
Computational Visual Media
https://doi.org/10.1007/s41095-021-0203-2 Vol. 7, No. 1, March 2021, 153–157

Short Communication

Jittor-GAN: A fast-training generative adversarial network
model zoo based on Jittor

Wen-Yang Zhou1, Guo-Wei Yang1, and Shi-Min Hu1 (�)

c© The Author(s) 2021.

With the emergence of CNNs and massive datasets,
the performance of many tasks in computer vision
has been greatly improved, such as object detection,
instance segmentation, and image generation. The
last has many novel applications, including image-to-
image translation, image inpainting, and image super-
resolution. It can generate authentic and creative
images.

GAN [1] is the current mainstream model for image
generation. It usually consists of an encoder, a
generator, and a discriminator, which are constructed
from CNN layers. The encoder is responsible for
mapping images to a latent space. The generator is
responsible for generating images from latent vectors,
using one or multiple images. The discriminator is
responsible for distinguishing generated images from
real images. Through joint adversarial training of the
generator and the discriminator, the generative ability
of the generator is continuously improved, thereby
generating more and more realistic images.

However, training GAN models is time consuming.
Thus, we have implemented a GAN model zoo based
on Jittor, a fully just-in-time (JIT) complied deep
learning framework by Tsinghua University [2]. This
model zoo is a collection of 27 mainstream GAN
models published from 2014 to 2019, listed in Table 1.
These models have an average of 3070 citations per
model, and they have great influences and have
been widely used in both academia and industry.
Our model zoo covers 4 kinds of tasks, including
image generation (G), image-to-image translation

1 BNRist, Tsinghua University, Beijing 100084, China.
E-mail: W.-Y. Zhou, zhouwy19@mails.tsinghua.edu.cn;
G.-W. Yang, ygw19@mails.tsinghua.edu.cn; S.-M. Hu,
shimin@tsinghua.edu.cn (�).

Manuscript received: 2020-10-26; accepted: 2021-01-02

(T), super-resolution (S), and image inpainting (I).
Table 1 lists the models for different tasks and their
representative models. Further details of these 27
GAN models can be found in Ref. [3].

1 Why can Jittor-GAN accelerate model
training?

Training the Jittor models is 2.26 times faster than
equivalent PyTorch models on average. There
are three main reasons. Firstly, Jittor’s unique
operator fusion mechanism saves much memory access
time. Secondly, Jittor’s optimization makes better
utilization of GPU computing resources. Thirdly,
Jittor’s precise back propagation algorithm avoids
computing derivatives of parameters that do not need
to be updated.

1.1 Operator fusion
Jittor proposed the concept of meta-operators, which
cover three operator categories: reindex, reindex-
reduce, and element-wise. Most common element
operators can be fused, e.g., convolution and matrix
multiplication. Jittor also has a unique meta-operator
fusion mechanism, which can fuse adjacent operators
together. After doing so, intermediate results do
not need to be stored in memory, saving memory
read and write time. In addition, Jittor uses lazy
execution, allowing Jittor to fuse more meta-operators
for increased optimization.

Jittor’s unique lazy execution mechanism separates
construction of the calculation graph from calculation,
and performs calculation when a result is required
or the calculation graph reaches a certain scale. In
contrast, PyTorch uses eager execution for calculation
graphs, so results are calculated as soon as the
calculation graph is constructed. For example, when

153



154 W.-Y. Zhou, G.-W. Yang, S.-M. Hu

Table 1 The 27 GAN models, their task (T, see text), batch size
(B), image dimensions (D, height and width), and number of training
iterations per second using Jittor (JT) and PyTorch (PT) frameworks.
Speed up (SU) measures Jittor’s relative speed to PyTorch (Max: 3.83,
Min: 1.27, Avg: 2.26)

