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Abstract Deep convolutional networks have obtained
remarkable achievements on various visual tasks due to
their strong ability to learn a variety of features. A well-
trained deep convolutional network can be compressed
to 20%–40% of its original size by removing filters that
make little contribution, as many overlapping features
are generated by redundant filters. Model compression
can reduce the number of unnecessary filters but
does not take advantage of redundant filters since
the training phase is not affected. Modern networks
with residual, dense connections and inception blocks
are considered to be able to mitigate the overlap in
convolutional filters, but do not necessarily overcome
the issue. To do so, we propose a new training
strategy, weight asynchronous update, which helps to
significantly increase the diversity of filters and enhance
the representation ability of the network. The proposed
method can be widely applied to different convolutional
networks without changing the network topology. Our
experiments show that the stochastic subset of filters
updated in different iterations can significantly reduce
filter overlap in convolutional networks. Extensive
experiments show that our method yields noteworthy
improvements in neural network performance.
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1 Introduction
In the past few years, deep learning methods based on
convolutional neural networks (CNNs) have obtained
significant achievements in machine vision [1, 2],
shape representation [3–5], speech recognition [6, 7],
natural language processing [8–10], etc. In particular,
many advanced deep convolutional networks have
been proposed to handle visual tasks. For example,
the success of deep residual nets has inspired
researchers to explore deeper, wider, and more
complex frameworks [11, 12].
Deep convolutional networks possess strong

learning capability owing to their rich sets of
parameters. However, at times, the number
of parameters can be excessive, which leads to
overlapping and redundant features. It also
causes overfitting to the training set and a lack
of generalization to new data. Several modern
networks, which have hundreds of layers (e.g., ResNet
[13], DenseNet [11], and Inception [14]), employ
an architectural approach to alleviate the above
problems. One key idea is that residual connections
in early layers and feature fusion can be considered
to add noise in the feature space, which regularizes
the network, and hence reduce the overlap of learned
deep features.
A trained network may be further compressed

by pruning, quantization, or binarization, which
typically exploits the redundancy in the weights
of the trained network. In general, the purpose
of model compression, instead of optimizing the
capacity of networks in training, is to minimize the
memory requirements and to accelerate the speed of
inference without degrading performance. Exploring
the best performance of the modern networks is still
a challenge.
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Our work aims to expand the capacity of a network
by reducing overlap between its filters. Our method
includes the following two major techniques, which
are our key contributions:
• Weight asynchronous update (WAU). We perform

backward propagation asynchronously to update
a subset of convolutional filters to reduce overlap
between them. As this does not change the
original network architecture, it can be easily
applied to neural networks to boost their per-
formance on various visual tasks.

• Asynchronous–synchronous–asynchronous (ASA)
training. Reducing the model capacity for
every mini-batch would lead to missing relevant
relationships between deep features and target
outputs [15]. To address this issue, we first apply
WAU to initialise the network and to provide
it with orthogonality. Then, sync training is
applied, which is beneficial to global learning,
as it strengthens connections between filters and
enhances the relationship between feature maps
and output. Finally, async training is used again
to disrupt the convergent evolution of the previous
training phase and reduce overlap between filters.

The remainder of this paper is organized as follows:
Section 2 briefly reviews related work on model
compression, weight inactivation, and its extension
to regularization. Section 3 explains the motivation
behind weight asynchronous update. Sections 4 and
5 give details of our methods for weight asynchronous
update and the ASA training flow. In Section 6, we
evaluate our approach and compare it with other
representative approaches. Finally, conclusions and
future work are discussed in Section 7.

2 Related work
Recently, many works have been published on
neural network optimization, and significant progress
has been made on some longstanding problems.
Methods can be grouped into three types according
to the network optimization approach: (i) model
compression, (ii) weight inactivation, or (iii) regulari-
zation. We will review each of these approaches
in turn.

2.1 Model compression
In order to reduce computational and memory
costs, pruning a well-trained model is currently the

most widely used method of model compression
[16]. This method finds an effective criterion to
judge the importance of parameters and prunes
redundant connections or filters. The smaller,
pruned model is able to re-learn the knowledge from
the original larger model without significant loss
of performance. However, network pruning aims
to reduce the redundancy of model, not to take
advantage of increasingly deeper and wider networks.
The reason is that network pruning reduces over-
parameterization during inferencing, but does not
help with training. We propose a training scheme
that focuses on mitigating over-parameterization
and increasing the capacity of deep convolutional
networks.

