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Abstract In recent years, accurate Gaussian noise
removal has attracted considerable attention for mobile
applications, as in smart phones. Accurate conventional
denoising methods have the potential ability to improve
denoising performance with no additional time.
Therefore, we propose a rapid post-processing method
for Gaussian noise removal in this paper. Block matching
and 3D filtering and weighted nuclear norm minimization
are utilized to suppress noise. Although these nonlocal
image denoising methods have quantitatively high
performance, some fine image details are lacking due to
the loss of high frequency information. To tackle this
problem, an improvement to the pioneering RAISR
approach (rapid and accurate image super-resolution),
is applied to rapidly post-process the denoised image.
It gives performance comparable to state-of-the-art
super-resolution techniques at low computational cost,
preserving important image structures well. Our
modification is to reduce the hash classes for the
patches extracted from the denoised image and the
pixels from the ground truth to 18 filters by two
improvements: geometric conversion and reduction of
the strength classes. In addition, following RAISR, the
census transform is exploited by blending the image
processed by noise removal methods with the filtered
one to achieve artifact-free results. Experimental results
demonstrate that higher quality and more pleasant
visual results can be achieved than by other methods,
efficiently and with low memory requirements.
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1 Introduction
Image denoising aims to efficiently recover an original
image x from a noisy measurement y = x + n: y is
the observed noisy image, x is the latent clean image
and n is defined by additive white Gaussian noise
with zero mean and variance σ2

n. Due to the influence
of the environment, different transmission channels,
and other inevitable factors, images are contaminated
by noise in many subsequent image processing tasks,
such as video processing, image analysis, and tracking.
Therefore, over the last few decades, image denoising
has become not only an indispensable step for many
vision applications but also an ideal test bed for
investigating statistical image modeling techniques.

Many researchers have tried to remove noise and
preserve important features of the image such as
fine details, textures, and singularities by applying
image denoising methods based on probability theory,
statistics, partial differential equations, linear and
non-linear filtering, nonlocal self-similarity, sparsity,
and low-rank approximations. Although the mean
filter or averaging filter [1], a linear filter, has been
adopted for removal of Gaussian noise, it over-
smooths images with high noise. Alternatively,
Gaussian noise can be suppressed by exploiting
non-linear filters such as median filtering [1, 2],
weighted median filtering [3], and the well-known
edge preserving bilateral filter [4]. None of these
filters are robust to high levels of noise because they
are performed locally, i.e., the intensity value of each
pixel is replaced by a weighted average of intensity
values of pixels in its neighborhood. Hence, they also
tend to blur edges in the image.

In contrast, non-local means (NLM) [5], a
pioneering nonlocal approach, significantly enhances
image denoising performance. Its basic idea is to
build a point-wise estimate of the image, where each
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pixel is obtained by weighted averaging of pixels
centered at the target patch and pixels centered
at similar patches at different locations in the
image. Block matching and 3D filtering (BM3D)
[6] has recently become a benchmark Gaussian noise
removal method, extending the NLM approach to the
transform domain. The principal idea of BM3D is to
stack similar patches to obtain 3-D groups by block
matching. Hard thresholding and Wiener filtering
are successively employed to attenuate the noise from
the 3-D transformed blocks. In weighted nuclear
norm minimization (WNNM) [7], the vectorized
similar patches that are typically stacked by block
matching are transformed into matrices and noise is
suppressed using low-rank approximations. As these
two methods search for patches at different locations
similar to the reference patch, the performance is
efficiently increased.

Similarly to image denoising, single image super-
resolution (SR) is a popular branch of image
reconstruction, the goal being to perform high
frequency compensation within a short time.
Recently, many SR algorithms have been successfully
advanced to reconstruct the image without losing
the quality of the results. Anchored neighborhood
regression (ANR) [8] is an example-based super-
resolution method in which nearest neighbors are
correlated with dictionary atoms instead of using
Euclidean distance to achieve good quantitative
performance at low execution speed. An improved
variant of ANR [8], A+ [9], is the most efficient
dictionary-based super-resolution method which
builds on the features and anchored regressors from
ANR but full training material is employed as a simple
function [10].