Model T B D PT JT SU
SoftmaxGAN G 64 28 32.63 124.82 3.83
WGAN-GP G 64 28 36.01 133.88 3.72
WGAN-DIV G 64 28 7.13 25.66 3.60
ClusterGAN G 64 28 54.37 184.47 3.39
RelativisticGAN G 64 32 20.83 69.28 3.33
AAE G 64 32 33.26 93.20 2.80
BGAN G 64 28 45.07 125.32 2.78
GAN G 64 28 44.68 122.56 2.74
DRAGAN G 64 32 21.46 53.98 2.52
LSGAN G 64 32 34.25 78.35 2.29
WGAN G 64 28 64.51 145.75 2.26
EBGAN G 64 32 36.17 76.62 2.12
CGAN G 64 32 33.93 69.70 2.05
BEGAN G 64 32 31.34 58.83 1.88
INFOGAN G 64 32 24.00 44.75 1.86
SGAN G 64 32 31.27 56.03 1.79
DCGAN G 64 32 41.34 73.70 1.78
PIXELDA G 64 32 14.09 24.47 1.74
ACGAN G 64 32 30.40 51.00 1.68
COGAN G 32 32 19.22 31.17 1.62
UNIT T 1 64 7.55 15.13 2.00
CYCLEGAN T 1 64 6.97 12.25 1.76
Pix2Pix T 1 256 25.40 40.44 1.59
StarGan T 16 128 7.90 10.14 1.28
BICYCLEGAN T 8 128 5.65 7.16 1.27
ESRGAN S 4 64 3.38 4.97 1.47
ContextEncoder I 8 128 31.95 55.83 1.75
Average — — — 27.58 66.28 2.26

computing convolutions, the calculation is performed
immediately after the image data is input and the
results are stored in memory. This has the advantage
that the network structure can be particularly flexible,
and the network can include conditional or loop
statements. The disadvantage is that it limits the
potential for optimization. If two element operators
are in different operators and they can be merged, the
eager execution mechanism will need to save the result
of the first element operator in memory, so it cannot
be merged with the second element operator. The lazy
execution mechanism will optimize and determine
the largest possible calculation graph, with maximal
meta-operator fusion.

1.2 GPU utilization
When training a network, greater GPU utilization
leads to more fully utilized computing resources and
faster computation. Jittor improves GPU utilization
through Fetch Sync methods.

1.2.1 Async fetch
Fetch Sync is a unique asynchronous interface in
Jittor. When training a network, users often
output the loss of each round for observation. In
order to output network results, PyTorch forces
GPU and CPU data synchronization using the
cuda synchronize function. This blocks the code
running until the required output calculation is
complete and copied to the CPU, causing the pipeline
to be emptied, resulting in decreased GPU utilization.
Fetch Sync supports asynchronous acquisition of
network results, and the corresponding function is
called for output after the network result is calculated
and transmitted.
1.2.2 Kernel launches
Small amounts of data (for example, training WGAN
using the MNIST dataset uses size 64 × 1 × 28 × 28)
can be processed quickly in the GPU, making the
GPU frequently wait, resulting in low GPU utilization
in PyTorch. Jittor’s operator fusion can reduce the
number of kernel launches, thereby reducing CPU–
GPU communication and improving GPU scheduling.

1.3 Precise backward algorithm
A GAN model has a generator and a discriminator.
The discriminator determines whether an image is
real or generated by the generator. The task of the
generator is to generate an image that is difficult
for the discriminator to distinguish, to provide
confrontational training.

When calculating parameters’ gradients, PyTorch
uses loss.backward() to propagate the gradient
to all related parameters, while Jittor uses
jt.grad(loss, parameters) to avoid unnecessary
gradient calculations. For example, gradients of the
generator do not need to be calculated when training
the discriminator. PyTorch calculates the gradients of
both generator and discriminator if the variables fed
to the discriminator are not detached, while Jittor just
calculates gradients of the discriminator. Therefore,
Jittor’s gradient calculation method is a point-to-point
gradient calculation which requires less computation
than PyTorch.

2 Experiments
We first compare training speed for Jittor and Pytorch
on the GAN model zoo. We then show generated



Jittor-GAN: A fast-training generative adversarial network model zoo based on Jittor 155

results for the 4 tasks mentioned in Table 1. Jittor-
GAN model zoo has been available in GitHub�.