2.2 Weight inactivation
For model pruning, inactivating the least effective
filters is beneficial for constructing efficient CNNs
without sacrificing performance. Inspired by this
characteristic, several training strategies have been
explored to re-train the redundant filters with the
aid of a ranking criterion. Dense–sparse–dense (DSD)
[15] applies a hard threshold mask to kernel weights
according to a Taylor expansion of the cost function
[17]. It divides filters into two fixed groups via the
hard mask |wi| < λ and prunes the less salient group
in the second training phase, but it cannot break
symmetry within these groups. Currently, RePr
[18] has overtaken DSD. It prunes the top-N least
orthogonal filters according to filter orthogonality
ranking in the whole network in each epoch. However,
RePr has the problem that lower dimensional filers
tend to be pruned in practice, which leads to
RePr performing well in shallow networks while its
performance decreases in deep networks. Therefore,
we argue that the degree of overlap is not well judged
by using a fixed criterion. Our training scheme does
not use an external criterion and generates kernel
masks for re-training. It uses a simple and generic
strategy with low computational cost.

2.3 Regularization
In order to reduce generalization error, various
regularization methods have recently been proposed.
Dropout [19] is an effective approach to overcome
over-fitting; it makes an ensemble of several weak
classifiers by dropping neurons randomly to provide
a more robust strong classifier. Additionally, batch
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normalization (BN) is widely used in modern CNNs to
reduce the internal covariate shift problem. However,
theoretical and empirical evidence demonstrates
that combining Dropout and BN usually causes
unsatisfactory performance [20]. Recently, Shake-
Shake regularization [21] has broken benchmarking
records on CIFAR10: it disturbs forward and
backward propagation using a stochastic affine
combination. However, Shake-Shake [22] slows
down convergence due to its strong interference. It
requires 1800 epochs to make ResNet-110 converge on
CIFAR-10, and can only be used in specific 3-branch
convolutional networks (e.g., ResNeXt [12]).
To overcome the above deficiencies, we have

designed an effective approach for WAU, which can
also be regarded as a regularizer with disturbance to
add noise into the network. Firstly, WAU works well
with BN and works for any convolutional network.
Secondly, WAU does not increase convergence time,
and can even require fewer parameter update
iterations. Experimental results demonstrate that our
proposed WAU method, with a simple but powerful
weight update strategy, is superior to using a neuron
ranking criterion and provides good performance in
deep network learning.

3 Motivation
In each standard backpropagation (BP) step, the
parameters W of filters F are updated with learning
rate η. In the case of a single layer perceptron, each
parameter wi of the hidden layer h is updated as
follows:

wi = (1 + η)
∂h

∂wi

∂α

∂h

∂lm
∂α

(1)

where α represents an activation unit. The partial
derivative of wi is determined by a mini-batch loss
denoted by lm, which originates from the same
information entropy − ∑n

j=1 yj log ŷj . yj and ŷj

represent the ground truth and prediction for sample
xj in n classes, respectively. If all parameters in W

are updated in the same iteration, this is referred to as
synchronous learning. However, updating all weights
using identical information entropy over thousands of
iterations can result in poorly differentiated features
within each layer. This phenomenon widely occurs in
modern deep neural networks; we call it convergent
evolution in this paper.
Convergent evolution usually happens in filters in

the same hidden layer. The most widely accepted
understanding of adaptive filters in a CNN is that
filters in the lower layers learn low-level visual
features, while the filters in the upper layers learn
high-level semantic information. This would seem
to imply low correlation and discriminative semantic
features in different layers. However, previous work
[23] has shown that resemblance of residual blocks is
demonstrated by deleting individual blocks [24], and
that convergent evolution also appears in a variety of
convolution networks, being referred to as convergent
learning. This work shows that convergent learning
does not only exist within a layer, but also between
different layers. This echoes evolutionary theory in
biology: independent evolution of similar features
occurs in species of different lineages, when placed in
the same type of environment and having a similar
lifestyle [25]. In short, poorly discriminated filters
result in inefficient deep convolutional networks.
This motivates us to introduce our weight

asynchronous update method, to prevent convergent
evolution and network symmetry. WAU updates
different filters in different iterations. This increases
the diversity of filters within the same layer and
between different layers. To demonstrate the
effectiveness of WAU, we compare features generated
by kernels with sync and async updating. As shown in
Fig. 1(a), in the former case, the highly related filters
lead to features with similar and weakly differentiated
representations. It is clear that more varied and
diverse features are generated by the WAU training
strategy. As Fig. 1(b) shows, it mitigates overlap and
improves the representation ability of a convolutional
network. Here, L2 regularization is used to constrain
filters close to zero. There are more plain green
regions which do not contain useful information in
Fig. 1(a) than in Fig. 1(b).