Differing from other external example-based SR
methods, excellent super-resolution quality and speed
are obtained with the use of a deep convolutional
neural network for single image super-resolution
[11] which learns an end-to-end mapping from low
resolution (LR) images to their high resolution (HR)
counterparts. Instead of learning dictionaries for
modeling the patches, the model is implicitly learned
by the hidden convolutional layers in this method.
Although the above SR methods are superior to
image restoration, the computational cost is very
high due to the use of large dictionaries to learn the
mapping. Hence, rapid and accurate image super-

resolution, RAISR [12], has recently been proposed,
giving better performance while being more than one
to two orders of magnitude faster than state-of-the-
art example-based image super-resolution methods.
In RAISR, the LR patches extracted from the initial
interpolated image are divided into hash classes. The
hash parameters are evaluated based on the gradient
of each patch. 864 filters including 4 classes for pixel
type, 3 classes for strength, 24 classes for angle, and
3 classes for coherence are needed to learn the filters.
Therefore, the storage needed of RAISR is quite large,
especially for mobile devices such as smart phones.

To overcome this problem, we propose an
improvement to RAISR: IRAISR. The main idea
is to reduce the number of filters to 18 by upgrading
the hash mechanisms. This involves minimizing
the classes for the gradient angle by geometric
conversion and reducing the classes for gradient
strength. Its performance and runtime are almost
the same as RAISR. This motivates us to apply
the improvement on RAISR to denoising methods,
improving denoising performance while reducing
memory storage requirements.

In this paper, we propose an accurate Gaussian
denoising method followed by IRAISR as a post-
processing step. There are two phases in our method,
a learning phase and a testing phase. In the learning
phase, we initially denoise the image using nonlocal
denoising. Both the patches extracted from the image
by the nonlocal noise removal method and the pixels
from the ground truth are classified into 18 hash
classes with two improvements, including geometric
conversion and reduction of gradient strength. The
filters are learned by a least-squares method based
on these classes. In the testing phase, Gaussian noise
is first suppressed by nonlocal denoising. Patches
extracted from the denoised image are divided
into classes. Differing from Ref. [12], only two
improvements: reducing the number of classes for the
angle by geometric conversion, and reduction of the
number of classes for the strength, are considered to
compute the hash parameters in our proposed method,
we do not consider pixel type. The filtered output is
obtained by utilizing the pre-learned filters from the
learning phase to the patches from the denoised image
in each class and aggregating them. In addition, the
census transform (CT) [12] is employed to blend the
denoised image and the filtered output to protect
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the image structure. Overall, we achieve enhanced
performance and pleasing visual appearance of the
final image by weighted averaging.

The organization of this paper is as follows.
Nonlocal denoising methods such as BM3D and
WNNM, and the theoretical and mathematical
approach of RAISR are briefly explained in Section 2.
Our proposed denoising method, by an improvement
to RAISR, is described in Section 3. Section 4
experimentally compares our proposed method with
competing methods quantitatively and visually.
Finally, we conclude in Section 5.

2 Nonlocal denoising and RAISR
In this section, state-of-the-art nonlocal denoising
methods, BM3D [6] and WNNM [7] will be briefly
explained, along with RAISR, a rapid and accurate
learning-based approach for single image super-
resolution.

2.1 Nonlocal denoising

Both BM3D [6] and WNNM [7] are effective
Gaussian noise removal methods based on nonlocal
self similarity models. Their basic idea is to
search for patches similar to the target in different
locations across the image by block matching. Hard
thresholding and Wiener filtering are utilized to
attenuate noise in the 3-D transformed blocks in
the first and second steps of BM3D. Estimates for
all grouped blocks can be produced by inverting the
3-D transform and returned back to their original
positions. After performing these two operations
on all target patches, the restored image is finally
estimated by aggregating all denoised arrays of each
patch with their relevant weights in both processes.

In WNNM, nonlocal similar patches corresponding
to the target patch are sought across the noisy
image for each local patch by block matching, as
in BM3D [6]. Patch matrices for the noisy image
are obtained by stacking vectorized nonlocal similar
patches from the noisy image. Then, low rank matrix
approximation based on the WNNM model mentioned
in Ref. [7] can be used to suppress noise. The number
of iterations and the patch size are selected according
to noise level when image denoising by WNNM. Note
that the weights obtained by principal component
analysis are sorted in non-descending order since the
singular values have also been arranged in this way.

