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Abstract Salient object detection is used as a pre-
process in many computer vision tasks (such as salient
object segmentation, video salient object detection,
etc.). When performing salient object detection, depth
information can provide clues to the location of target
objects, so effective fusion of RGB and depth feature
information is important. In this paper, we propose a
new feature information aggregation approach, weighted
group integration (WGI), to effectively integrate RGB
and depth feature information. We use a dual-branch
structure to slice the input RGB image and depth map
separately and then merge the results separately by
concatenation. As grouped features may lose global
information about the target object, we also make use
of the idea of residual learning, taking the features
captured by the original fusion method as supplementary
information to ensure both accuracy and completeness
of the fused information. Experiments on five datasets
show that our model performs better than typical
existing approaches for four evaluation metrics.

Keywords weighted group; depth information; RGB-
D information; salient object detection;
deep learning

1 Introduction

In recent years, salient object detection (SOD) has
attracted widespread interest; it aims to distinguish
the most visually obvious objects or regions in a
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given image. Salient object detection uses computers
to imitate human visual mechanisms to detect and
distinguish salient objects in given images. SOD has
been applied to many fields, including content-based
image editing [1-4], image and video compression [5],
object segmentation and recognition [6-10], visual
tracking [11-13], image retrieval [14, 15], etc. Due to
their powerful ability to extract information, SOD
[16, 17] and other related tasks (e.g., video salient
object detection [18, 19], co-saliency detection [20, 21],
light field salient object detection [22-24], etc.) are
often used as preprocesses in visual tasks. Most early
SOD approaches considered a single RGB image or
a set of them. As depth cameras (such as Kinect,
RealSense, etc.) began to be applied to computer
vision, combining the use of depth information
for salient object detection, namely RGB-D SOD,
becomes a topic of interest.

Depth cues can supply additional information
about appearance, so it is useful to fuse depth
information into salient object detection. A model
incorporating depth information is able to identify
target objects in given images more quickly and
accurately.

In recent years, more and more researchers
have considered RGB-D SOD [25-27] as a way to
improve salient object detection. Existing RGB-D
SOD methods mostly fused depth input in one of 3
stages: fusion at an early stage [28-31], fusion at a
middle stage [32-35], or fusion at a late stage [36-
38]. Early stage fusion directly fuses the input, both
RGB and depth features, into one channel to extract
information. In Ref. [28], Peng et al. proposed a multi-
stage RGB-D SOD algorithm that combines depth
cues and appearance features in a coupled manner.
As a result of the distribution gap between the two
inputs, it is not easy to fit the data in one model.

Fan .
‘i}\ rguslvlell}]sgvlgrg?s @ SPI' inger



116

Y. Ge, C. Zhang, K. Wang, et al.

Some methods fuse depth features in a middle-stage,
they first extract RGB features at each level and
then combine them with depth features to generate
saliency maps. For example, in Ref. [32], Feng et
al. proposed a method that utilizes RGB-D saliency
features to obtain angular spread directions. Fusing
the input at a late stage firstly determines salient
RGB and depth information in two channels, and
then utilizes pixel-wise summation or multiplication
to fuse the RGB and depth saliencies. For example,
Cheng et al. [38] proposed a method that exploits
visual saliency cues in color and depth spaces to
compute the saliency map.

Since depth information can help to locate salient
objects in an image, in this article, we present a
weighting strategy to obtain more accurate depth
Furthermore, to exploit both RGB
and depth information, we propose a novel feature

feature cues.

integration method, weighted group integration
(WGI), that can well employ each category of
information. See Fig. 1. The first row shows that our
model is able to accurately detect salient objects in
complex scenes. The second row shows that, although
the depth map is noisy, the predicted saliency map
from our method is still close to the ground truth.
Extensive experiments demonstrate that the proposed
method achieves comparable results to other state-of-
art models on five public benchmarks.
In summary, our main contributions are
1. A novel feature fusion method, WGI, which can
effectively integrate RGB features and depth
features to accurately distinguish salient objects
in given images. It shows significant performance
improvements over existing feature fusion modules
like DRB.
2. A series of experiments on five popular datasets
to verify the effectiveness and efficiency of the
proposed approach.