Fig. 1 Features learned by sync and async updating.
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4 Weight asynchronous update
WAU aims to reduce potential filter overlap by
updating a dynamic subset F̂ of convolutional filters
F in each mini-batch. Each convolutional filter
(represented as a 3D tensor) is considered as a single
neural unit. To ensure sparsity in a single layer, we
sample filters at layer-level by fixing the async rate
r ∈ [0, 1]. In other words, all filters are updated once
on average every 1/r cycles. The expectation of the
number of elements of F̂ for layer l in iteration t is
defined as

E[F̂l,t] = |Fl,t|r (2)

We use the stochastic gradient descent (SGD)
algorithm as an example to explain how the filters
are updated asynchronously in a mini-batch. The
standard SGD optimizer is as in the equations below:

gt = ∇θt−1f(θt−1) (3)

Δθt = −ηgt (4)

θt = θt−1 +Δθt (5)
The SGD optimizer calculates the gradient gt of

the objective function with respect to the current
parameter f(θt−1). In Eq. (4), η denotes the learning
rate and Δθt is the descent gradient for iteration t.
θt can be obtained by updating θt−1 by Δθt.
For each mini-batch, we sample active filters F̂l,t

from Fl,t via stochastic sampling function S; every
filter has the same probability r of being updated.
Updating the weight of the network asynchronously
is implemented by applying a mask function ψ which
depends on F̂l,t as shown below:

θt = θt−1 + ψ(Δθt) (6)

ψ(Δθt) =
{
Δθt, θt ∈ F̂l,t

0, θt /∈ F̂l,t

(7)

F̂l,t = S(Fl,t, r) (8)
Figure 2 illustrates the weight asynchronous update

training strategy at the tth iteration. There is no
impact on forward propagation (all convolutional
filters F are active as normal networks). During
backpropagation, each layer has a dynamic subset
F̂ whose parameters are not updated in the tth
iteration. These convolutional filters are represented
as transparent kernels by multiplying by the kernel
mask ψ with shape 1 × 1 × cl.

Fig. 2 Weight asynchronous update training strategy. c, w, and h

are channel, width, and height, respectively.

The goal of WAU is to change how convolution
filters are updated. Our sampling function S does
not explicitly influence the work of the optimizer and
BN, but only decides whether the weight is updated
or not. Specially, the adaptive optimizer [26, 27],
which needs to save previous variables, also works in
the normal way when using our training scheme.

5 ASA training flow
ASA, an extended version of WAU, is now introduced
in this section. Inspired by Ref. [15], our ASA training
flow includes three processes: async weight update,
sync weight update, and re-async weight update.
• Async. CNNs [1, 11, 13] use various weight

initialization schemes to avoid learning redundant
features, but they are unable to handle redundant
features during the training phase. The first async
step not only learns values of the weights, but also
aims to expand the distance between the filters
and to warm up the network, which is equivalent
to initializing the network by learning real-world
data.

• Sync. Hierarchical relationships of the features
are generated by kernels in different layers, which
are formed by standard backpropagation. The
weights of the network are updated synchronously
to enhance the relationships between deep
features and the outputs [15].
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• Re-Async. The filters are updated asynchronously
to ensure that the weights of the redundant
filters can be differentiated in different directions.
Hyper-parameters, such as async rate and weight
decay r, are chosen consistently with the first
async step. The re-async step increases the
diversity of the kernel, as well as the capacity of
the network. Compared to using sparse networks,
it is possible to converge to better local minima
from the sync step.

Pseudo-code of our proposed approach is shown in
Algorithm 1.