2.1 Model training speed
The biggest advantage of our model zoo is that model
training is very fast due to the targeted optimizations
of the Jittor framework. To demonstrate our speed
advantage, we compare with the currently popular
deep learning framework PyTorch (version 1.3.0).

To ensure fairness, we ensure that the network
architecture, input image, and network parameters
are identical. All models were tested on an NVIDIA
Titan RTX Graphics Card with E5-2678 v3 CPU. We
ran 100 times to warm up the model, and then ran
1000 times to test the speed of model training.

Results are shown in Table 1, giving the number of
training iterations per second for Jittor and PyTorch
frameworks. It can be seen that the training speed of
all Jittor models is faster than for Pytorch equivalents,

ranging from 1.27 to 3.83 times faster, with an average
of 2.26. Therefore, using our model zoo can greatly
improve model training for development.

2.2 Applications
We now consider our models’ performance on different
datasets for 4 tasks.

Image generation was one of the first and is one of
the most popular applications of GANs. We provide
20 GAN models for image generation, such including
GAN, CGAN, DCGAN, and WGAN. Outputs for
some common and important models using the
MNIST dataset are shown in Fig. 1.

Image-to-Image translation aims to convert an
image to another image domain while ensuring that
the image content is consistent. We provide 5 GAN
models: CYCLEGAN, Pix2Pix, BICYCLEGAN,
UNIT, and StarGan. Example results using the map
dataset are shown in Fig. 2.

Fig. 1 Results generated using the MNIST dataset.

Fig. 2 Generated results on map dataset. On the left is the conversion of real images to sketches, and on the right is the conversion of sketches
to real images.

� https://github.com/Jittor/ganjittor.



156 W.-Y. Zhou, G.-W. Yang, S.-M. Hu

The super resolution task aims to generate high-
resolution images from lower-resolution ones. Results
from ESRGAN on the celeba dataset are shown in
Fig. 3.

Image inpainting aims to fill in missing image blocks
in an image. Results from ContextEncoder on the
celeba dataset are shown in Fig. 4.

Fig. 3 Generated results of ESRGAN on celeba dataset. The left image of each group is a low-resolution image, and the right image is a
high-resolution image output by ESRGAN.

Fig. 4 Generated results of ContextEncoder on celeba dataset. The first line is the input image, the second line is the image predicted by
ContextEncoder, and the third line is the real image.



Jittor-GAN: A fast-training generative adversarial network model zoo based on Jittor 157

Acknowledgements
This work was supported by National Natural Science
Foundation of China (No. 61521002).

References

[1] Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu,
B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,
Y. Generative adversarial nets. In: Proceedings of the
27th International Conference on Neural Information
Processing Systems, Vol. 2, 2672–2680, 2014.

[2] Hu, S.-M.; Liang, D.; Yang, G.-Y.; Yang, G.-W.; Zhou,
W.-Y. Jittor: A novel deep learning framework with
meta-operators and unified graph execution. Science
China Information Science Vol. 63, No. 12, 222103, 2020.

[3] Cao, Y.-J.; Jia, L.-L.; Chen, Y.-X.; Lin, N.; Yang, C.;
Zhang, B.; Liu, Z.; Li, X.-X.; Dai, H.-H. Recent advances
of generative adversarial networks in com-puter vision.
IEEE Access Vol. 7, 14985–15006, 2019.

Wen-Yang Zhou is currently a Ph.D.
student in the Department of Computer
Science and Technology, Tsinghua
University, Beijing. His research
interests include computer graphics,
image analysis, and computer vision.

Guo-Wei Yang is currently a Ph.D.
student in the Department of Computer
Science and Technology, Tsinghua
University. His research interests include
computer graphics, image analysis, and
computer vision.

Shi-Min Hu received his Ph.D. degree
from Zhejiang University, in 1996.
He is currently a professor with
the Department of Computer Science
and Technology, Tsinghua University.
He has authored over 100 papers.
His research interests include digital
geometry processing, video processing,

rendering, computer animation, and computer-aided
geometric design. He is the Editor-in-Chief of Computational
Visual Media, and on the Editorial Board of several other
journals, including Computer Aided Design and Computer
& Graphics (both Elsevier).

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


