] used an energy map, consisting of many

They proposed two

automatic constraints and user defined constraints
on key frames, in order to compute non-uniform pixel
accurate warping on video streams. Guo et al. [6]
defined a saliency-based triangle mesh representation,
and used a constrained mesh parametrization problem
to compute the retargeting solution. Wu et al. [9]
detected symmetric parts in the image and then
applied summarization operations to the symmetric
regions and warping to non-symmetric parts. Panozzo
et al. [10] used an axis-aligned representation which
reduces optimization complexity when using a 2D
parametric representation of mesh deformation. The
authors [10] later found the deformation parameters
by solving a simple quadratic problem with linear
constraints.

2.2 Deep learning techniques

The superiority of neural networks in solving
computer vision tasks, including image recognition
[17-20], segmentation, and detection [21-24], has
already been established in the last few years.

One possible approach using deep learning for
retargeting would be to gather as a training set pairs
of original and retargeted images and use supervised
learning. However, it is very difficult to gather such a
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Fig. 2 Given an input image (a), our deep network resizing method first adjusts the size of the feature maps of a deep neural network (b),
while protecting important semantic regions, and then reconstructs a retargeted image using iterative optimization (c—f). Note how starting
from a linear scaled image (c), the iterations manage to reconstruct the shape of the bicycle (d—f), which is the main semantic object in the

image, while minimizing artifacts.

set as each image must support numerous retargeting
sizes and in fact, there are no ground-truth results or
methods to use. Even manual retargeting by different
artists often produces different results.

Deep features were previously incorporated in
image retargeting. Liu et al. [25] extracted salient
patches to mimic the human gaze shifting path
when viewing a scene. These patches are then
used to construct a deep feature representation of
the input image, which are used in a grid-based
retargeting approach. Song et al. [26] adjusted photos
to square format by using a deep multi-operator,

which consists of scaling, cropping, and seam carving,.

However, human intervention is required. Kajiura
et al. [27] used reinforcement learning to find the
optimal retargeting order when using a multi-operator
approach. In other work, Esmaeili et al. [28] proposed
an automatic thumbnail generation network that does
not utilize a saliency map. Unlike our method, their
method generates the final image by cropping the
original image, which can be limiting in extreme
retargeting cases.

Cho et al. [11] proposed a weakly and self

supervised learning method for image retargeting.

It uses the semantic encoding of pre-trained networks
and a decoder that produces an attention map. The
attention map is then combined with a shift-layer
in order to obtain the retargeted image. Unlike our
DNR approach, Cho et al. trained their network on
a given dataset, where the objective is to minimize
structural damage while maintaining the detection

score of the image, as given by the pre-trained CNN.

In contrast, DNR performs analysis per input-image,
and presents a solution that uses the strengths of
deep learning both in understanding image semantics,

and in correcting the resulting images. DNR utilizes
different retargeting operators to produce a feature
representation of the target image (see comparison
in Fig. 12).

Independently from our work, Lin et al. [29]
recently proposed to perform retargeting in feature
space. However, there are two fundamental differences
between their work and ours. Firstly, they preform
retargeting by sampling columns of deep feature maps
at a constant rate, while we can combine several deep
retargeting operators. Further, the authors adapt
methods from Ref. [30] and perform warping on the
input image using PatchMatch [31], while our image
is reconstructed via a pure synthesis procedure (see
comparison in Fig. 13), and we further apply grid-
sampling to reduce artifacts.

In a more recent paper, Shocher et al. [12] and
Shaham et al. [13] proposed a generative adverserial
network (GAN) method for synthesizing images that
can be considered a type of retargeting. The authors
learn the patch distribution of the input image,
and use this to generate images with similar patch
statistics as the input image. However, the resulting
image can have a very different structure to the
original image and still contain artifacts.

3 Method

3.1 Preliminaries

Conventional image resizing applies pixel manipulation
to the image. In this work, we propose a new approach,
where resizing is applied in feature space, and
the results are mapped back into image space by
reconstruction (see Fig. 1). Our key idea is to leverage
deep features of a pre-trained CNN, which encode
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valuable latent semantics. By applying the resizing
operators in feature space, we create target feature

maps, where semantic information is kept unharmed.

To reconstruct the output image we use optimization
that iteratively minimizes the difference between the
target feature maps and the actual feature maps of
the optimized image.