RGB

Depth GT Ours

T

Fig. 1 Saliency maps from our model: (a) with a complex background,
(b) with noisy depths.
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2 Related work

2.1 Traditional

Traditional RGB-D saliency models usually rely on
hand-crafted features to distinguish salient objects
in given images. Existing widely-used hand-crafted
features including contrast [28, 38, 39], compactness
[39, 40], center-surround difference [41, 42], center or
boundary prior [43, 44], background enclosure [32],
and various fused saliency measures [29]. In Ref. [45],
Niu et al. proposed a pioneering model for RGB-D
SOD that applied disparity contrast and domain
information into stereoscopic photography to measure
stereo saliency. In Ref. [32], Feng et al. proposed
a hand-crafted feature, local background enclosure
(LBE) feature, that can directly assess salient
structure from depths. LBE features distinguish the
background from target objects or candidate regions.
In Ref. [39], to reduce the influence of poor depth
maps on saliency detection, Cong et al. turned the
input into a graph and applied depth information to
graph construction. They proposed a new method
that utilizes RGB and depth features to compute
a compactness saliency map. However, this hand-
crafted feature has limitations, such as difficulty
in providing high-level semantic information, slow
and imprecise extraction of information, and poor
generalizability in complex scenarios.

2.2 Deep learning based

To overcome the limitations of hand-crafted features,
and benefit from the powerful information extraction
capability of deep learning, recent works have applied
convolutional neural networks (CNN) to RGB-D
saliency detection. This improves the expressiveness
of models and improves detection performance [25, 46—
53]. Shigematsu et al. [33] proposed a pioneering
method, BED, which applies deep-learning to RGB-D
based SOD models. To obtain background enclosure
features and depth contrast in given images, BED
extracted ten hand-crafted depth features based on
super-pixels. These features were then fed into a CNN
to fuse them with RGB features to give superpixel
saliency values. In Ref. [30], Qu et al. designed a
method that firstly generated RGB and depth feature
vectors for superpixels or patches, and then fused
these vectors in the CNN to generate saliency values,
ultimately utilizing a Laplacian function to obtain
the predicted maps. More recently, Han et al. [47]
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designed an end-to-end model that extracted features
from both RGB images and depth maps, and used
a fully connected layer to obtain the final saliency
map.

3 Owur approach

In this paper, we propose an integration network
which fuses RGB and depth feature information for
RGB-D salient object detection. In this section, we
describe our proposed model, WGI-Net, for RGB-
D salient object detection. We also explain the
advantage of weighting depth information and clarify
how to weight the depth information in detail. Finally,
we expound the proposed feature fusion module, WGI
that aggregates the depth features and RGB features

to distinguish the salient objects in given images.

3.1 Overall network architecture

To explain our network for RGB-D based saliency
detection, Fig. 2 depicts an example backbone
with two branches (an RGB branch and a depth
branch), each having a hierarchy of five levels.
The RGB branch is utilized to obtain the main
feature information, including low-level features

(color, location, texture, etc.), high-level features
(semantic information), and contextual features. The
depth branch is used to capture depth cues from the
image to help accurately and completely detect the
salient objects. To better fuse the depth information
with the RGB information, we present a novel
feature fusion module, WGI. We employ element-
wise addition to integrate the output of each WGI
module, Fftsed (5 = 1,... '5). Finally, we feed the
summed values into the FRU (see Ref. [34]) to obtain
more detailed and accurate saliency maps.

3.2 Weighted depth information

Both RGB and depth information are significant
for salient object detection and other segmentation.
Specifically, the depth information can provide
powerful cues to locate and distinguish salient
objects in an image. It is difficult to accurately
detect and distinguish salient objects in images
only by appearance features when the background
environment is complex or the color contrast between
the foreground and background is low.

