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Abstract Monte Carlo (MC) integration is used
ubiquitously in realistic image synthesis because of its
flexibility and generality. However, the integration
has to balance estimator bias and variance, which
causes visually distracting noise with low sample counts.
Existing solutions fall into two categories, in-process
sampling schemes and post-processing reconstruction
schemes. This report summarizes recent trends in
the post-processing reconstruction scheme. Recent
years have seen increasing attention and significant
progress in denoising MC rendering with deep learning,
by training neural networks to reconstruct denoised
rendering results from sparse MC samples. Many
of these techniques show promising results in real-
world applications, and this report aims to provide an
assessment of these approaches for practitioners and
researchers.
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1 Introduction
The synthesis of realistic images of virtual worlds is
one of the primary driving forces for the development
of computer graphics techniques [1, 2]. One of
the firmly established bases for such a purpose
is MC integration [3], which is renowned for its
generality and heavy computational consumption.
MC integration methods are attractive because of
two distinct advantages. Firstly, they offer a unified
framework for rendering almost every physically-
based rendering effect. This significantly reduces
the burden of exhaustive case-by-case customization
of rendering pipelines. Secondly, most MC methods
guarantee mathematical convergence to the ground
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truth, which is a critical virtue for high-quality
rendering that requires temporal consistency and
physical fidelity.

Classical MC integration methods, however, require
a large number of samples to achieve faithful
convergence. Despite continuously increasing com-
putational power, the cost of realistic rendering
remains a limiting, practical constraint, as it takes
hours to render one high-quality image, or frame.
When using few samples, MC integration results
often suffer from estimator variance, which appears as
visually distracting noise. The heavy computational
consumption is one of the primary factors prohibiting
a wider accessibility of MC integration. To address
this problem, common approaches either devise
more sophisticated sampling strategies to increase
sampling efficiency, or develop local reconstruction
functions to trade mathematical convergence for
visually appealing denoising. Such a post-processing
scheme is known as MC denoising, one of the most
investigated areas in the rendering community.

Recently, deep learning techniques have earned
unprecedented attention and exceeded many
traditional algorithms in various domains [4, 5].
Derived from traditional MC reconstruction [6],
MC denoising in combination with deep learning
techniques has achieved notable progress and
has become a topic of interest in recent years.
Furthermore, industry has actively embraced the
latest achievements. For example, in the movie
industry, Pixar’s RenderMan [7] adapted adaptive
sampling and denoising filters in the production of
Toy Story 4. Another example [8] in the gaming
industry generates high-quality images with low
sample counts for real-time use.

This report summarizes state-of-the-art techniques
in deep learning-based MC denoising. We start with
a direct introduction to the basic concepts and then
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discuss the components of the area in detail (see
Section 2). Afterwards, we provide a comprehensive
overview which categorizes the related research into
three topics:
• pixel denoising (Section 3),
• nontrivial-domain denoising (Section 4), and
• high-dimensional denoising (Section 5).
We conclude this report by summarizing and
comparing the discussed techniques (see Section 6).

2 Deep learning-based Monte Carlo
denoising concepts

Classical MC rendering estimates some target c, e.g.,
a pixel’s color, through MC integration, as the sum
of the contributions from M samples in some domain
Ω, e.g., a pixel:

c =
∫

Ω
f(s) ds ≈ 1

M

M∑
m=1

f(sm)
p(sm)

(1)

where f(sm) and p(sm) denote the contribution and
the sampling probability of the m-th sample, sm,
on the pixel, respectively. This kind of general MC
integration produces estimation variance with low
sample counts, leading to visually annoying noise.
The problem inherently motivates the development of
MC denoising techniques to filter the noisy input
to achieve a plausible rendering quality with a
reasonable time budget.

MC denoising can be formally described as a
mapping g of an input x to the ground-truth r

rendered by a high sample count (Fig. 1). In the
most common case, x is a tuple correlated with a
shading point p, such as a pixel, as xp = {cp, fp},
where cp represents noisy values achieved with low
sample counts and fp represents auxiliary features,
e.g., surface normal or textures over multiple samples

contributing to p. While using deep learning, the
pursuit of optimal g can be formulated as the training
of a neural network parameterized by a set of weights
θ representing g. Through a supervised learning
process that utilizes a dataset with N example pairs
of (x1, r1), . . . , (xN , rN ), the estimated parameters θ̂

are optimized via a loss function � as

θ̂ = min
1
N

N∑
n=1

�(rn, g(Xn; θ)) (2)

where Xn is a block of per-pixel vectors in the
neighborhood of xn to produce the reconstructed
output at pixel xn [9]. In reference, the trained
network takes seconds or minutes to generate r̂n =
g(Xn; θ̂), a visually plausible approximation to
the ground-truth that requires hours of rendering.
Despite a lack of rigorous analysis of guarantees
of mathematical convergence, this approximation
reforms production pipelines by enabling rendering
with a quality visually indistinguishable to the ground-
truth, at a much faster speed, and will approaching
an interactive rate in the near future.