Let Z be an input image of size (h,w). Assuming
we use a pre-trained deep-network with L layers, we
define the activation values of all neurons in level 4
applied to input Z as the ith feature map F;(Z). F(Z)
is the set of all feature maps for 1 < ¢ < L:

FI) ={A@),...,F(D)}
Each feature map F;(Z) has a certain number of
channels, and a spatial dimension that depends on
the size of the input Z. We denote by (hf,w?,c;)
the height, width, and number of channels of the ith
feature map.

Given the target size (h',w’), the task of resizing
in image-space is to obtain an image O of size
(W', w’), while maintaining important regions in Z and
reducing artifacts as much as possible. The resizing
task in feature-space is defined as obtaining a set of

target feature maps:
={F,..., Fr.}

such that for each level ¢, 7/ matches the dimension
of the i-th feature map F;(Q) of the resized image
O, while preserving the important regions of the
original image’s feature maps F;(Z). That is, the
dimensions of F! are (h¥,w®, ¢;) but it contains the
most important information in F;(Z).

To obtain the actual resized image O we assume
that F' = F(O), the hypothetical mapping of O to
feature space, and reconstruct O by minimizing the
difference between the output feature maps and the
target feature-maps using back-propagation. Since
important regions in various levels are maintained in
the target feature maps F’, the reconstructed image
O preserves them as well. Lastly, to maintain the
natural appearance of the target image and reduce
artifacts, we apply a grid sampler [32] that further
optimizes the constructed image.

An overview of DNR is provided in Fig. 3. The
input image (top left) is fed into a pre-trained
CNN (top right) and its feature maps are extracted.
Applying deep resizing operators to selected layers
yields the target feature-maps, indicated in yellow

in the figure. The target image (bottom left) is
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Pre-trained CNN

Fi(T)

_Fa(T)  F(D)

Target feature-maps

Linear scale

(— L, loss <—+

F1(0)

- F2(0) _F(0)

Result

Fig. 3 Deep Network Retargeting overview. (a) The input image
(left top) is fed into a pre-trained CNN (right top) and its features
are extracted. Later, deep retargeting techniques are applied on
the extracted features to produce the target feature-maps (yellow).
The output image synthesis (left bottom) is achieved by iteratively
minimizing the difference between the target feature maps and the
actual feature maps of the output image. (b) Snapshots of the output
image throughout the iterations: note how the semantic object is
reconstructed.

constructed by optimization carried out using back-
propagation: the result image is iteratively fed into
the CNN, and an Ls-loss is computed by comparing
the feature-maps of the optimized image and the
target feature maps. This loss is back-propagated
through the network to alter the target image during
several iterations (depicted in a series of snapshots
at the bottom of Fig. 3).
optimizes the constructed image.

A grid sampler further

In the following, we only discuss narrowing the
width of the image by applying feature resizing.



Image resizing by reconstruction from deep features 457
Similar arguments can be extended to any other —
3.2 Feature map resizing e

Layer 1 Layer 2 Layer 3

In our resizing method we adapt seam carving [1] and
apply it to the feature maps F(Z). Guided by the
feature maps F(Z), we conservatively utilize seam-
carving while avoiding semantic regions. Doing so
may lead to partially retargeted image, so we also
perform a final resizing step on the reconstructed
image using grid-warping [2]. This combination
allows us to harness the capabilities of the two
operators: seam-carving enables the removal of
homogeneous unimportant regions, and grid-warping
deforms regions according to their importance.

3.2.1 Deep seam carving

Seam-carving in image-space finds vertical seams as
minimal one-pixel wide connected-paths using some
importance map of the input image. Removing one
vertical seam results in reducing the image’s width by
one pixel. Therefore, multiple vertical seams are removed
to reach the desired width for the output image.

We extend the seam-carving algorithm by defining
seam-carving on a feature-map instead of an image.
Firstly, instead of removing pixels from an image
we remove neurons from the CNN layer of the
feature-map. Secondly, because a feature map
contains multiple channels, we define seam removal as
removing all neurons of the chosen seam in the same
spatial location for all channels of the feature map.
Thirdly, to find minimal seams in feature-maps we
use a hierarchical method to define the importance-
map of each layer. Starting from the deepest, lowest
resolution, level which contains high-level semantic
information, we move to shallower, higher resolution,
layers that contain low-level features and refine the
seams from previous layers consistently.