Algorithm 1 ASA training flow
for all N epochs do

F̂ = S(F, r);
for all C mini-batches do

Network back propagation with F̂ ;
F̂ = S(F, r);

end for
end for
for all N epochs do

Reinitialize the optimizer state and the learning rate
schedule;
for all C mini-batches do

Network back propagation with F ;
end for

end for
for all N epochs do

Reinitialize the optimizer state and the learning rate
schedule;
F̂ = S(F, r);
for all C mini-batches do

Network back propagation with F̂ ;
F̂ = S(F, r);

end for
end for

6 Results
First, we compare standard CNNs [1, 11–13, 29–
31] with convolutional networks that add the WAU
strategy; in addition, we apply them to some visual
tasks. Secondly, we verify the effectiveness of
ASA training flow. We experimentally demonstrate
that, in agreement with our ideas, the WAU
method effectively reduces filter overlap. Finally yet
importantly, we demonstrate that the WAU method
has a faster convergence speed and should be more
friendly combined with BN for better performance.
In order to prove the effectiveness of our approach,
we follow the original training protocol to train the

neural networks without fine-tuning, e.g., using the
same strategy for decreasing learning rate and the
same hyper-parameters. The corresponding code
and model are available at https://github.com/
djzgroup/wau.

6.1 WAU improves accuracy of CNNs
Unless otherwise stated, the hyper-parameters are set
to the same values in all experiments (for example,
the weight decay rate is set to 0.0001 and the
default asynchronous rate is r=0.5). Compared
to synchronous weight update, our WAU method
achieves significantly improved accuracy using various
convolutional networks.
Table 1 shows accuracy for various networks with

and without WAU on CIFAR-10 and CIFAR-100.
On CIFAR-10, the accuracy of AlexNet [1] is

enhanced by 1.66% when using our WAU method
compared to the baseline. For other well-known
convolutional networks (e.g., ResNet [13], VGG [1],
PreResNet [30], ResNext [12], Wide ResNet [31], and
DenseNet [11]), WAU also improves their capacity
and provides better accuracy than the baselines
(giving at least 0.43% accuracy improvement). For
DenseNet-40 and DenseNet-100, our WAU makes a
bigger improvement in accuracy (1.63% and 1.10%
respectively) compared to the sync training method.
In our experiment, ResNext [12] uses two special
convolutional structures, pointwise convolution and
group convolution. It can be seen from Table 1 that
ResNext is significantly improved by using WAU.
The more complex and challenging dataset CIFAR-

100 is a 100-class classification problem which requires
much more diverse filters, and WAU makes a better
improvement to the baseline than for CIFAR-10.
For AlexNet [1], the accuracy enhancement is

further improved by 1.06% (2.72% vs. 1.66%) for
CIFAR-100 than for CIFAR-10. For VGG-BN [29],
the performance is boosted by 2.96% and 2.53%
(2.96% vs. 0.43%) compared to the baseline and
CIFAR-10 respectively. Particularly, DenseNet-40
gains the biggest boost: the accuracy is improved by
4.13%.
Table 1 demonstrates that our WAU method

can improve the performance of most convolutional
network frameworks. The WAU training flow is
a generic strategy which does not depend on a
specific network framework. In contrast with weight
synchronous update, our WAU method can produce
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Table 1 WAU shows significant performance improvement over the baseline on both CIFAR-10 and CIFAR-100 (see Ref. [28], chap. 3)

Test accuracy (%)
Network Depth CIFAR-10 CIFAR-100

Baseline WAU Baseline WAU
AlexNet [1] — 77.26 78.92 (1.66↑) 45.17 47.89 (2.72↑)
ResNet-50 [13] 50 92.68 93.38 (0.70↑) 70.58 71.41 (0.83↑)
VGG-BN [29] 19 93.01 93.44 (0.43↑) 70.76 73.73 (2.96↑)
PreResNet [30] 110 93.58 94.12 (0.54↑) 72.53 73.23 (0.70↑)
ResNext [12] 29 95.56 96.11 (0.55↑) 80.54 82.75 (2.21↑)
Wide ResNet [31] 28 95.54 96.16 (0.62↑) 80.91 81.10 (0.19↑)
DenseNet [11] 40 89.91 91.54 (1.63↑) 63.28 67.41 (4.13↑)
DenseNet [11] 100 91.10 92.20 (1.10↑) 68.08 70.22 (2.14↑)

more diverse filters (Fig. 1(b)) to learn a more
discriminative data representation, thereby giving
better performance.
The effectiveness of the proposed WAU strategy

can also improve performance of models for various
other tasks, e.g., for object detection: see Tables 2
and 3.
As Table 2 shows, we experimented with Faster