3 Pixel denoising
3.1 Approaches

This section covers the approaches for a basic
application scenario of MC denoising, the
reconstruction of a single smooth image with
the help of auxiliary features and noisy inputs. The
neural networks take as input an image with noisy
per-pixel colors, usually samples’ average radiance
estimated by path tracing [1], and predict the
corresponding smoothed image. Because the results
of most MC integration methods can be stacked in
image space, directly denoising the per-pixel colors
can work as a general post-processing add-on to

Fig. 1 Deep learning-based Monte Carlo denoising method trains a neural network to reduce Monte Carlo noise in input images. Reproduced
with permission from Ref. [9], c© Author 2018.
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existing rendering pipelines without the need to
reorganize data flows. Thus, pixel denoising rapidly
became a popular solution both in academia and
industry.

We categorize the research in pixel denoising
according to prediction targets of neural networks,
which imply the underlying problem formulation used
by the denoising process. Overall, we categorize
them as performing parameter prediction, radiance
prediction, or kernel prediction. Table 1 summarizes
the related papers.

3.2 Parameter prediction

An early attempt to utilize deep learning in MC
denoising was motivated by a desire to predict optimal
parameters of conventional MC filters [10]. Before
this paper, the most successful MC denoising methods
were based on handcrafted filters using additional
scene features such as shading normals and texture
albedo. The existing challenge was to optimize the
parameters, i.e., filter bandwidths, of the filter models
to reduce noise yet preserve scene details.

Kalantari et al. [10] observed that there is a complex
relationship between noisy scene data and ideal filter
parameters, and proposed to learn this relationship
through deep learning. Their method uses cross-
bilateral and cross non-local mean filters of various
auxiliary features (world positions, shading normals,
texture values, etc.) for the final reconstruction and a
multilayer perceptron (MLP) neural network [11–13]
to predict optimal weights for each feature in the filter.
To use the framework, an MLP is first trained in an
offline process on a set of noisy images of scenes with
a variety of distributed effects to regress the optimal

filter parameters that minimize the difference between
the reconstructed output and the ground truth. At
run-time, the trained network can then predict the
filter parameters for new scenes to produce filtered
images in just a few seconds. As shown in Fig. 2,
the results were superior to previous approaches on
a wide range of distributed effects such as depth of
field, motion blur, area lighting, glossy reflections,
and global illumination.

Xing and Chen [14] also adapted a parameter
estimation network to address noise artifacts from
path tracing. The method contains sampling and
reconstruction stages. Stein’s unbiased risk estimator
(SURE) [15] is adopted to estimate the noise level
per pixel that guides an adaptive sampling process.
A modified MLP network is then used to predict the
optimal reconstruction parameters. In the sampling
stage, coarse samples are firstly generated, and then
a noise level map is estimated with SURE to guide
additional sampling. In the reconstruction stage, the
modified MLP network is adopted to predict optimal
reconstruction parameters of anisotropic filters for
the final images, using the extracted features.

3.3 Kernel prediction

Based on the observation that predicting parameters
of conventional handcrafted filters establishes local
reconstruction kernels for pixels in an indirect way,
another group of fruitful investigations aimed to
directly predict local reconstruction kernels through
kernel-predicting networks [9, 16, 17].

Explicit filters are useful for exploiting conventional
MC denoising models, but may limit denoising
capability even when using deep neural networks to

Fig. 2 Result of using the trained network of Kalantari et al. [10] (PPSD) to drive a filter for denoising a new MC rendered image, with a
cross-bilateral filter for the Kitchen scene (1200×800, left) and with a non-local means filter for the San Miguel Hallway scene (800×200, right).
Both of these scenes were path-traced and contain severe noise at 4 samples per pixel. The trained network is able to estimate the appropriate
filter parameters and effectively reduce the noise in only a few seconds. Reproduced with permission from Ref. [10], c© ACM 2015.
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predict the optimal parameters [16]. To address this
problem, Bako et al. [16] proposed a novel, supervised
learning approach that allows the filtering kernel to
be more complex and general by leveraging a deep
convolutional neural network (CNN) architecture
[18, 19]. The approach introduced a novel, kernel-
prediction network which employs the CNN to
estimate the local weighting kernels used to compute
each denoised pixel from its neighbors. The results
demonstrate an improved accuracy compared to
parameter-predicting MC denoisers and roughly 5–
6 times faster convergence of the weighted kernel
prediction than for direct radiance prediction. Other
training techniques have been widely adopted, and
some of them include decomposition of diffuse and
specular components, separation of albedo from
network prediction, and logarithmic transformation
of specular color (Fig. 3).

Vogels et al. [9] expanded the capabilities of kernel-
predicting networks using asymmetric loss functions
that are designed to preserve details and provide the
user with direct control over the variance-bias trade-
off during inferencing. They also reconstituted the
pipeline with some task-specific modules, including
four distinct components. First, a source-aware
encoder extracts low-level features and embeds
them into a common feature space, enabling quick
adaptation of a trained network to novel data. Second,
spatial and temporal modules extract abstract, high-
level features for kernel-based reconstruction. Third,
a complete network is designed to preserve details
and provide the user with direct control over the
variance-bias trade-off during inferencing. Fourth, an
error-prediction module infers reconstruction error

maps for adaptive sampling. This modular design
enables a production level MC denoising framework
in terms of detail preservation, low-frequency noise
removal, and temporal stability for processing various
production and academic datasets. Finally, they shed
light on the academic research by offering a theoretical
analysis of convergence rates of kernel prediction
architectures.