The basic importance-map of layer | at position
(,7) is defined as the Lo-norm of the activation of
the neurons along the channel axis:

Si(i,5) = 1F(T) (@, 5. %) |l (1)
where * denotes all values along the channel axis (see
Fig. 4).

We start by applying seam-carving to the deepest
layer L in the hierarchy using the importance-map
defined in Eq. (1). This map is useful since deep-layer
neurons have higher activation in semantic regions.
As we move up the hierarchy from level [ to level

Fig. 4 The basic importance maps of Eq. (1) in different layers of
the network. Yellow regions indicate high importance, while blue ones
indicate low importance.

[ — 1, we keep track of all seams that were removed
from Fy(Z). Let SC; = {s1,...,8,} be the set of all
chosen seams at level [ (an example of one chosen
seam is indicated in yellow in Fig. 5(a)).

To find the minimal seams on F;_1(Z), we consider
a modified importance map M S;_; at level [ — 1 that
reduces the importance of regions that are part of
the receptive field of the deep seams in level [. This
attracts the seams at level [ — 1 to pass through the
same regions and be consistent with the seams of
level [ (see Fig. 5). The new map is given by the
following equation:

ds € SC; s.t.
.o - Sl—l(i7j)7 J—-.l_l(Z’j) ls.ln
MS;_1(3,j) = the receptive
field of s
Si—1(4,7), otherwise

(2)
where a € [0,1) is the scaling factor. Thus, the
importance map in the finer layers inherits information
from deeper layers, implicitly constraining the selection
of seams in the finer levels (see Fig. 6).

(b) Reducing the importance map as defined in Eq. (2)
(for layer | — 1) in regions where the seams pass

(c) Chosen seams at level | — 1 using
the modified importance

Fig. 5 Deep seam-carving applied hierarchically from layer [ to [ — 1.
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Layer 1

Layer 1
(b) SC
Fig. 6 Deep seam-carving vs. regular seam-carving. (a) Hierarchical
deep seam-carving (DSC) applied on all three layers feature maps
preserves the image’s semantic information. (b) Results of original
seam-carving (SC) using just the first layer feature-map as the

importance map. Note how in this case, seams no longer avoid
important regions.

8.2.2  Grid warping

Grid warping in image space is applied by first
dividing the image into a grid of cells and then scaling
each cell linearly using a different scaling factor. The
scaling factors must adhere to the following two
requirements. Firstly, the total width of the scaled
cells must match the target width w’. Secondly, the
scaling factor of each cell should be proportional
to the cell’s importance. The first requirement
guarantees that the resulting image size will match
the target size, while the second requirement ensures
lower distortion in parts of higher importance.

For image width change, the initial width of each
cell is given by wg and cells are assigned a scaling
factor, o, ; € 0, 1], which specifies by how much each
cell’s width is to be decreased. The actual resizing
is applied using linear scaling: the width of cell (i, )
is reduced by multiplying it by the scaling factor
0;,;- In practice, it is useful to perform grid warping
for width change by splitting the image into column-
cells, defining only one cell in each column and one
scaling factor ;. Otherwise, different cells in the
same column may be distorted differently, which may
lead to jittery results.

To define the importance value p; of each column-
cell i, we aggregate the importance-maps calculated
by Eq. (1) of all layers from the deepest to the first
layer by up-sampling the deeper layer maps to fit the
size of the image. The values are then normalized to

define the scaling factors as
w'
0= —— 3
" we > i )
3.2.83  Deep multi-operator
The combination of deep seam-carving and grid-

warping is done by preventing deep seam-carving
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from removing seams with semantic content. To
achieve this, we terminate seam removal once the next
seam’s total importance is above a given threshold.
However, we keep the same ratio of removed seams
to the original width of the feature map in all layers,
meaning that different numbers of seams are removed
in each layer. Once deep seam-carving terminates,
and the image is reconstructed, we apply grid-warping
to the intermediate resulting image to produce the
final output at the desired size.

3.3 Image reconstruction

Previous works show how to use a pre-trained CNN
to synthesize images using back-propagation, for
example to create images in different styles [33]. We
adopt this approach, and use optimization to map
back the target feature-maps into image-space to
obtain the resized output image. We use the target
feature-maps to reconstruct our desired output by
iteratively applying back-propagation to change the
values of the image by optimization. Note that what
we call the output image is in fact the input image
to the network.