R-CNN using VGG-16 pre-trained on ImageNet. The
model was trained on the COCO trainval35k dataset
and evaluated on the minival set. AP@.5 is the result
with an intersection over union (IoU) threshold of 0.5,
while AP represents the average result for different
classes with 10 IoU thresholds of from 0.50 to 0.95
in steps 0f 0.05. Remarkably, our method provides
an accuracy gain of 1.2% for AP@.5 and 0.5% for
general AP compared to the VGG-16 baseline. This
model has many fewer parameters (by a factor of 11)
than plain ConvNet, leading to significantly higher
error rates, but we chose to equalize inferencing time
rather than parameter count, due to the importance
of inferencing time in many practical applications.
In another test, object detection networks were

Table 2 Object detection accuracy (%) for Faster R-CNN [32] on
the COCO minival set [33]. All models were trained on the trainval35k
set with images of size 600 pixels

Network AP@.5 AP
VGG-16 w/o WAU 46.9 26.9
VGG-16 with WAU 48.1 (1.2↑) 27.4 (0.5↑)

Table 3 Object detection accuracy (%) using Faster R-CNN [32]
on the Pascal VOC 2007 test set. Models were trained on the Pascal
VOC 2007 trainval set

Network Baseline Ours (WAU)
Faster R-CNN w/o WD 70.10 70.74 (0.64↑)
Faster R-CNN with WD 69.80 70.80 (1.00↑)

trained and tested on the Pascal VOC dataset using
the usual splits. We use AP@.5 to characterize
performance, as it is the standard Pascal VOC metric.
Table 3 shows that our WAU strategy boosts the
performance of the baseline on the Pascal VOC
dataset for the object detection task. However,
we notice that using WAU training for Faster R-
CNN leads to different performance changes without
and with weight decay (WD), with respectively
improvements of 0.64% mAP and 1% mAP. Weight
decay will be briefly analyzed later in Section 6.6.
To sum up, these experiments demonstrate that

the simple WAU method is suitable for various
modern frameworks and tasks. The performance
improvement is partly traceable to the contribution
of filter diversity generated by WAU, which we will
discuss in the next section.

6.2 Diversity of kernels with WAU training
Prakash et al. [18] and Li et al. [23] employed
correlation analysis to estimate the similarity of filters.
In this paper, the diversity of kernels is also evaluated
by computing a correlation matrix of filters according
to the Pearson correlation coefficient of canonical
correlation analysis (CCA):

Pi,j = E[(Fi − μi)(Fj − μj)]/σiσj (9)
where

μi = E(Fi), σi =
√

E[(Fi − μi)2]
μ and σ respectively denoting mean value and
standard deviation, and E represents the mean filter
value.
To demonstrate that kernel diversity is increased

by WAU, we visualize the filter correlation matrix,
random sampled within a layer or a residual block of
ResNet-110.
Figure 3(a) illustrates the CCA of filter activations
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Fig. 3 Filter correlation using sync and async. (a) Correlation of 32
filters within a single layer. (b) Correlation of 64 filters between two
layers inside a residual block. Upper and lower triangles respectively
represent the results of sync and async weight updating training
methods.

in the same layer in a trained ResNet-110. Darker
patches represent higher correlation. The lower
triangle (sync) shows that almost half of the filters
are strongly correlated to others. It is no surprise
that convergent evolution of kernels often occurs
within the same layer, as discussed in Section 3.
Figure 3(b) illustrates the CCA of filter activations
between two basic blocks inside a residual block
of ResNet-110, the lower triangle revealing that
convergent evolution also exists at the layer level.
These lower triangles show no strong evidence that
widening and deepening the model can result in
increasing kernel diversity. Convergent evolution is a
problem. Preventing it and increasing the diversity
of kernels can help to expand the capacity of the
original model. The two upper triangles in Fig. 3
demonstrate that the async flow training strategy
significantly reduces filter correlation both within and
between layers. It is apparent that the trained kernels
learn representations in different directions by using
WAU, and the mitigation of over-parameterization
increases performance.