To the best of our knowledge, most existing models
only consider depth information but not weighted
depth information. In this paper, we apply weights
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Fig. 2 An overview of our proposed model. fiRGB and ffepth (i=1,---,5) represent RGB and depth features at each level, respectively.
Wr (j=1,---,8) are the weights for each block of depth information. fF#® and f?,';p“’ represent features for the j** part of the i*® level of

RGB and depth information, respectively.

@ ’Euslvlsgsﬁvfglgé @ Springer



118

Y. Ge, C. Zhang, K. Wang, et al.

to depth information to obtain more accurate saliency
maps. As shown in Fig. 2, we record the RGB feature
and depth information of each layer as fRGB
fidepth (1 =1,---,5), respectively. We then divide
both fREB and fIP™ into 8 parts in each level,
namely, RGB and fdepth (j=1,---,8).

To obtaln the depth residual feature we firstly feed

depth
fz ]

and

into a 3 x 3 convolutional layer, and compute:

f(i?pth _ COHV ( depth) (1)

where Convs(.) represents a convolutional layer with
a kernel size of 3.

This depth residual feature can provide cues that
are ignored in the process of forwarding extracted
information. Then, we divide fdepth
and feed them into two branches.

into two parts,
In one branch, we
feed the fdepth into a series of weight layers composed
of a Poohng—l—Conv layer and a Softmax layer to

capture more detailed and accurate information:
ff';pth = S(AvgPooling * fdepth ) (2)
where S(.) denotes the softmax function and

* represents the convolution operatlon In the other

depth

branch, we do nothing with f Finally, we

utilize element-wise multlphcatlon to fuse f; ; depth’ 1 d

fdepth

i to obtain complete information:

depth’

< fig" (3)

where x denotes element-wise multiplication. The

weighted depth information can provide more
Depth

f 1,J

complementary to the RGB information.

fDepth _ fdepth

accurate detailed information, i.e., is more
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Fig. 3 The process of weighting depth information.

3.3 Weighted group integration module

In order to effectively utilize feature information from
the image, we introduce a new feature fusion method,
WGI. In this module, we divide the RGB information
and depth information into 8 parts,
Then, we use a concatenation operation to fuse
the RGB feature and the depth feature for each

{@ IN$VL§S§Y'§|¥§AS @ Springer

respectively.

part to obtain that part’s saliency map. Next, we
again utilize a concatenation operation to integrate
the predicted maps to collect all useful information.
Details of the WGI module are as follows.

Instead of fusing RGB and depth feature
information using convolution layers, we seek
alternative methods with powerful feature integration
ability, less
computational load. In particular, we replace RGB
and depth feature information with smaller groups of
feature information blocks, while at the same time,
the previous fusion information is connected in a

while maintaining a similar or

similar residual style. As shown in the purple box
in Fig. 2, the WGI module contains two branches,
an RGB branch and a depth branch. In the RGB
branch, we evenly divide the obtained RGB feature
of each level into 8 sub-information blocks, ZRJGB
(i=1,---,5,7=1 ,8). Each block of the RGB
branch has the same number of channels, 1/8 of the
input image. In the depth information branch, we
perform the same operation on the input depth map
as in the RGB branch, dividing the input depth map
of each layer into 8 parts, fdemh We also perform
the operation given in Sectlon 3.2 on the 8 blocks to
obtain more instructive depth information ( fi%?pth).