Finally, the reconstructed image x can be determined
by applying the above procedures to each patch in the
noisy image and returning each patch to its original
location.

2.2 RAISR

2.2.1 RAISR overview
Rapid and accurate image super resolution (RAISR)
[12] is one of the most efficient learning-based single
image super-resolution methods, producing high
quality restoration extremely quickly. The core idea
of RAISR is to boost image quality by employing
pre-learned filters on image patches extracted from
an initial upscaled image. The filters are learned
based on pairs of LR patches and HR pixels. RAISR
classifies patches into 864 classes, combining 4 classes
for pixel type which depends on the upsampling
factor, 3 classes for strength, 24 classes for angle,
and 3 classes for coherence. Thus, 864 filters of size
11 × 11 are needed. The hashing approach allows
image patches to be placed into clusters without using
an expensive clustering method (e.g., k-means [13],
or Gaussian mixture models [14, 15]), reducing the
time cost of this linear filtering. The hash-table keys
are obtained by estimating local gradient statistics.
However, RAISR causes some artifacts such as noise
amplification and halos due to the effects of filtering.
In order to tackle this problem, the CT [16] is utilized
between the initial bicubic interpolated image and
the filtered output based on the Hamming distance.
Important algorithms for implementing RAISR will
be explained next.
2.2.2 Calculation of hash-table keys
The local gradient characteristics of the matrix that
can be used as hash-table keys are evaluated by
eigenanalysis [17]. The nearest neighborhoods of the
k-th pixel is typically a

√
n × √

n patch, with pixels
located at k1, . . . , kn. The local gradient (horizontal
gradient gx and vertical gradient gy) at each is
calculated and placed in an n × 2 matrix:

Gk =

⎡
⎢⎢⎣

gxk1
gyk1

...
...

gxkn
gykn

⎤
⎥⎥⎦ (1)

In addition, we construct the matrix GT
k WkGk

by employing a diagonal weighting matrix Wk, a
separable normalized Gaussian kernel to incorporate
a small neighborhood of gradient samples per pixel.



502 T. Zin, Y. Nakahara, T. Yamaguchi, et al.

From an eigendecomposition of GT
k WkGk, the

gradients’ strength λk, angle θk, and coherence μk

are evaluated by using the larger eigenvalue λk
1 and

the smaller eigenvalue λk
2 and the two eigenvectors

φk
1 and φk

2 related to λk
1 and λk

2 as
λk = λk

1 (2)

θk = arctan
(

φk
1,y

φk
1,x

)
(3)

μk =

√
λk

1 −
√

λk
2√

λk
1 +

√
λk

2

(4)

The three hash-table keys are quantized to compute
hash indices λ, θ, and μ, denoted by

λ =
⌈

λk

Qs

⌉
(5)

θ =
⌈

θk

Qθ

⌉
(6)

μ =
⌈

μk

Qμ

⌉
(7)

where �.� is the ceiling function, and, Qs, Qθ, and
Qμ are the quantization factors for strength, angle,
and coherence, respectively. This quantization uses
3 classes for strength λ, 24 classes for angle θ, and 3
classes for coherence μ to learn the filters in RAISR
[12]. Hence, 216 classes for hash keys are needed after
combining these three quantized parameters.
2.2.3 Global filter learning
In the learning phase of RAISR, we have to learn a
d × d filter h with training database images which
consist of upscaled versions of LR images yi ∈ R

M×N

and the HR images xi ∈ R
M×N , i = 1, . . . , L. L

is the number of images in the training set. The
filter is typically computed by solving a least-squares
minimization problem:

h = min
h

L∑
i=1

‖Aih − bi‖2
2 (8)

where h is the filter in vector notation, with size
d2 × 1. Ai is the matrix of size MN × d2 composed
of the patches of size d × d extracted from the image
yi. bi is the vector of size MN × 1 composed of the
pixels extracted from the image xi, corresponding to
the center coordinates of the patches yi.