6.3 Analysis of the ASA training flow
Further studies were carried out on the ASA training
flow. We conducted experiments with ResNet-32
trained on the CIFAR-10 training set and evaluated
on its testing set. We set the async rate used by the
ASA strategy to 0.5, 1.0, 0.5. A sync–async–sync
(SAS) training flow was considered as an alternative.
We set the training epochs to N = 164, with
492 training epochs in total. We re-initialized the
optimizer state and the learning rate schedule when
changing the weight update method.
Table 4 shows that both training flow strategies

improved accuracy due to asynchronous weight

Table 4 Different training flows. Both strategies lead to accuracy (%)
improvement for ResNet-32 trained on CIFAR-10, but ASA is better

1st phase 2nd phase 3rd phase
ASA 92.75 93.29 (0.54↑) 93.40 (0.65↑)
SAS 92.49 92.65 (0.16↑) 92.76 (0.27↑)

update. The ASA training flow achieves a better
result in the 1st training phase than the SAS training
flow. In the 2nd phase, ASA training gains a greater
improvement than SAS training (0.54% vs. 0.16%).
Both methods show similar performance enhancement
in the 3rd phase (0.11% vs. 0.12%). After the final
phase, the accuracy gain of ASA training reaches
0.65% compared to the 1st phase, and it exceeds the
SAS training flow gain by 0.64% (93.40% vs. 92.76%).
Table 5 shows that compared with other related

training strategies [15, 18, 34], WAU can more
effectively boost the performance of deep networks
and is easier to implement. A strict ranking criterion
requires a long training phase for meaningful neuron
ranking, and during most of the training time, the
filters are still in a state of sync updating. In contrast,
our stochastic weight inactivation approach enables
the updatable filters F̂ to continue to change in
different iterations.

6.4 Speed of convergence
There is no doubt that meaningful filters can modify
the model performance. Figures 1(a) and 1(b) collect
learned features from a group of filters in ResNet-110
[13] via different training methods. Most channels
learn meaningless deep features by using standard BP.
In contrast, after taking advantage of async learning,
the filters learn more distinctive information and
exploit extra deep network potentiality.
In order to reduce the influence of hyperparameters,

we followed the training strategy used by most
convolutional neural networks. Figure 4 shows the
behavior of different convolutional networks. In all
experiments, we used a strategy of decreasing learning
rate, leading to huge increases at around 6k, 8k, and
15k iterations. Our method converges much faster
than the sync method before the first learning rate
reduction. A large amount of error information is
transferred to the filters, which significantly improves
the convergence speed over the sync training strategy.
This is the key reason why our model achieves high
accuracy in the early stages, with four times fewer
iterations.
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Table 5 Comparison of the test error (%) of WAU on CIFAR-10 with other related training strategies

Baseline Various training schemes WAU

Original [13] DSD [15] BAN [34] RePr [18] Asynchronous ASA
8.7 7.8 8.2 7.7 7.49 (1.21↓) 7.06 (1.64↓)

Fig. 4 Test accuracy and convergence speed of our WAU method
and a baseline, for various convolutional networks, on CIFAR-10.

6.5 Dropout
Our WAU approach has some similarities with the
well-known Dropout. Our asynchronous updating
scheme can be intuitively thought of as Dropout only
on back propagation. However, there are two major
differences between WAU and Dropout:
• Approach to weight inactivation. The main

goal of Dropout is to prevent overfitting. It
employs a Bernoulli random variable r to multiply
every single element with the outputs h of the
hidden layer. Each r takes the value 1 with the
hyper-parameter probability p and has probability

1− p of being 0, which is a vector of independent
values. In contrast, WAU balances sparsity of
inactivation, which prevents nodes from being
inactivated in extreme cases. The inactive weight
mask is randomly formed by a hyper-parameter
async rate that fixes the sparsity of each layer
and each iteration.

• Cooperation with batch normalization.
Dropout and BN play significant roles in deep
network regularization. However, these two
powerful techniques do not lead to the sum of
their individual improvements in CNNs when
used together (and may actually cause higher
generalization error). Previous work [20] revealed
that this is due to incompatibility between
the normalization of BN and Dropout. BN
accumulates variance during the training phase
and maintains it during inference. Dropout
transfers variance from training to inference.