MC denoisers, also known as biased MC estimators,
reduce MC noise by exploring the correlation between
nearby pixels. As a result, they suffer from method-
specific residual noise or systematic errors. Back et
al. [20] aimed to mitigate such remaining errors by
unifying an independent unbiased estimator and a
correlated biased estimator with a kernel-predicting
neural network. Their framework takes a pair of
images, one with independent estimates, and the
other with the corresponding correlated estimates
generated by existing MC denoisers. A neural
network is trained to exploit the correlation between
these two pixel estimates and output a combination
kernel for the weighted reconstruction of final images.
The results of the unified framework outperform both
single estimators both visually and numerically.

3.4 Radiance prediction

Parameter-predicting and kernel-predicting frame-
works generally have achieved great success, but the
kernel filtering scheme sometimes imposes restrictions
on flexible fusion with state-of-the-art deep learning
techniques. Therefore, another natural evolution of deep
learning-based MC denoising trains neural networks
to directly predict per-pixel color, i.e., the outgoing
radiance towards the viewpoint at each footprint.

Fig. 3 Overview of the kernel-predicting framework [16]. It starts by independently preprocessing diffuse and specular data from the rendering
system, and then feeds the information to two separate networks to denoise the diffuse and specular illumination, respectively. The output from
each network undergoes reconstruction (direct reconstruction or weighted reconstruction through the predicted kernels) and postprocessing
before being combined to obtain the final, denoised image. Reproduced with permission from Ref. [16], c© Author 2017.
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While most MC denoising methods rely on
handcrafted optimization objectives like MSE or
MAPE loss, which do not necessarily ensure
perceptually plausible results, Xu et al. [21] presented
an adversarial approach for MC denoising, following
an insight that generative adversarial networks
(GANs) [22, 23] can guide neural networks to produce
more realistic high-frequency details. The adversarial
approach to evaluate the reconstruction is based
on the Wasserstein distance to measure perceptual
similarity, which can be interpreted as the distance
between the denoised and ground truth distributions.
In addition, they adapt a feature modulation method
to encode auxiliary features that allow features
to better take effect at the pixel level, leading
to fine-grained denoising results. Another GAN-
based denoising method also considers denoising
rendered images from a dataset containing 40 Pixar
movie image frames with added Gaussian noise [24].
Because the network does not take auxiliary features
as input, it can also denoise noisy photographs under
natural light and CT scans.

A deep residual network (ResNet) [25] demonstrates
significant improvement over a basic CNN. In order
to take advantage of ResNet, a filter-free direct
denoising method based on a standard-and-simple
deep ResNet is trained to remove the noise of MC
rendering [26]. The method directly maps the noisy
input pixels to the smoothed output with only
three common auxiliary features (depth, normal,
and albedo), simplifying its integration into most
production rendering pipelines. With the help
of ResNet, the simple structure yields comparable
accuracy to other state-of-the-art methods.

One distinguishing difference between MC
denoising and natural image denoising is that
auxiliary features, e.g., normals, can be extracted
from the rendering pipeline, providing noise-free
guidance for image reconstruction. However, the
auxiliary features also contain redundant information,
which reduces the efficiency of deep learning-based
MC denoising. Yang et al. [27, 28] focused on how
to extract useful information from auxiliary features.
To address this problem, they first introduced an
end-to-end CNN model to fuse feature buffers and
predict a residual radiance map between noisy
input and ground truth to reconstruct a final

image. In addition, a high-dynamic range (HDR)
image normalization method is proposed to train
the model on HDR images in a more efficient
and stable way [27]. In follow-up research, they
proposed an autoencoder [29, 30] inspired network
structure, a dual-encoder network with a feature
fusion subnetwork, to first fuse auxiliary features.
The fused features and a noisy image are then fed as
inputs to a second encoder network to reconstruct a
clean image by a decoder network [28]. Compared to
conventional solutions using uncompressed auxiliary
features, the method is able to generate satisfactory
results in a significantly faster way.

While deep learning-based MC denoisers
dramatically enhance rendering quality, the
results are less reliable when there is insufficient
information to calculate the features, such as variance
and contrast. To address this issue, Kuznetsov
et al. [31] proposed a deep learning approach for
joint adaptive sampling and reconstruction of MC
rendering results with extremely low sample counts.
In addition to a conventional MC denoising network,
they train a CNN to estimate sampling maps for
guiding adaptive sample distribution over pixels.
Finally, the denoising network produces denoised
images from the adaptively sampled MC rendering
results.