In order to control the effort in estimating the filters
for the quite enormous matrix A, the least-squares
minimization problem is solved by RAISR based on
an extension of Eq. (8):

h = min
h

‖Qh − V ‖2
2 (9)

where Q = ATA and V = ATb. The memory
requirements and the computational cost are reduced to
the matrix–matrix and matrix–vector multiplications
described in

Q = ATA =
L∑

i=1
AT

i Ai (10)

and

V = ATb =
L∑

i=1
AT

i bi (11)

where Q is a small d2 × d2 matrix and V is a d2 × 1
matrix.
2.2.4 CT transform
Structural deformations may occur when applying
pre-learned filters to the initial interpolated image due
to their sharpening property. To preserve important
structures, the CT [16] is exploited between the
upscaled image and the filtered image. As illustrated
in Fig. 1, an 8 bit string that represents the local
structure is constructed by Boolean comparisons
between the center pixel and its 3×3 patch neighbors.
Then, we evaluate the Hamming distance to count
the number of bits that changed for each pixel.
Weights can be determined from the number of
changed bits as the change in structure depends on
the Hamming distance. The output image can be

Fig. 1 Census transform.
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estimated by weighted averaging of the interpolated
image and the filtered image. Moreover, a sufficiently
contrast-enhanced output is achieved because of the
consideration in a wide range of frequencies using
this approach.

3 Proposed method
3.1 Background

Even though most nonlocal image denoising methods
accurately suppress Gaussian noise, some fine image
details are degraded due to loss of high frequency
components in the image. In this paper, we propose
an accurate Gaussian noise removal method by
applying IRAISR as a rapid post-processing step
based on an extension of RAISR [12]; it preserves
image details in the denoised image because it can
compensate for distorted high frequency information.
There are two main processes in our method. The
first is to remove noise from the input image to
obtain a denoised image. The second is to enhance
the denoising performance by applying the improved
RAISR to the denoised image. The learning phase
and testing phase of our proposed method are shown
in Figs. 2 and 3, respectively. Noise removal and the
improvement to RAISR will be explained next.

3.2 Noise removal

The Gaussian noise removal methods such as BM3D
[6] and WNNM [7] are firstly utilized to suppress the
noise from the noisy image in the learning phase of
the proposed method. The patches extracted from
the denoised image are classified into 18 hash classes
including 6 classes for the angle θ and 3 classes for
the coherence μ. Analogously, the same hash classes
are divided from the pixels of ground truth. The
18 filters can be learned by solving the least squares

Fig. 2 Learning phase of the proposed method.

Fig. 3 Testing phase of the proposed method.

minimization problem between the denoised image
and the reference image in 18 hash classes.

In the testing phase, the denoised image can be
obtained from the noisy images that are not included
in the training sets by using the nonlocal noise
reduction methods, BM3D [6] and WNNM [7] in
our proposed method. The patches extracted from
the denoised image are separated into 18 hash classes
which consists of 6 classes for the gradient angle by
geometric conversion and 3 classes for the coherence.
Then, the pre-learned filters (18 filters for 18 classes)
generated from the learning phase are applied on
the patches from the denoised image and the filtered
output is produced by aggregating the outputs of
each patch.

Similarly to the primary RAISR [12], CT is used
between the denoised image and the filtered output to
keep the structure deformation within a wide range
of frequencies. Then, Hamming distance is evaluated
to know how many bits are changed between the
center pixel and its nearest neighborhood pixels of
each patch based on CT. The larger the hamming
distance, the larger the change in structure and the
bigger the weights. Eventually, an advanced quality of
output image can be achieved by weighted averaging
of the image processed by noise suppression methods
and the filtered output because this CT approach
leads to contrast enhancement of the denoised image.