Our initial output image O is set to be a uniform
1D linearly scaled version of the input image Z (see
the Electronic Supplementary Material (ESM) for
comparison to other initialization methods, including
random noise and a seam carved image). This allows
the optimization to fix the distortion created by linear
scaling, and to re-construct the desired output by
iteratively reducing distortion especially in important
regions of the image (see Fig. 2). Thus, we seek
to update O by minimizing the total loss that is
introduced by simple linear scaling:

L
,C:Z)\i' ||]:¢(O)—HH2 (4)

where F/ are the ith layer target feature maps,
and F;(O) are the ith layer feature maps when
the output image is fed into the pre-trained CNN.
Here, Ay, ..
to weight the contribution of each term to the total
loss.

As suggested in Ref. [33], minimizing the loss in
Eq. (4) using gradient descent can produce visually
pleasing images. In DNR, we use the Adam optimizer
[34] to solve Eq. (4).

., Az, are non-negative hyper-parameters

3.4 Image refinement

Reconstruction optimization using back-propagation
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changes the pixel values of the output image O to
minimize the loss function of Eq. (4). This means
that regions defined by the target feature-maps will

most likely be preserved and reconstructed properly.

However, some artifacts such as checkerboard
patterns and noisy pixels still appear in the resulting
reconstructed image. These artifacts appear because
content removed from the original image causes
discontinuities between better-preserved important
regions, and such locations accumulate gradients
more than others (similarly to artifacts created by
deconvolution [35]).

We have developed a novel method that utilizes a
grid-sampler layer G from Ref. [32] to overcome these
artifacts. The grid-sampling layer learns a mapping
from positions of neurons in its input to positions
in the output. Here, we place such a layer as the
first layer of the network, modifying the input to the
network to be G(O) instead of O (see Fig. 7).

We use G only after the initial reconstruction of O
is finalized (Section 3.3). We add the grid-sampler
layer and continue to optimize by using the same loss
function of Eq. (4). However, instead of changing the
pixel values in O, we keep them fixed and optimize
the values of G, the grid-sampler layer itself. In
essence, this allows local shifts and interpolation of
the pixels in O, causing the optimization to push and
interpolate artifacts to near-by edges and overcome
unpleasant checkerboard artifacts (see Fig. 8). The
final output of DNR, i.e., the resized image, is the

1

4

334
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Fig. 7 The refinement procedure. The constructed image (left-top)
after initial reconstruction (Section 3.3) is fed into a grid sampler
optimizing the same Lo loss function. The final output of DNR is the
sampled reconstructed image (left-bottom).

Fig. 8 Refinement examples of six patches before (left) and after
(right) the refinement procedure. Note the checkerboard and other
artifacts before and after the refinement (zoom-in as needed). Further
results can be found in the ESM.

application of the grid-sampler on the reconstructed
image, i.e., G(O).

4 Results

4.1 Setting

In our experiments, we use VGG19 [18], which was
trained on the ImageNet [36] dataset. Throughout
this section, we use selected ReLLU activation and
Max-Pooling activation in VGG19’s layers as our
feature maps F;(Z). block;_conv; denotes ReLU
activation of the jth convolution layer in block i,
and block; _pool denotes pooling activation of block
i. The default configuration of our experimental
results, unless otherwise stated, uses blockq_conuvs,
blocks _convsy, blocks_conuvy, block,_convs, and blocks -
pool as feature maps.

We always remove at least one seam in the deepest
feature map, and remove more seams only if their
importance is within the 20th percentile of the
importance map. The value of the parameters used
in the reconstruction loss (Eq. (4)) are A\; = 1 and
for i > 1, \; = 0. The scaling factor in Eq. (2) is set to
a = 0.5. Finally, the grid size used for warping is 16.

4.2 Importance map effectiveness

The importance map used in the original seam carving
algorithm [1] is based on gradient magnitude of the
image. This map is often used as the base importance
for many other retargeting algorithms as well. In
Fig. 9, we compare the gradient-based importance
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Fig. 9 Visualization of the importance map as seen by Deep Seam
Carving. We show the gradient-based importance map (b) that is
used in Seam Carving [1], and the deep-network importance map used
by Deep Seam Carving (c¢). The deep-network importance map is
more focused on semantic areas, which suggests less distortion to these
regions.

map, and the deep-network importance map we use
for deep seam carving. The deep-network importance
map is derived by summing the importance maps used
by deep seam carving. To visualize the importance
map, we up-sample low-resolution maps to match
the image size. As can be seen, the gradient-based
importance map tends to concentrate on edges and
lacks the ability to capture semantics, while our map
clearly gives higher importance to semantic objects
in the image.