4 Nontrivial-domain denoising
4.1 Background

Conventional MC denoisers work in image space,
where the basic geometric auxiliary features can
be easily extracted from most rendering pipelines.
This accessibility makes pixel-based MC denoisers a
prevailing choice. However, the physical process of
light transport occurs in a high-dimensional space
where some important information is inevitably
degraded when reducing everything into per-pixel
radiance. To address this, a research stream aims
to recover the lost information by utilizing various
nontrivial domains, e.g., sample space and gradient
domain, for high-quality rendering of illumination
details or challenging effects. This section discusses the
related approaches using nontrivial-domain features
and their advantages in single-image denoising. The
summary of these papers is in Table 1.
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4.2 Sample space

In contrast to the traditional pixel-based MC denoisers,
Gharbi et al. [17] proposed a sample-based kernel-
splatting network. They observed that traditional
MC denoisers exploit summary statistics of a pixel’s
sample distributions, which discards much of the
samples’ information and limits their denoising power.
The proposed kernel-spatting network, learning the
mapping between samples and images, embraces
unfamiliar network architecture design to solve multiple
challenges associated with the sample space: the order
of the samples is arbitrary, and those samples must be
treated in a permutation invariant manner. Instead
of conventional gathering kernels, they suggested
predicting spatting kernels that splat individual samples
onto nearby pixels using a convolutional neural network.
They claimed that, in addition, splatting is a natural
solution to situations such as motion blur, depth-of-
field, and many light transport problems, where it is
easier to predict which pixels a sample contributes to,
rather than to predict gathering kernels that need to
determine informative relationships between relevant
pixels. The new architecture yields higher-quality
results both visually and numerically for low-sample
count images and distributed-effect images.

Per-sample denoisers come with high computational
costs because of the need to produce kernel weights
and apply a large kernel for each sample in each pixel,
which can limit its usability for higher sample counts.
Based on this observation, Munkberg and Hasselgren
[32] proposed to extract a compact representation of
per-sample information by separating samples into
a fixed number of partitions, called layers in their
paper, via a data-driven method that learns unique
kernel weights for each pixel in each layer and how to
composite the filtered layers. This modification gives

a practical denoiser the capability to strike a good
trade-off between cost and quality. Furthermore, it
provides an efficient way to control performance and
memory characteristics, since the algorithm scales
with the number of layers rather than the number
of samples. Using two partitioned sample layers, the
denoiser achieves interactive rates while producing
image quality similar to larger networks.

Assuming that next event estimation (NEE) [33]
is used in the rendering process, Lin et al. [34]
decomposed the features of Gharbi et al. [17] into
sample- and path-space features, where one-bounce
paths are sample-space features and multi-bounce
paths are path-space features. The key insight of
the separation is to decompose the high-frequency
illumination from short paths and low-frequency
illumination from long paths. The three-scale
features—pixel, sample, and path—are combined
to preserve sharp details, using a feature attention
mechanism and feature extractors.

4.3 Light field space

Most MC denoisers only use as features the outgoing
radiance of samples in each pixel, while each sample is
in fact a high-dimensional light path with information
about the light field [35]. Lin et al. [36] observed
that these methods show powerful denoising ability,
but tend to lose geometric or lighting details and to
blur sharp features during denoising. Based on the
definition of the local light field (Fig. 5), the authors
adapted a framework [37] for frequency analysis of
light transport by calculating the frequency content
of the local light field around a given ray. The
local light field is defined as a 4D function, with
two spatial dimensions and two angular dimensions.
In the analysis, light transport operations, such as
transport in free space or reflection, are transformed

Fig. 4 Comparison between state-of-the-art pixel-based (Bako et al. [16]) and sample-space (Gharbi et al. [17]) MC denoising algorithms.
The sample-space method works with the samples directly, using a splatting approach that makes it possible to appropriately handle various
components of the illumination (indirect lighting, specular reflection, motion blur, depth of field, etc.) more effectively. Reproduced with
permission from Ref. [17], c© ACM 2019.
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Fig. 5 The local light field is defined as a 4D function around the
center ray (ω), parameterized by two spatial coordinates (δx and δy)
and two angular coordinates (δθ and δφ). Reproduced with permission
from Ref. [39], c© IEEE 2020.

into operations on the Fourier spectrum, then
approximately represented by the Fourier spectrum
of the local light field, the covariance matrix [38]. A
neural network makes use of this covariance matrix, a
4×4 matrix encoding the Fourier spectrum of the local
light field at each pixel, to leverage the directional
light transportation information. In addition, the
author proposed a network extracting feature buffers
separately from the color buffer and then integrated
the two buffers into a shallow kernel predictor.
Finally, they suggested an improved loss function
considering perceptual loss. These modifications help
to preserve illumination details.

Instead of using light-field-space features for image-
space denoising, another category of research aims to
directly reconstruct the denoised incident radiance
field, i.e., the local light field at each pixel, for
advanced goals such as unbiased path guiding [40–42].
We cover such works in Section 5.4.

4.4 Gradient domain

Gradient-domain rendering methods [43–45] develop
a common denoising idea of estimating finite
difference gradients of image colors to solve a
screen-space Poisson problem. The gradient-domain
information is believed to offer additional benefits
because of the frequency content of the light transport
integrand and the interplay with the gradient
operator. Recent work combines this long-existing
research direction with modern CNNs [46]. The new
method replaces the conventional screened Poisson
solver with a novel dense variant of the U-Net
autoencoder, taking auxiliary feature buffers as inputs
and using a perceptual image distance metric as loss
function. The combination significantly improves the

quality obtained from gradient-domain path tracing
and yields notably improved image quality compared
to simple image-space MC denoisers.