3.3 Improvement of RAISR in image
denoising

Nonlocal image denoising methods relevant to our
proposed method (BM3D [6] and WNNM [7]) can
sufficiently eliminate noise. However, some important
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image details in the denoised image are degraded due
to the damage to high frequency information. In order
to overcome this problem, we exploit an improved
version of RAISR in our method to post-process the
denoised image as it is not only a rapid and accurate
image super-resolution method but it can also restore
degraded high frequency components. We designed
a modified version of RAISR [12] for our proposed
method as shown in Fig. 4. The size of the patches
extracted from the denoised image is 11 × 11 and
the patch size for the hash table is 9 × 9. We do not
need to consider pixel type in our proposed method
because the denoised image is assumed to be the
interpolated image. The pre-learned filter generated
from the learning phase has the same size as the
denoised patches. Each output pixel is found by
convolving patches from the denoised image with the
filters based on the hash-table indices.

In RAISR [12], the LR patches extracted from the
initial bicubic upscaled image are classified into 864
hash classes, based on 4 classes for pixel type, 3
classes for strength λ, 24 classes for angle θ, and 3
classes for coherence μ. The memory requirements
for the filter coefficients in this approach is high
due to the use of 864 filters of size 11 × 11. In
order to solve this problem, the number of filters
is reduced to 18 in IRAISR by simple geometry
and reduction of the classes for λk without affecting
the performance and computational efficiency of the
original RAISR [12]. This allows use of IRAISR to
achieve an accurate denoised image with low memory
requirements. Although three improvements have

Fig. 4 Improved RAISR design based on pairing patches from the
denoised image with pixels from the clean image.

been made to RAISR for super-resolution, including
reduction of the classes for pixel type by rotation
based on scaling factor, geometric conversion for
the gradient angle, and reduction of the classes for
gradient strength, only two improvements are needed
in image denoising because pixel type is not required
in this application.
3.3.1 Geometric conversion
The gradient angle θ of the 11 × 11 patch can
be changed by geometric conversion to reduce the
number of classes for the gradient angle. See Fig. 5.
For patches with θk in 45◦ to 90◦, an xy-flip is applied,
for patches with θk in 90◦ to 135◦ an x-flip and an
xy-flip are applied, and for patches with θk in 135◦

to 180◦ a y-flip is applied, in each case the result now
being in the range 0◦ to 45◦. Hence, only 6 classes
are needed in our method, in the range from 0◦ to
45◦, instead of the 24 classes for the gradient angle
in RAISR [12].
3.3.2 Gradient strength classes
Another improvement to RAISR is to use fewer classes
for gradient strength. We classify the 3 classes for
λ in RAISR [12] as λ1, λ2, and λ3. The parameter
λk ranges from 0 to 0.34 for the class λ1, from 0.34
to 0.67 for the class λ2, and from 0.67 to 1 for the
class λ3, when learning the filters. Table 1 compares

Fig. 5 Geometric conversion based on each gradient type.

Table 1 Average PSNR (dB) comparison for upscaling by a factor
of 2 over Set5

Image name Only λ1 Only λ2 Only λ3 RAISR
Baby 37.127 38.387 38.450 38.452
Bird 37.101 39.702 40.275 40.264

Butterfly 27.249 29.911 30.498 30.526
Head 34.905 35.649 35.704 35.695

Woman 32.365 34.453 34.851 34.843
Average 33.749 35.620 35.956 35.956
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the performance of applying the filters learned with
only λ1, only λ2, and only λ3 on Set5 [18] by an
upsampling factor of 2. According to the results,
the performance of applying the filters learned with
only λ3 is quite similar to RAISR. Actually, high
strength of gradient λ implies the presence of high-
frequency components in the input patch. As a filter
learned with high-frequency patches can generate
low-frequency HR patches, hash classes for high strength
are not needed in the testing phase.

4 Experiments
In this section, we compare our enhanced denoising
algorithm using IRAISR with state-of-the-art
nonlocal Gaussian noise removal methods such as
BM3D [6] and WNNM [7]. Peak signal to noise
ratio (PSNR) is used as a quantitative metric for
performance evaluation.

