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Designing planar cubic B-spline curves with monotonic
curvature for curve interpolation
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Monotonic curvature plays an important role in
industrial design and styling of curves with aesthetic
shapes, e.g., in automobile and aircraft design [1].
Used in conventional parametric CAD/CAM systems,
general B-splines are not adequate for aesthetic
requirements. Except for the straight line and circle,
monotonic curvature distribution, associated with
pleasing shape, is very difficult to achieve.
So Farin suggested that a fair curve has a

curvature plot with relatively few regions of mono-
tonically varying curvature. Starting from this basis,
work on B-spline fairing was developed mainly in three
direction: knot-removal-reinsertion methods, optimiza-
tion methods based on minimizing an energy function,
and filtering approaches based on B-spline wavelets.
Visual curve completion (interpolating a curve

segment, with continuity, to fill a gap) is a fundamental
problem for human visual understanding [2].
Aesthetically pleasingly shaped curves usually have
monotonically varying curvature [3]. While the shape
of a curve is primarily defined by its curvature
distribution, monotonicity of curvature is not easily
achieved and controlled. To overcome this problem,
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we present a construction approach for B-spline curves,
which guarantees monotonic curvature by enforcing
simple geometric constraints on the control vectors.
Euler curves have the useful property that their

curvature changes linearly with arc length, so are
widely used in modeling and shape interpolation
[4–6]. However, Euler curves also have disadvantages
for curve interpolation. Firstly, they are defined
by transcendental functions, requiring complex
mathematical expressions which are difficult to
compute. Secondly, given two endpoints with
associated tangents, there is no exact solution for
an Euler curve. Thirdly, Euler curves are not
compatible with current CAD software systems,
which are based on NURBS. In order to overcome
these drawbacks of Euler curves, we have developed
a new interpolation algorithm for cubic B-spline
curves, with advantages of simple computation, exact
interpolation and compatibility with existing CAD
systems.

1 Planar cubic B-spline curves with
monotonic curvature

1.1 Theory

In this paper, we consider cubic curves. A planar
B-spline curve of degree three is defined by

P (t) =
n∑

i=0
CiNi,3(t)

=
j∑

i=j−3
CiNi,3(t), t ∈ [tj , tj+1] ⊂ [t3, tn+1]

(1)
where Ci are control points (see Fig. 1(a)), and Ni,3(t)
are B-spline basis functions defined on the knot vector
t = [t0, . . . , tn+3]. The derivatives of this curve can
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Fig. 1 Control polygons of a cubic B-spline curve and its derivatives.

be expressed as

P ′(t) =
n−1∑

i=0
C1

i Ni,2(t)

=
j∑

i=j−2
C1

i Ni,2(t), t ∈ [tj , tj+1] ⊂ [t3, tn+1]

(2)

C1
i =

3− 1 + 1
ui+3+1 − ui+1

(Ci+1 − Ci)

=
3

ui+4 − ui+1
(Ci+1 − Ci) (3)

where P ′(t) is the first derivative of the B-spline curve,
and C1

i represents its corresponding control points
(see Fig. 1(b)). Proceeding further, we obtain

P ′′(t) =
n−2∑

i=0
C2

i Ni,1(t)

=
j∑

i=j−1
C2

i Ni,1(t), t ∈ [tj , tj+1] ⊂ [t3, tn+1]

(4)

C2
i =

3− 2 + 1
ui+3+1 − ui+2

(C1
i+1 − C1

i )

=
2

ui+4 − ui+2
(C1

i+1 − C1
i ) (5)

where P ′′(t) is the second derivative, and C2
i represents

the corresponding control points (see Fig. 1(c)).
Now consider a B-spline curve segment with four

control points. It can be represented as P (t) =∑j
i=j−3 CiNi,3(t), t ∈ [tj, tj+1]. We construct a local

coordinate system. Specifically, let the direction of
the first control vector be the x-axis, and Cj−3 be
the origin (see Fig. 2).

Next, we prove that if the following three
geometrical Lemmas are satisfied, the B-spline curve
segment on [tj, tj+1] has monotonic curvature.

Lemma 1. If the first and second derivative
control points {C1

j−3, C1
j−2, C1

j−1} and {C2
j−3, C2

j−2}
are located in the same quadrant (see Figs. 1(b) and
1(c)), then ‖ P ′(t) ‖′� 0 for t ∈ [tj, tj+1].

Proof. From ‖ P ′(t) ‖= (P ′(t)(P ′(t))T)1/2, we can
derive

‖ P ′(t) ‖′=
P ′(t)(P ′′(t))T

‖ P ′(t) ‖ (6)

Thus, if P ′(t) and P ′′(t) are in the same quadrant,
then ‖ P ′(t) ‖′� 0 for t ∈ [tj, tj+1].

Lemma 2. If angle ∠OC2
j−2C2

j−3 � π/2 (see
Fig. 1(c)), then ‖ P ′′(t) ‖′� 0 for t ∈ [tj, tj+1].

Proof. Because ∠OC2
j−2C2

j−3 � π/2, it can be
inferred that ‖ OC2

j−3 ‖�‖ OC2
j−2 ‖. As

‖ P ′′(t) ‖= tj+1 − t

tj+1 − tj
‖ OC2

j−3 ‖ + t − tj

tj+1 − tj
‖ OC2

j−2 ‖
we have ‖ P ′′(t+Δt) ‖�‖ P ′′(t) ‖, where Δt � 0 and
t ∈ [tj, tj+1]. Thus, ‖ P ′′(t) ‖′� 0 for t ∈ [tj, tj+1].