In other independent work, Guo et al. [47] proposed
using a multi-branch autoencoder to replace the Poisson
solver. The network end-to-end learns a mapping
from a noisy input image and its corresponding
image gradients to a high-quality image with low
variance. One distinguishing feature of this work is
that the authors train the network in a completely
unsupervised manner by adjusting a non-trivial loss
function between the noisy inputs and the outputs of
the network. The loss function combines an energy
function including a data fidelity term, a gradient
fidelity term, and a regularizer constructed from
selected rendering-specific features. In this way, the
approach avoids the tedious and sometimes expensive
rendering process to generate noise-free images for
training, making it a technically unsupervised solution.

4.5 Photon denoising

While path tracing is a general MC integration
approach for realistic rendering, it is not effective
for simulating challenging light transport effects
like caustics. Instead, photon mapping [48, 49]
has been considered as the method of choice for
rendering caustics, but it has not completely adopted
progress in deep learning techniques. Some recent
research bridges this gap by training a deep neural
network to predict a kernel function aggregating
photon contributions at each shading point [50].
Photon mapping traces a large number of photons
from the light source, and then gathers the photon
contributions at each shading point to achieve
high-quality reconstructions of challenging light
transportation results which are hard to trace from the
camera. The authors mitigate the required number of
photons with a network encoding individual photons
into per-photon features, aggregating them in the
neighborhood of a shading point to construct a photon
local context vector, and inferring a kernel function
from the per-photon and photon local context features.
This work combines conventional deep learning-based
denoisers for remaining light transport paths. The
results show promising high-quality reconstructions
of caustic effects with an order of magnitude fewer
photons than previous photon mapping methods
and significantly outperform path tracing-based MC
rendering for caustic effects (Fig. 6).
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Fig. 6 Results of photon mapping denoising show high-quality reconstruction of caustic effects [50]. (a,b) Final results of the proposed method
(PPSD). (c) Path-tracing results with an image-space denoiser [8]. (d) Results without denoiser. (e) Ground truth. Reproduced with permission
from Ref. [50], c© The Eurographics Association and John Wiley & Sons Ltd. 2020.

Stochastic progressive photon mapping [51] is
an important global illumination method derived
from photon mapping. It can simulate caustic
effects in a progressive way, but suffers from both
bias and variance with limited iterations, leading
to visually annoying MC noise. Zeng et al. [52]
recently proposed a deep learning-based method
specially designed for denoising the biased renderings
of stochastic progressive photon mapping. The
method decomposes the light transport into two
components, caustic and other, and denoises each part
independently. It also employs additional photon-
related auxiliary features and multi-residual blocks
to enhance kernel predicting neural networks.

5 High-dimensional denoising
5.1 Overview

Single-image MC denoisers take as input one noisy
image to produce one high-quality output without
MC noise. However, such single-image output
does not satisfy many applications that require
higher-dimensional outputs. For example, producing
computer animation requires a sequence of temporally
consistent images, and path guiding to generate
unbiased rendering results might need to denoise
the whole incident light field at each shading point.
In such scenarios, pixel-based MC denoisers are no
longer adequate to generate the high-dimensional

outputs without special designs for high-dimensional
signal processing and consistency constraints. Here
we categorize deep learning-based MC denoisers
targeting high-dimensional applications into three
types, temporal rendering, volume rendering, and
radiance field reconstruction, and discuss each in
detail. The related papers are summarized in Table 1.

5.2 Temporal rendering

One of the most important MC rendering applications
is to generate a sequence of images for computer
animation or interactive applications. Among many
single-image denoisers, some focus on rendering
quality, and others pay additional attention to
the balance between quality and speed to achieve
an interactive processing rate. Besides speed,
an essential consideration is to enhance temporal
stability between frames, to avoid low-frequency
variances that may lead to flicking artifacts in
animation. Pioneering research in this area was
inspired by the good results achieved by recurrent
neural networks (RNNs) [53, 54] in the context
of video super-resolution and sub-pixel CNNs, and
describes an RNN-based framework that dramatically
improves temporal stability for sequences of sparsely
sampled input images [8].

Compared to single-image denoisers, an RNN
network takes sequential images as input to explore
and impose constraints on temporal consistency. Its



A survey on deep learning-based Monte Carlo denoising 177

primary focus is on the reconstruction of global
illumination with extremely low sampling budgets, at
interactive rates. The primary novelty is the addition
of recurrent connections to the network to improve
temporal stability between frames. In addition, some
modifications are suggested for processing MC noise,
allowing larger pixel neighborhoods while improving
the execution speed by an order of magnitude
compared to a naive solution. The method shows

impressive high-quality results at interactive rates
and a promising future for high-quality real-time
denoisers (Fig. 7).

Hasselgren et al. [58] combined temporal denoising
with adaptive sampling to achieve high-quality
rendering with high-frequency details. They proposed
an adaptive rendering method that distributes
samples via spatiotemporal joint training of neural
network-based sample predictors and MC denoisers

Fig. 7 Closeups of 1-bounce global illumination results for 1 spp input (MC), axis-aligned filter [55] (AAF), ÃĂ-Trous wavelet filter [56] (EAW),
SURE-based filter [57] (SBF), and a deep learning-based denoiser [8] (PPSD). Compared to conventional methods, the deep learning-based MC
denoiser yields higher rendering quality and temporal stability [70]. Reproduced with permission from Ref. [8], c© ACM 2017.
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over multiple consecutive frames, increasing temporal
stability and image fidelity. An optimized sample
predictor enables the learning of spatio-temporal
sampling strategies, which helps the rendering engine
to adaptively place more samples in unoccluded
regions or track specular highlights, where high-
frequency details are hard to reconstruct. Such a
framework allows a trade-off between quality and
performance, while running at near real-time rates.