4.1 Parameter settings

Parameter settings utilized in the proposed method
are as follows: the patch size is 9 × 9, the
patch step size is 3, and the neighborhood window
size is 39 × 39 in both steps of BM3D filtering.
The maximum number of similar patches is fixed
to 16 in hard thresholding and 32 in Wiener-
filtering, respectively. The input images are padded
symmetrically depending on the patch size to
retain image borders. In WNNM, the iterative
regularization parameter δ and the parameter c are
set to 0.1 and 2.8 for all noise levels. The patch size
and the number of iterations K are selected based on

noise level. We set patch size to 6×6, 7×7, 8×8, and
9 × 9 for σn � 20, 20 < σn � 40, 40 < σn � 60, and
60 < σn, respectively. K is set to 8, 12, 14, and 14,
respectively at these noise levels. When the noise level
is higher, the patch size should be bigger and the time
will be longer. We use 191 images including General
100 and 91 images from Yang et al. as training image
sets to learn the filters in our improved RAISR. The
learned filter patch size is 11 × 11. The hash table
index is considered with its nearest neighborhood of
size 9×9 for the computation of hash key parameters
in both learning and testing phase of our proposed
method. We use the source codes of BM3D [6] and
WNNM [7] provided on their relevant websites. The
experiments are carried out using MATLAB (R2018b)
on a 2.2 GHz Intel Core i7 processor with 8 GB 1600
MHz DDR3 memory.

4.2 Quantitative and qualitative evaluation

The experiments are conducted over 11 extensively
used test images corrupted by Gaussian noise
with σ = 10, σ = 30, and σ = 50, respectively.
A comparison of PSNR values for nonlocal image
denoising methods including BM3D [6], WNNM [7],
and our proposed method is presented in Table 2.
The highest PSNR values are highlighted in bold. As
can be observed, WNNM post-processed by IRAISR
efficiently outperforms the other competing methods
for the Airplane, Butterfly, Cameraman, and Peppers
images which are rich in edge regions; this is true
for all noise levels because the image details in the
edge regions can be well restored in our proposed
method. Integrating BM3D and IRAISR gives the

Table 2 Quantitative comparison of average PSNR (dB) for 11 widely used test images

Images Airplane Barbara Bird Boat Butterfly C.man Couple Lena Man Montage Peppers Average
Noise level σ = 10
BM3D [6] 33.37 35.04 37.39 33.69 33.12 33.73 33.77 35.85 33.63 36.89 34.27 34.62
WNNM [7] 33.39 35.04 37.14 33.49 34.31 33.80 33.55 35.61 33.51 37.59 34.52 34.72
BM3D+IRAISR 33.44 35.01 37.39 33.72 33.24 33.73 33.83 35.93 33.73 36.89 34.32 34.66
WNNM+IRAISR 33.63 34.93 37.24 33.63 34.54 33.96 33.73 35.72 33.71 37.11 34.67 34.81
Noise level σ = 30
BM3D [6] 27.43 29.86 31.43 28.84 27.72 28.19 28.69 31.18 28.60 30.71 28.98 29.24
WNNM [7] 27.49 29.48 30.67 28.49 28.39 28.26 28.31 30.86 28.29 31.05 28.91 29.11
BM3D+IRAISR 27.53 29.79 31.42 28.91 27.89 28.25 28.78 31.31 28.71 30.62 28.99 29.29
WNNM+IRAISR 27.79 29.54 30.84 28.69 28.76 28.47 28.54 31.00 28.50 30.68 29.08 29.26
Noise level σ = 50
BM3D [6] 24.55 26.56 28.37 25.98 24.62 24.85 25.74 28.51 26.19 25.97 26.15 26.14
WNNM [7] 25.05 26.97 27.87 26.27 25.77 25.89 25.97 28.70 26.32 27.52 26.44 26.62
BM3D+IRAISR 24.73 26.17 28.36 26.16 24.91 25.27 25.92 28.65 26.32 26.04 26.16 26.24
WNNM+IRAISR 25.29 27.11 28.02 26.47 26.21 26.16 26.19 28.85 26.49 27.36 26.62 26.79
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highest PSNR value on average at noise level σ = 30.
When the noise level is slightly increased to 50, the
combination of WNNM and IRAISR is the best for all
test images except Bird and Montage. However, we
achieve superior quantitative performance on average
for all noise levels when using our proposed method.