4.3 Feature space versus image space

A possible alternative approach that also uses deep
feature maps would be to apply seam carving in image
space while using the feature maps as importance
maps. Therefore, instead of removing seams from the
feature maps, one can consider removing the same
seams from the input image in order to produce the
output image.

Figure 10 compares this approach to DNR based
on reconstruction. As can be seen, image space
retargeting leads to artifacts due to removing many
seams from the same region. In contrast, in our
DNR method, reconstructing the image leads to
more continuous results, firstly because neighboring
activations in VGGI19 have overlapping receptive
fields, thus affecting several output pixels in the
reconstruction, and secondly, because using a CNN
that trained on natural images tends to generate

photo-realistic images, resulting in reduced artifacts.
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(b) Feature space

(a) Image space

Fig. 10 Removing seams from the input image results in
discontinuous regions (a), while reconstruction using DNR produces
better results (b).

4.4 Reconstruction via deep feature-maps

In Fig. 11, we show the contributions of combining
feature-maps from different levels in Eq. (4). As
can be seen, using feature-maps from multiple levels

improves the quality of the final image. Further
details are provided in the ESM.
4.5 Visual comparison with previous

methods

We compare DNR with recent deep learning based
techniques [11, 29|, and show some results in Figs. 12
and 13. Unfortunately, there is only limited access
to the code of these methods, and we did our best to
still show some side-by-side comparisons with existing
results.

In addition, we use the RetargetMe benchmark
[38] containing a variety of images and the results
of previous retargeting operators on these images.

Input

Fig. 11 Reconstruction using multiple feature-maps from various
levels. In (a) we only use shallow feature-maps in the reconstruction
phase, while in (b) we use both shallow and mid-level feature maps.
In (c) we show that using feature-maps from all levels produces the
best outcome. For convenience, we show three patches (d) that
were cropped-out from the images in (a)—(c), respectively (zoom-in if
needed).
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Fig. 12 50% width scale. The input images (left) are from The Pascal VOC2017 dataset [37]. We compare results of WSSDCNN [11] (middle)
and DNR (right). The results are obtained by setting o = 0.2 and employing Deep Seam Carving to perform 50% of the retargeting task. As

can be seen, DNR better preserves the images subjects (see guidelines).

Fig. 13 50% width scale. (Left) Input image from RetargetMe [38], (middle) results in Ref. [29], and (right) DNR. We use a = 0.2 and only
remove seams if their importance is within the 35-percentile of the importance map. As can be seen, DNR better preserves important regions.
To see this, please notice the original width of the salient subjects and compare them with each of the retargeted results (see guidelines).

We show sample results of DNR compared to Linear
Scaling, Seam Carving [3], Warping [2], and Multiop
[8] in Figs. 14 and 15. As can be seen, DNR better
retains the aspect ratios of semantic regions compared
to the other methods.

Finally, we also demonstrate our method’s ability
in extreme size retargeting in results in Fig. 16.

4.6 User study

To evaluate our DNR method against other
alternative methods we turned to the RetargetMe

benchmark [38] used to compare various methods.

We conducted two forced choice tests comparing our
results side-by-side to an alternative. We showed the
original image before retargeting and asked the user
to choose the image that best preserves the content
of the original image. The order of presentation
was randomly shuffled and the survey forms were

randomly distributed among 112 participants.

Firstly, we chose to compare against the best
performing method, SV [7]. DNR received 55.5% of
the votes when compared to SV (out of 889 votes in
total). Secondly, we compared against the best result
obtained per image over all retargeting methods.
Even in this case, our results received 52.8% of the
votes (out of 956 votes in total). Counting the number
of images for which users preferred our results, we
found that DNR was favored for 42 images (against
25 for SV), and in 37 images (against 29 for Best).

4.7 Semantic preservation

To compare preservation of semantic details as a result

of the retargeting operator, we defined a semantic

score given by

_ ”-7:%(0)“2 (5)
7 (D)l

This score compares the magnitudes of certain deep

VGG-19 layer activation, before and after retargeting.