Meng et al. [59] focused on computation speed and
proposed a novel and practical real-time approach
to denoise noisy inputs in a data-dependent bilateral
space, where the differentiable grid enables end-to-
end training of denoising tasks. The proposed neural
network learns to generate a guide image for first
splatting noisy samples into the grid and then slicing
it to read out the denoised data. In such a way, the
approach avoids the explicit computation of per-pixel
weights for large kernels. It achieves high-quality
denoising with fast, spatially uniform filters, leading
to significantly improved speed compared to basic
kernel-prediction techniques.

While the aforementioned kernel-predicting neural
network proposed by Vogel et al. [9] also contains a

temporal denoiser module to boost temporal stability,
the authors focus on animation rendering, which is
slightly different from interactive rendering in terms
of future frame visibility. In animation rendering,
the temporal consistency constraints can be imposed
on a temporal window, where the spatial features
from previous and future individual frames can be
extracted and warped, using motion vectors, to match
the center frame. In this case, there is no need to
insert recurrent connections to the module.

5.3 Volume rendering

As an important sub-category of realistic rendering,
volume rendering [60, 61] significantly contributes
to a wide variety of vivid visual effects for
participating media, such as clouds, fogs, liquids,
transparent solids, and medical data (Fig. 8).
However, such rendering is usually conducted in
3D space, where a tremendous amount of light
transport and scattering among particles can occur,
causing difficulties or performance degradation for
conventional image-space MC denoisers. Some recent
research aims to adapt deep learning techniques to
generate high-quality volume rendering images in

Fig. 8 The combination of volume rendering and deep learning techniques can produce high-quality rendering results with low rendering cost.
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3D space. Such methods share the same spirit as
the previously discussed MC denoisers, using deep
learning techniques to generate smooth images from
a small number of MC samples.

Rendering clouds is considered to be a very
challenging and time-consuming problem due to
the intricacy of Lorenz-Mie scattering and the high
albedo. In order to efficiently synthesize images
of atmospheric clouds using a combination of MC
integration and neural networks, Kallweit et al. [62]
approached the problem in a data-driven way. They
trained a neural network with residual connections,
to predict the spatial and directional distribution of
radiant flux from an offline dataset containing tens
of cloud examples. In inferencing, the network takes
as input visibility sample points of the cloud in a
new scene to predict the radiance function for each
shading configuration. The method contributes a key
novelty that each visible sample contains a feature
consisting of a hierarchical 3D descriptor of the cloud
geometry with respect to the shading location and
light source. While synthesizing images, the method
stochastically samples the first scattering interaction
with delta tracking, estimates direct in-scattering via
MC integration, and predicts indirect in-scattering
with the neural network.

The performance of the deep learning-based
cloud rendering approach was later improved by
decomposing the neural network architecture into
some parts that can be precomputed and other parts
that should be inferred at runtime. Panin and
Nikolenko [63] introduced a latent space light probe
approach that uses a separate neural network which
accepts as input a descriptor of a grid cell in the
cloud, and outputs the light probe for baking light
probes offline. At runtime, the method uses a separate
rendering network that takes as input a light probe
and a much smaller 3D descriptor. Because collecting
3D descriptors takes about half of the total rendering
time, using light probes to collect 3D descriptors and
minimizing the size of 3D descriptors dramatically
reduce the overall computation, yielding 2–3 times
speedup over the previous approach.

Xu et al. [64] jointly leveraged gradient-domain
information and photon mapping techniques for
rendering homogenous participating media. They
adopt an unsupervised gradient-domain deep learning
framework [47] for image reconstruction of gradient-
domain volumetric photon density estimation. The

modified network contains encoded shift connections
and takes as input a separated auxiliary feature
branch which includes volume-based auxiliary
features such as transmittance and photon density.
The proposed method produces state-of-the-art
rendering quality in volumetric photon mapping.

In the domain of medical imaging, MC rendering
has turned out to be an efficient means to visualize
and understand internal structures, especially for
inexperienced users such as medical students, forensic
staff, and patients. However, auxiliary features
like depth and normal, vital for surface-based MC
denoisers, are neither well-defined nor smooth for
medical volumetric data. To address this, Hofmann
et al. [65] modified surface-based MC denoisers
for path-traced visualizations of medical volumetric
data. Although noisy, special auxiliary features,
such as model space position, world space normal,
albedo and descriptors of first and second scattering
events, are fed as guiding inputs to the neural
network and contribute to generating high-quality
rendering results from noisy images. Furthermore, the
authors proposed a loss function specifically defined
for a sharp reconstruction of specular highlights,
and a GAN-inspired dual autoencoder architecture
to enhance sharp edges and details like specular
highlights, which are essential for interpretation. The
overall architecture also considers temporal stability
of video via feature reprojection between frames.