A comparison of visual quality of our method with
denoising methods including BM3D [6] and WNNM
[7] for the 256 × 256-sized Butterfly image corrupted
by additive white Gaussian noise with σ = 30 and the
Peppers image degraded by σ = 50 is given in Figs. 6
and 7, respectively. It can be seen that the edge
regions of Butterfly are sharper than for competing
methods due to the effect of the census transform [12]
although the flat regions are a little over-smoothed
in our proposed method. In the Peppers image, the
edges are well preserved in the denoising methods
using improved RAISR except for a little blurring in
smooth regions.

4.3 Experiments on various datasets

Besides conducting experiments on 11 widely used
natural images as a test set for image denoising, we
apply our method to other various image datasets

including the Kodak images, the Berkeley segmenta-
tion dataset (BSD68), and the Set12 images. These
image datasets were not included in the training
set. Average PSNR and runtime comparisons of
the proposed method with BM3D and WNNM are
reported in Table 3 for these image datasets corrupted
by different noise levels: σ = 10, σ = 30, and σ = 50,
respectively. The best PSNR values are highlighted
in bold. It can be observed that the combination
of BM3D and IRAISR outperforms other methods
at noise levels σ = 10 and σ = 30, while WNNM
post-processed by improved RAISR has the highest
PSNR at noise level σ = 50 for the Kodak images.
For the BSD68 dataset, the application of IRAISR
to BM3D produces the highest PSNR value at noise
level σ = 30, while integrating WNNM and IRAISR
generates the best PSNR values at noise levels σ = 10
and σ = 50, respectively. Similarly, we achieve
the greatest PSNR values by combining WNNM
and IRAISR for all noise levels in the Set12 images.
Therefore, our proposed Gaussian noise suppression
method using IRAISR as a post-processing step is
very effective for all tested datasets. The execution
time for denoising and application of IRAISR depends

Fig. 6 Visual comparison of Butterfly image corrupted by σ = 30.
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Fig. 7 Visual comparison of Peppers image corrupted by σ = 50.

Table 3 Comparison of average PSNR values and runtime on various datasets

Dataset Noise level
BM3D BM3D+IRAISR WNNM WNNM+IRAISR

PSNR (dB) Runtime (s) PSNR (dB) Runtime (s) PSNR (dB) Runtime (s) PSNR (dB) Runtime (s)

Kodak
10 34.16 149.132 34.25 150.067 34.03 418.649 34.24 419.552
30 28.98 149.326 29.09 150.261 28.77 872.275 28.99 873.126
50 26.39 93.647 26.53 94.49 26.82 694.370 27.00 695.251

BSD68
10 33.04 56.685 33.12 57.085 32.91 180.075 33.13 180.454
30 27.49 56.690 27.60 57.089 27.35 338.575 27.58 338.944
50 24.84 36.498 25.02 36.883 25.34 254.98 25.53 255.360

Set12
10 34.13 51.057 34.19 51.442 34.16 164.556 34.30 164.901
30 28.88 50.871 28.98 51.288 28.81 323.650 29.01 324.007
50 25.96 31.841 26.13 32.193 26.47 235.121 26.69 235.470

on image size. However, IRAISR works rapidly to
enhance denoising results.

Figures 8 and 9 provide visual assessments of one
image from the Kodak dataset corrupted by Gaussian
noise with standard deviation 30 and one test image
taken from BSD68 contaminated by standard
deviation 50. Close-ups of the regions in green boxes
are also provided. It is obvious that not only noise
can be successfully removed but also that strong
edge sharpness (e.g., in the numbers on the sail) is
effectively produced by our method. Other image
details in the close-up of the BSD68 image are well

recovered by our proposed method, as can be seen.

4.4 Using different training sets

We next compare the performance and runtime when
applying IRAISR to BM3D for 11 widely used natural
images corrupted by Gaussian noise with σ = 10, σ =
30, and σ = 50, when employing pre-learned filters
from two different training sets: 191 images including
General 100 images and 91 images from Yang et
al., and General 100 images as described in Table 4.
Training takes about 8 hours for the 191 image
training set and 3 hours for the 100 image training set
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Fig. 8 Visual comparison of one image from Kodak dataset corrupted by σ = 30.