SS;

Fig. 14 Scaling the width of the input image by 75%. (a) Input image, (b) Linear Scale, (c¢) Seam Carving [3], (d) Warping [2], (e) Multiop [8],

(f) SV [7], and (g) DNR (ours).
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(a) ®) (©)

(@) (o) (1) ®

Fig. 15 Scaling the width of the input image by 50%. (a) Input image, (b) Linear Scale, (c) Seam Carving [3], (d) Warping [2], (e) Multiop [8],

(f) SV [7], and (g) DNR (ours).

Input image

SC Linear scale

Ours

Fig. 16 Stress test of extreme retargeting on images from COCO dataset [39]. The width of the input images (first row) is scaled by 50%,
40%, and 30%. We compare Linear Scale (second row), Seam Carving [3] (third row), and our results (last row). Notice how the important

subject in each image preserves its shape as much as possible.

In particular, we expect that if the retargeting
operator damages semantic regions, then the score
will be lower, since in this case high activation on
the original image will increase the denominator
| Fi(Z)||,, while low activation on the retargeted
image will diminish the numerator || Fz(O)|,. We

used blocks_convy as the feature map F;(-) in Eq. (5).

Table 1 gives the average semantic score per image for

(8) TSINGHUA &) Springer

UNIVERSITY PRESS

the RetargetMe benchmark and different retargeting
operators. Our DNR method received the highest
score.

4.8 Limitations

As with any retargeting method, artifacts may appear
in the resulting image for various reasons, sometimes
simply because there are no unimportant regions in
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Table 1 Average Semantic Score on RetargetMe. The comparison
is made between Manual Crop (CR), Linear Scale (SCL), Streaming
Video (SV [7]), Seam Carving (SC [3]), and Warpping [2]. Further, we
include the average semantic score computed on the best retargeted
images that were chosen in RetargetMe user study (Best)

Method  CR
Avg. SS  68%

SCL SV SC
68% 64% 68%

WARP
65%

Best
65%

DNR
70%

an image. Still, we discuss two causes specific to our
method.

Firstly, VGG19 [18] was trained for the purpose
of object detection, and DNR relies on its ability
to detect semantic regions and objects.
this network does not always succeed in providing

However,

semantic information on important regions. In
addition, the network detects specific features in an
object and can still have low activation on different
regions of important objects. All these could lead to
object distortion in the final results (see Fig. 17).

Furthermore, in some cases, deep-seams constrain
shallow-seams to pass through regions that are
semantically unimportant. These regions may still
contain edges, and removing shallow seams may cause
distortion. However, since our method focuses on
preserving important semantic regions, the possible
artifacts tend to appear in less important regions,
where these distortions are less noticeable.

Another challenge in our method is choosing a good
threshold to switch from seam-carving to warping in
our multi-operator scheme. In particular, we have
seen cases in which further seams could have been
removed while in other cases, our method removes
too many seams (see Fig. 18).

Lastly, the time to produce results using DNR
is still large. On average, it takes between 60—
100 seconds to retarget an image of size 640 x 480.
The speed heavily depends on the reconstruction
optimization process, including the number of
optimization steps and the feature maps included
in Eq. (4). Our method can use similar improvement
techniques for the optimization process as used in

Fig. 17 When the neural network does not recognize important parts
on an image (left), the corresponding deep layer has low activation
(middle). In this case the hand of the woman is not detected and this
leads to unwanted distortion in the output image (right).

Fig. 18 Changing the threshold determining when to switch from
seam carving to warping can lead to different results. In this example,
our automatic results (middle) do not preserve the aspect ratio of the

sheep compared to applying only Deep Seam Carving (right).

style-transfer methods (e.g., Refs. [40, 41]), which
may lead to substantial speedup.

5 Conclusions

We have presented an image retargeting technique
that operates in deep layers of a pre-trained
neural network. The technique utilizes the semantic
information latent in the deep hierarchy to aggregate
on-the-fly an effective importance map. We have
shown the strength of high-level image analysis versus
commonly used low-level feature analysis. In addition,
our technique is based on an optimization procedure
that reconstructs the image from its deep features,
which tends to produce much less visible artifacts.

In this work, we use a specific available pre-trained
network. However, in the future we would like to
consider pre-training a network with a special-purpose
target in mind, so its deep features will be more
relevant to this specific task. Another avenue for
future work is to leverage optimization of the target
image to synthesize new content. This will possibly
be effective in upscaling an image into a very different
aspect ratio.

Electronic Supplementary Material Supplementary
material is available in the online version of this article
at https://doi.org/10.1007/s41095-021-0216-x.
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