We have found that there is a further conflict
between Dropout and the affine transform yl =
γlx̂l + βl of BN, where x̂l is the normalized input
xl. Affine transform avoids mapping the inputs to
a saturated region by the activation function after
normalization [35]. However, Dropout breaks the
agreement of scaling and shifting parts.
We test block B1, which consists of a sequence

of layers, i.e., Conv–Dropout–BN–ReLU, with
0.5 drop probability. As the green curve shows in
Fig. 5, combining BN and Dropout slows convergence
and drops the network performance to 55%. When
using B2, i.e., Conv–Dropout–Normalize–ReLU,
which removes the affine transform of BN, it mitigates
the conflict with Dropout and boosts the accuracy by
20%.
The red curve in Fig. 5 shows that cooperation

between WAU and BN achieves a competitive 93.6%
accuracy. Replacing B1 by B2 has a subtle effect on
network representation performance. WAU maintains
the balance of internal covariate shift (ICS) [35] when
going from training to inferencing. Because WAU
is quite different from Dropout, it does not prune
or inactivate the neuron in forward propagation and
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Fig. 5 Ablation of affine transform in BN. Performance on an image
recognition task is shown for four different models: WAU and Dropout,
each with and without BN affine transform.

thus has no impact on network architecture.

6.6 Hyper-parameters
6.6.1 Asynchronous rate
In this section, we focus on the effect of the hyper-
parameter r on deep neural models. We take r ∈
{0.1, 0.2, . . . , 1.0}; WAU degenerates to the baseline
when r = 1.0. Performance curves for AlexNet [1] on
CIFAR-10 are plotted in Fig. 6 and the corresponding
test results are reported in Table 6. With low async
rate, r ∈ {0.1, 0.2, 0.3}, in which the update rate is
very low, the performance of our method is worse
than the baseline (light green). With higher async
rate (r ∈ [0.4, 0.9]), testing accuracy is much better
than the baseline, because our models have faster
convergence in early epochs. For all experiments
conducted in this paper with different CNNs, our
models get significant accuracy gain by using the
default async rate r = 0.5 without careful tuning.
6.6.2 Weight decay
The proposed WAU strategy independently optimizes
the dynamic filter subset F̂ , which allows exploration

Table 6 Comparison of the classification accuracy (%) of WAU with
different async rate

Rate Accuracy
0.1 66.59 (−10.67↓)
0.2 66.74 (−10.52↓)
0.3 66.40 (−10.86↓)
0.4 79.29 (+2.03↑)
0.5 78.92 (+1.66↑)
0.6 78.12 (+0.86↑)
0.7 78.82 (+1.56↑)
0.8 78.15 (+0.89↑)
0.9 78.95 (+1.69↑)
1.0 (baseline) 77.26

Fig. 6 Influence of hyper-parameter r. High enough async rate always
results in improved performance, and the method is not sensitive to
the hyperparameter.

of a larger weight space. Therefore, it has more chance
to escape saddle points and reach local minima. To
reduce the exploration of the optimizer as the learning
rate decays, to build a more stable model, we increase
the weight penalty and set the weight decay rate to
0.001.

7 Conclusions
We have proposed a novel training strategy, weight
asynchronous updating, which is able to produce
more diverse convolutional filters with reduced
overlap. In addition, we present a new Async–Sync–
Async training flow to enhance the relationships
between filters by including sync updating during
training, which further reduces the generation error.
Experiments on various convolutional networks and
different visual tasks demonstrate that the WAU
method provides faster convergence and improves the
performance of convolutional models. In particular,
visualizations show that our WAU method changes
the behavior of convolutional filters and obtains a
better data representation. Remarkably, compared
to the baseline, a network that added WAU achieves
2.96% accuracy improvement for CIFAR-100 and
1.2% improvement for AP@.5 for the COCO object
detection task.
Weight asynchronous update improves the

performance of various deep convolutional networks
as shown by the results of our experiments. In the
future, we intend to extend this work to generic
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network frameworks like multi-layer perceptrons,
recurrent neural networks, and make it available for
natural language processing and speech processing
tasks. Another important future direction is to
design an effective and general criterion to accurately
describe similarity between filters of different
dimensions, to evaluate kernel redundancy. We can
re-train the redundant parameters in the network
according to the criterion to improve accuracy.
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