Table 4 Performance with different training datasets

Training dataset Noise level
BM3D+IRAISR

PSNR (dB) Runtime (s)

191 images
10 34.66 54.758
30 29.29 51.885
50 26.24 33.928

100 images
10 34.66 58.265
30 29.29 53.326
50 26.23 34.004

to learn the filters. The best PSNR values are marked
in bold and the fastest runtime is indicated in blue.
As can be seen from the table, the average PSNR
values are almost the same at noise levels σ = 10 and
σ = 30 for both training sets. When the noise level
is increased to 50, the average PSNR value for the
combination of BM3D and IRAISR is higher with 191

training images. Moreover, execution is faster in the
testing phase when applying the filters learned from
the 191 training images than 100 training images, for
all noise levels.

4.5 Effect of CT on image denoising

The census transform [12] is utilized to restore the
image structure between the denoised image and the
filtered output. We conducted experiments on 11
widely used natural images degraded by Gaussian
noise at σ = 10, σ = 30, and σ = 50, to understand
the effect of CT on image denoising. Table 5 compares
average PSNR values for BM3D, BM3D+IRAISR
without CT, and BM3D+IRASIR with CT. Our
proposed denoising method with CT (bold) is the
best for all noise levels.



Improved image denoising via RAISR with fewer filters 509

Fig. 9 Visual comparison of one image from BSD68 dataset corrupted by σ = 50.

Table 5 Benefit of CT in image denoising based on CT for 11 widely
used images

Method
Noise level

σ = 10 σ = 30 σ = 50
BM3D 34.62 29.24 26.14

BM3D+IRAISR without CT 34.65 29.27 26.18
BM3D+IRAISR with CT 34.66 29.29 26.24

4.6 Comparison between RAISR and IRAISR
in image denoising

RAISR and IRAISR can both be applied as a post-
processing step to noise reduction methods to enhance
the performance of denoising. 216 filters are needed
for RAISR: 3 classes for gradient strength, 24 classes
for gradient angle, and 3 classes for coherence, while
IRAISR needs 18 filters: 3 classes for coherence and 6

classes for gradient angle; pixel type is not needed in
image denoising. The reduction in classes in IRAISR
simplifies its implementation compared to RAISR
without sacrificing the performance and runtime of
RAISR. Experiments were conducted on 11 widely
used images contaminated by Gaussian noise with
σ = 10, σ = 30, and σ = 50, to compare the average
PSNR value and runtime required by RAISR and
IRAISR applied to a denoising method (BM3D in
this experiment): see Table 6. As can be observed,
the PSNR values for IRAISR and RAISR are almost
the same for all noise levels although RAISR is a little
faster than IRAISR. Moreover, the computation time
for learning the filters in the training phase of IRAISR
is lower due to it having fewer classes. Therefore, the
proposed method can improve the performance of
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Table 6 Impact of RAISR and IRAISR in image denoising over 11 widely used images

Method
Noise level

No. of filtersσ = 10 σ = 30 σ = 50
PSNR (dB) Runtime (s) PSNR (dB) Runtime (s) PSNR (dB) Runtime (s)

BM3D + RAISR 34.66 53.585 29.29 52.170 26.24 33.628 216
BM3D + IRAISR 34.66 54.758 29.29 51.885 26.24 33.928 18

nonlocal image denoising methods with little
computational cost.

5 Conclusions
In this paper, we presented an accurate Gaussian
noise removal strategy followed by an improved
RAISR (IRAISR) to successfully remove noise without
damaging image features such as edges and textures.
Not only the patches extracted from the image
processed by BM3D and WNNM and the pixels from
the reference image during the learning phase, but also
the patches from the denoised image in the testing
phase are classified into hash classes. The main idea
behind IRAISR is to minimize the number of filters
by geometric conversion and to reduce the number of
classes for strength. More advanced performance and
stronger sharpness than the conventional denoising
methods can be significantly achieved in accordance
with the experimental results.

As a further extension, we can select other
denoising methods with lower computation time as
the chosen Gaussian noise removal methods in our
method are based on nonlocal self-similarity models.
Improving denoised results with low execution time is
beneficial for real applications such as mobile devices.
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