Then, we separately merge each obtained RGB
information block with the corresponding depth
information block by concatenation on channel

dimension:

Depth
Z-f}‘jsed Concat ( f;’ RGB Z-’fpt) (4)

where Concat(.) represents concatenation on channel
dimension and fif:ljSCd denotes the fused feature
information of each block. We then concatenate the 8
saliency prediction maps obtained from the previous
step:

ffused COHC&t( fused7 . if}lgSEd) (5)

where fifused is the saliency prediction map generated
by the 8 f/us¢d in this layer.
changes the number of channels in the result, we
perform a 1 x 1 convolution operation on the obtained
prediction map to ensure it has the same size as the
input map for each level. Thus, the reshaped fused
information can be written as

fineXt _ CODV1 (fifused) (6)

where Convy(.) represents a convolution layer with
kernel size 1.

Since concatenation

In order to ensure the completeness and accuracy
of the information, the WGI module utilizes the
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information obtained by the original fusion method as
residual information to correct the predicted saliency
maps, allowing it to highly accurately distinguish the
salient objects:

Fifused — finext + fires (7)
where Ffued (j = 1,...5) denotes the output of
the WGI module, and f}** (i = 1,---,5) denotes the
original fused information of each level.

In this module, we use segmentation and fusion to
slice the depth information and RGB information
extracted from each layer and then fuse them
separately. This method is conducive to the use
of global information and can more effectively fuse
the two types of information.

4 Experiments

4.1 Datasets

The following datasets were chosen for evaluation. Ju
et al. [41] proposed a dataset, NJUD, for detecting
salient objects or pixels in given images. The dataset
consists of 2000 images with mask labels. Its stereo
images were taken with a Fuji W3 camera. Images
were collected from the Internet, 3D movies, and
photos. Because of the labeling differences between
2D images and 3D environments, the labels were all
provided by Nvidia 3D vision, to ensure accuracy of
mask labeling. The RGBD135 dataset [38] comprises
135 indoor images with manually marked labels. The
images are taken by Kinect and the resolution of
each image is 640 x 480. To address the problem
of strong complementarity between RGB and depth,
Peng et al. [28] proposed a benchmark, NLPR, for
RGB-D salient object detection. It contains 1000
natural images and manually matched ground truths.
Zhang et al. [54] presented a dataset, LFSD, based
on general salient object segmentation and saliency
detection on light fields.
3 parts, including outdoor scenes, indoor scenes,
and corresponding ground truths. DUT-RGBD [34]
presented by Piao et al. is composed of 1200 pairs of
images taken by a Lytro camera. Most images have
complex backgrounds so are suitable for evaluating
the effectiveness of our proposed model.

The dataset comprises

4.2 Evaluation metrics

In this paper, we utilize four common measures
to evaluate the quality of predicted saliency maps

against the ground truth: MAE [59], F-measure [60],
S-measure [61], and E-measure [62]. MAE evaluates
the mean absolute error between saliency maps .S and
corresponding ground-truth G over all image pixels:

1 H W
MAE:HXw;;w(x,y)—G(%y)I (8)

where H and W denote the height and the width
of the image, respectively. F-measure computes the
weighted harmonic mean between precision P and
recall R of binarized saliency maps, defined as

(8% +1) PR 0
"PP+R ®)
where 32 is generally set to 0.3 to emphasize precision.
Fiax is maximum F-measure. S-measure computes
the structural similarity of the object-aware S,

Fs =

and the region-aware S, comparing the non-binary
saliency map and the ground truth.

S=aS,+(1—a)s (10)
Following previous work [61], a is set to 0.5. E-
measure utilizes both local and global pixels to obtain
local pixel matching information and image-pixel
statistics. Unlike S-measure, E-measure evaluates
binary maps:

1 W H
EIWXHZZ¢FM(1'7Z/)

rz=1y=1

(11)

where ¢pyr is the enhanced alignment matrix. We
consider maximum E-measure, Fpax.

4.3 Training details

We implemented our method using the Pytorch
toolbox and utilized an NVIDIA 1080 Ti GPU for
acceleration. As training dataset we used the same
one as DMRA [34], with input maps set to 256 x 256.
Other experimental parameters, momentum and
weight decay, were set to 0.9 and 0.0005, respectively.
In addition, the learning rate was 107'°, and the
batch size was 2.