5.4 Radiance field reconstruction

Modern pixel-based MC denoisers have prevailed
in a great range of rendering applications with
satisfactory visual results. The denoised results,
however, are mathematically biased estimates without
a convergence guarantee, even if using hundreds or
thousands of samples per pixel. In order to push
the rendering quality to the edge for applications
that are sensitive to numerical accuracy and visual
fidelity, such as physical simulation, ground truth
data generation, and high-quality rendering, some
orthogonal approaches have pursued the ultimate
in rendering quality via unbiased MC estimators.
Recently, deep learning-based techniques have been
used to reconstruct radiance fields to guide path
tracing, under the name of path guiding [66, 67],
for efficiently generating high-quality images with
relatively large numbers of samples.

Bako et al. [40] noted that even modern deep
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learning-based MC denoisers do not produce acceptable
final results for high-quality rendering, and turned
to the recent path guiding techniques that aim to
predict the incident radiance field at each pixel,
which enables use of a guided probability distribution
function (PDF) for first-bounce importance sampling.
While existing path guiding approaches involve
expensive online learning and offer benefits only at
high sample counts, the authors proposed an offline,
scene-independent deep learning-based approach that
can importance-sample first-bounce light paths for
general scenes. The predicted incident radiance
field contains high-dimensional directional incident
radiance information to directly modulate a per-pixel
guiding PDF for unbiased MC integration. This
increases the efficiency of sampling by putting more
samples in informative directions, e.g., unoccluded
regions. The primary advantage of offline learning
is that it uses a data-driven scheme to learn a priori
from a large set of training scenes, for reconstructing
the full incident radiance by reusing nearby samples;
thereby, the expensive online learning process that
uses a large number of samples to fit a new scene
can be abandoned. As reference, the trained network
takes a small number of uniform initial samples as
input to predict the full incident radiance field of each
pixel, which is used to guide the remaining samples
to generate the final results.

Instead of single-pass path guiding, another method
takes a progressive adaptive sampling strategy that
iteratively uses last-iteration samples to guide the
sampling process for the next iteration [41]. In order
to guide the progressive sampling process, the method
considers the sampling as an action that can produce
rewards, i.e., reducing reconstruction errors, and
trains a quality-predicting neural network to predict
the gain of different actions in a deep reinforcement
learning (DRL) way [68, 69]. Via this action-based
dynamic formulation, the quality-predicting neural
network can learn an optimal sampling strategy from
an offline dataset, using progressive sampling contexts
in unseen scenes. The method decomposes the overall
sampling process into two atomic sampling actions,
doubling samples and refining directional resolution,
and then uses the quality-predicting neural network
to predict dynamic rewards of the two actions in
different directions of pixels. In order to reconstruct
the incident radiance field from the adaptive samples,
the authors trained a CNN-based 4D neural network

to generate a denoised radiance field for each pixel,
which is used to guide path tracing in subsequent
iterations. In general, the deep learning-guided
unbiased sampling process guarantees mathematical
convergence with sufficient samples, resulting in
higher rendering quality compared to that from MC
denoisers and other unbiased rendering approaches
(Fig. 9).

Fig. 9 Equal-time comparisons between a biased MC denoiser (Bako
et al. [16]) and unbiased path guiding using deep learning to generate
guidance (Huo et al. [41]). Results are rendered within 1, 2, 8, 30,
60, and 120 minutes from top to bottom. While the MC denoiser
converges faster with low sample counts, the deep learning-guided
sampling method outperforms the MC denoiser with more samples
and converges to the reference. Reproduced with permission from
Ref. [41], c© ACM 2020.
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Denoised radiance fields can also be directly
integrated into pixel colors for biased rendering [42].
The method uses an autoencoder neural network
to denoise low-sample radiance caches for rendering
indirect illumination, and then progressively increases
samples to refine the radiance caches.

6 Conclusions
Thanks to the benefits from the unprecedented
success of deep learning techniques, MC denoising
has attracted strong attention in recent years.
These techniques are naturally compatible with
MC integration, one of the most general rendering
frameworks used by many rendering pipelines. In
general, only minor modification is required to extract
auxiliary features, a wide range of applications is
supported, they are scalable to both high-quality
and performance-sensitive rendering, often GPU
and TPU-friendly, and above all, they dramatically

decrease the cost of MC rendering. Table 1 provides
an overview of the methods discussed in this survey.
For classifying different techniques, we use the
following attributes in the summary table:
• Rendering goals. The exact goals of the neural

networks or systems with respect to the entire
rendering pipeline. Possible attributes of those
specific targets include: PD, pixel denoising; RD,
radiance denoising; VD, volumetric data denoising;
AS, adaptive sampling; DE, rendering distributed
effects; SD, sequential image denoising; and CA,
rendering caustic effects.