4.4 Comparison

We made a detailed comparison between our method
and seven other state-of-the-art frameworks for SOD
based on RGB-D: CPFP [25], MMCI [35], TAN [55],
DMRA [34], A2dele [56], ASIF [57], and D3Net [58].
To fully compare our proposed method, WGI-Net
with these existing approaches, we re-evaluated these
models using available source code or directly used
saliency maps provided by their authors.
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4.4.1
Detailed comparative results of experiments based on
the above four metrics are listed in Table 1. As it can

Quantitative comparision

be seen, our framework achieves good performance.
Our proposed approach performs better than all
other approaches across all four metrics on most
datasets. Specifically, in terms of Flax and Fpax,
WGI-Net achieves the best performance across all
datasets. For the NJUD dataset, our model achieves
the best performance on all four evaluation metrics.
Compared with the second ranked models, D3Net,
Finax score, Fpay score, and S score are higher by
0.006, 0.002, and 0.001 respectively, while MAE is
lower by 0.005. In the LFSD dataset, compared with
the second place, A2dele, our F score, E score, and S
score are higher by 0.022, 0.016, and 0.015, respectively.

4.4.2  Visual comparison

Figure 4 provides sample saliency maps predicted by
the proposed method and several other algorithms.
It intuitively illustrates the outstanding ability of our
method to highlight correct salient object regions.
Specifically, as shown in the 1st and 2nd rows of
Fig. 4, the saliency maps provided by our method are

closer to the ground-truth. Our method can detect
the edges of objects more completely and accurately,
while the maps output by other models lose certain
items. For the LFSD dataset, for example, our results
have no holes or extra parts. For the NJUD dataset,
our saliency maps are more similar to the ground-
truth: e.g., ours clearly detects the flags on the car,
while others only detect part or none. For the NLPR
dataset, our method accurately distinguishes salient
objects in the foreground, while other methods detect
incomplete objects or extraneous objects as salient
objects. The 1st and 2nd rows of the RGB135 dataset
show results for small and large objects; our method
is able to provide accurate results in the cases. In
summary, our model is able to handle various complex
situations and provide highly accurate saliency maps.

4.5 Ablation study

To verify the effectiveness of our WGI-Net, an
ablation experiment was conducted comparing just
the backbone with additionally using WGI. Our
backbone is DMRA [34] following the identical
implementation setup. We conducted experiments on
two datasets, RGBD135 and DUT-RGBD.

Table 1 Performance comparison to seven state-of-the-art architectures, for five datasets. Maximum F-measure Fax, maximum E-measure
Emax, S-measure S, and MAE are utilized to assess performance. 1 and | indicate the higher the score the better, and the lower the better,

respectively. “x”

indicated in red, green, and blue, respectively

indicates that the author has not provided corresponding saliency maps. The top three ranking results in each row are

2019 2019 2019 2019 2020 2020 2020
CVPR PR ICCV jrele)Y CVPR CVPR TNNLS Ours
CPFP [25]  MMCI [35]  TAN [55] DMRA [34]  A2dele [56]  ASIF [57]  D3Net [58]

Finax T 0.799 0.853 0.874 0.889 0.873 0.888 0.889 | 0.895
NJUD Erax T 0.835 0.915 0.925 0.927 0.916 0.927 0.932 | 0.934
[41] sS4 0.798 0.859 0.878 0.880 0.869 0.889 0.895 | 0.896
MAE | 0.079 0.079 0.060 0.053 0.051 0.047 0.051 | 0.046
Fuax T 0.825 0.771 0.796 0.841 0.836 0.824 0.819 | 0.858
LFSD Frmax T 0.871 0.839 0.847 0.886 0.880 0.860 0.864 | 0.896
[54] sS4 0.828 0.787 0.801 0.823 0.837 0.823 0.832 | 0.852
MAE | 0.088 0.132 0.111 0.087 0.074 0.090 0.099 | 0.076
DU Frnax T 0.795 0.767 0.790 0.889 0.892 0.821 0.786 | 0.903
RGBD Erax T 0.859 0.859 0.861 0.927 0.930 0.876 0.857 | 0.937
1] sS4 0.818 0.791 0.808 0.869 0.885 0.838 0.814 | 0.893
MAE | 0.076 0.113 0.093 0.057 0.042 0.073 0.086 | 0.047
Fiax T 0.868 0.815 0.863 0.883 0.880 0.888 0.886 | 0.890
Ermax T 0.932 0.913 0.941 0.940 0.945 0.944 0.946 | 0.947