• Network inputs. The type of features the neural
networks take as input. Possible attributes include:
P, noisy pixel colors generated by MC integration
using a small number of samples per pixel; A,
geometry- or scene-related auxiliary features such
as surface normals, world positions, and texture
albedo; S, sample colors defined on each MC
sample rather than each pixel; R, radiance-field

Table 1 Summary of papers in Sections 3, 4, and 5. Attributes and abbreviations are given in Section 6

Method Goal Input Predict Domain Speed Remark
Kalantari et al. [10] PD, DE PA parameter image O, 4 MLP, cross-bilateral and non-local means filters

Xing and Chen [14] PD, AS PA parameter image O, 8 MLP, SURE, cross-bilateral filter
Bako et al. [16] PD PA kernel image O, 16 CNN, kernel-predicting network
Vogels et al. [9] PD, SD, AS PA kernel image O, 16 CNN, asymmetric loss functions
Back et al. [20] PD PA kernel image O, 32 CNN, combine pixel estimates
Xu et al. [21] PD PA radiance image O, 4 CNN, GAN, feature modulation, perceptual loss

Alsaiari et al. [24] PD P radiance image O, 1 CNN, GAN
Yang et al. [27] PD PA radiance image O, 4 CNN, HDR tonemapping
Yang et al. [28] PD PA radiance image O, 4 CNN, feature encoder
Wong and Wong [26] PD PA radiance image O, 8 CNN, ResNet
Kuzenetsov et al. [31] PD, AS PA radiance image O, 5 CNN, autoencoder
Gharbi et al. [17] PD, DE SA kernel sample O, 4 CNN, U-Net, kernel-splatting network
Munkberg and Hasselgren [32] PD, DE SA kernel sample I, 8 CNN, layered embedding
Lin et al. [34] PD SA kernel sample O, 1 CNN, three-scale features, attention mechanism

Lin et al. [36] PD PAR kernel radiance O, 4 CNN, light transport covariance
Kettunen et al. [46] PD PAG radiance gradient O, 4 CNN, U-Net, perceptual loss
Guo et al. [47] PD PAG radiance gradient O, 4 CNN, unsupervised learning
Zhu et al. [50] PD, CA PAO kernel photon O, 1 CNN, caustic decomposition
Zeng et al. [52] PD, CA PAO kernel photon O, 1 CNN, caustic decomposition
Chaitanya et al. [8] SD PA radiance temporal I, 1 RNN, autoencoder
Hasselgren et al. [58] SD, AS PA radiance temporal I, 4 CNN, U-Net with recurrent feedback
Meng et al. [59] SD PA kernel temporal I, 1 CNN, differentiable neural bilateral grid
Kallweit et al. [62] VD V radiance volume O, 1 MLP, hierarchical 3D descriptors
Panin and Nikolenko [63] VD V radiance volume O, 1 MLP, baking light probes
Hofman et al. [65] VD PA radiance image O, 1 CNN, GAN, dual autoencoder
Xu et al. [64] VD PAVG radiance gradient O, 1 CNN, photon density estimation
Bako et al. [40] RD, AS RA radiance radiance O, 4 CNN, GAN
Huo et al. [41] RD, AS RA radiance radiance O, 16 CNN, DRL, 4D convolution
Jiang and Kainz [42] RD RA radiance radiance O, 1 CNN, autoencoder
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sample colors defined on the incident radiance field
with directional information; G, gradient-domain
features, e.g., gradient maps; O, special descriptors
of nearby photon information; V, descriptors of
volumetric and lighting information in the 3D
space.

• Network prediction. The underlying mathematical
models or expected prediction outputs of the
neural networks. The attributes can be classified
into predicting filter parameters, predicting
filtering kernels, and directly predicting radiance.

• Rendering domain. Traditionally, there exist
variants of definitions of the rendering problem
depending on the formulation and abstraction of
the problem. Deep learning-based MC denoising
techniques inherit such a taxonomy in terms of
the relations between input, output, and features
being explored. Common rendering domains
include image domain, sample domain, radiance-
field domain, gradient domain, photon domain,
temporal domain, and volume domain.

• Rendering speed. Variants of MC denoisers make
different tradeoffs between rendering quality and
performance, thus satisfying different applications.
Currently, deep learning-based MC denoisers
pursue high-quality rendering with offline speed
(O) or achieve interactive (I) frame rates at the cost
of rendering details. The total time consumed
depends on both neural network inference speed
and the minimum samples per pixel (spp) for
noisy network inputs. Here we report the
minimum spp appearing in the original paper.

• Technical remark. Particular technical features
and deep learning techniques used by each
method.

In general, conventional MC integration approaches
perform value estimation through stochastic schemes
per footprint, e.g., pixel or shading point. On the
other hand, deep learning-based MC denoising can
be seen as a complementary postprocessing technique
to explore the generality of spatial, temporal, and
semantic correlations between rendering footprints
and auxiliary features from offline datasets. It is
not mandatory, in the conventional sense, but has
achieved great success in practice and raised a lot
of academic interest by revealing another dimension
of the rendering problem, which is influencing in-
depth studies and might lead to interesting next-

generation rendering applications in the future. Some
of the remaining open problems in this research
area include the pursuit of efficient exploration
of the high-dimensional path space, cooperation
with sophisticated rendering frameworks such as
Metropolis light transportation, the balance between
mathematical convergence and regression efficiency,
exploration of novel features and deep-learning
models, and improved computation speed for robust
real-time rendering. Hopefully, this survey will
introduce deep learning-based MC denoising to a large
audience and lead to follow-up research in different
directions.
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