NLPR [28] ,
sS4 0.888 0.856 0.886 0.890 0.896 0.906 0.906 | 0.905
MAE | 0.036 0.059 0.041 0.035 0.028 0.030 0.034 | 0.031
Fuax T 0.845 0.822 0.827 0.869 0.867 * 0.882 | 0.889
RGBD135 | Emax 1 0.923 0.928 0.910 0.933 0.923 * 0.939 | 0.942
[38] sS4 0.874 0.848 0.858 0.878 0.885 * 0.906 | 0.901
MAE | 0.037 0.065 0.046 0.035 0.028 * 0.030 | 0.030
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DMRA

(e)

D3Net

A2dele ASIF CPFP MMCI

Fig. 4 Visual comparison of results from our method and other existing state-of-the-art algorithms on five public datasets. First two columns
input images and the depth maps, respectively. 3rd column: ground truth saliency. 4th column: saliency map from our model. Areas in red
boxes highlight advantages of our algorithm. Remaining columns: output from other method. Rows: (a) DUT-RGBD, (b) LFSD, (c) NJUD, (d)
NLPR, (e) RGBD135. Empty cells indicate that the author did not provide corresponding saliency maps.

Experimental results are listed
Compared to the baseline with no WGI module, the
performance of our approach is improved. Specifically,
for the RGBD135 dataset, Finax, Fmax, and S score
increase by 0.020, 0.009, and 0.023 respectively, while
MAE decreases by 0.005. For the DUT-RGBD dataset,
Fiax, Fmax, and S score increase by 0.004, 0.010,
and 0.024 respectively, while MAE score by 0.010.

As shown in Fig. 5, the saliency maps from our
method are closer to the ground-truth. Unlike the
backbone (DMRA), our method is able to eliminate
background interference and accurately detect salient
objects against complex backgrounds.

Table 2 Ablation study of our proposed model on RGBD135 and
DUT-RGBD datasets. (Ours represents Baseline+WGI)

in Table 2.

Ablation RGBD135

study Frax T Fmax T St MAE |
Baseline 0.869 0.933 0.878 0.035
Ours 0.889 0.942 0.901 0.030
Ablation DUT-RGBD

study Fmax T Fmax T St MAE |
Baseline 0.889 0.927 0.869 0.057
Ours 0.903 0.937 0.893 0.047

RGB Depth Ours

Fig. 5
backbone (DMRA). Areas in red boxes highlight improvements in
saliency maps produced by our algorithm.

Visual comparison of results from our method and the

5 Conclusions

In this paper, we have proposed a simple but efficient
fusion approach, WGI, to make effective use of RGB
feature information and depth feature information.
The extracted RGB and depth features are sliced into
8 parts, and then concatenation is used to fuse the
features of each block to more effectively integrate
the two kinds of feature information. We also apply
a series of weight layers to the depth information
to obtain more accurate cues about the locations
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of the salient objects. Experiments on five datasets
verify that our method performs better than current
Although
our approach can accurately detect salient objects
in complex environments through weighted group
integration, it requires a large amount of calculation

work for different evaluation metrics.

time. Therefore, in future we will focus on improving
the fusion of information to make more effective use
of feature information.
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