Lemma 3. If s
OC1

j−2
� s

C1
j−2C1

j−1
� s

C1
j−3C1

j−2
,

where s denotes slope (see Fig. 1(d)), then

Fig. 2 Local coordinate system for a curve segment.
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sin(〈P ′(t), P ′′(t)〉) � 0 for t ∈ [tj, tj+1], where 〈〉
denotes the angle between two vectors.

Proof. As the vector C1
j−2C1

j−1 = OC2
j−2 and

C1
j−3C1

j−2 = OC2
j−3, we have s

OC1
j−2

� s
OC2

j−2
�

s
OC2

j−3
. If s

OC1
j−2

� s
C1

j−2C1
j−1

� s
C1

j−3C1
j−2
, from the

variation diminishing property, we can derive that
0 � ∠〈P ′(t + Δt), P ′′(t + Δt)〉 � ∠〈P ′(t), P ′′(t)〉 �
π/2, where Δt � 0, t ∈ [tj , tj+1]. Then, sin〈P ′(t +
Δt), P ′′(t + Δt)〉 � sin(〈P ′(t), P ′′(t)〉). Thus,
sin(〈P ′(t), P ′′(t)〉) is decreasing for t ∈ [tj , tj+1].

We may now prove the following theorems.
Theorem 1. If a B-spline control polygon satisfies

Lemmas 1–3, then the curvature of the curve segment
is monotonic.

Proof. If Lemmas 1–3 are satisfied, then (i)
‖ P ′(t) ‖′� 0, (ii) ‖ P ′′(t) ‖′� 0, and (iii)
sin(〈P ′(t), P ′′(t)〉)′ � 0 for t ∈ [tj , tj+1]. Then, we
can conclude that κ(t+Δt) � κ(t) as

κ(t) =
‖ P ′′(t) ‖ sin〈P ′(t)P ′′(t)〉

‖ P ′(T ) ‖2

where Δt � 0. Therefore, the curvature κ(t) is a
decreasing function for t ∈ [tj , tj+1], and this curve
segment has monotonic curvature.

Theorem 2. If (i) C2
j−2 is located in a fair

location (defined in Fig. 3), (ii) s
OC1

j−2
� s

OC2
j−3
,

and (iii) {C1
j−3, C1

j−2, C1
j−1} and {C2

j−3, C2
j−2} are

located in the same quadrant, then the curvature of
the associated B-spline curve segment on [tj , tj+1] is
monotone.

Proof. If the given geometric conditions are
satisfied, we have (i) {C1

j−3, C1
j−2, C1

j−1} and
{C2

j−3, C2
j−2} are located in the same quadrant, (2)

angle ∠OC2
j−2C2

j−3 � π/2, because C2
j−2 is located

within the red circle with diameter OC2
j−3, and (iii)

s
OC1

j−2
� s

OC2
j−2
= s

C1
j−2C1

j−1
� s

OC2
j−3
= s

C1
j−3C1

j−2

(see Fig. 3). Thus, Theorem 1 is satisfied by the
B-spline curve segment, proving the result.

Fig. 3 Fair location. C2
j−2 is in a fair location if it lies within the

red dashed region, which is bounded by OC2
j−3, OC1

j−2, and the red
circle with diameter OC2

j−3.

From Theorem 2, if ‖ C1
j−2C1

j−1 ‖�‖ C1
j−3C1

j−2 ‖
and C1

j−2C1
j−1 ‖ C1

j−3C1
j−2 are enforced (see Fig. 4),

the control polygon satisfies the three geometric
conditions. Thus, the corresponding B-spline curve
segment has monotonic curvature.

Fig. 4 A special case of Theorem 2.

1.2 Designing cubic B-spline curves with
monotonic curvature

Using the result in Theorem 2 as a basis, our design
approach may be summarized in the following steps.
1. Fix the first B-spline control vector. Let V0 =

C1 − C0 (see Fig. 5);
2. Fix the second vector. Let V1 = C2 − C1, where

V0 and ΔV0 = V1 − V0 are located in the same
quadrant (see Fig. 6);

3. Fix the third vector. Let V2 = C3 − C2 ,
where s

OC1
1
� s

OC2
0
, and ΔV1 = V2 − V1(C2

1 )
is located in a fair location (see Fig. 7);

4. Fix the i-th vector. For a B-spline, if Vi−2 and
Vi−1 are given, Vi can be determined by steps
(1)–(3).

Our design algorithm for a B-spline curve segment
satisfies Lemmas 1–3 and hence Theorem 1: (i)

Fig. 5 Determine the initial B-spline control vector.

Fig. 6 Determine the second control vector.
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Fig. 7 Determine the third control vector.

{C1
j−3, C1

j−2, C1
j−1} and {C2

j−3, C2
j−2} are located

in the same quadrant, (ii) s
OC1

j−2
� s

OC2
j−2

�
s

OC2
j−3
, and (iii) ∠OC2

j−2C2
j−3 � π/2(j = 3, . . . , n).

Therefore, the designed curve has monotonic
curvature.
Pseudocode is given in Algorithm 1.

Algorithm 1
Input: number of control edges n, knot vector t, and
initial conditions.
Output: planar cubic B-spline curve with monotonic
curvature.
Initialize: C0 = (0, 0, 0), C1 = (a, 0, 0), and V0 = C1 −
C0, where a > 0
input ΔV0 = V1 − V0 lying in the first quadrant
for i = 1 to n − 1 do

input ΔVi = Vi+1 − Vi in a fair location
end for

1.3 Curve interpolation with B-spline curves
with monotonic curvature

We now consider curve interpolation: given two
specified endpoints with associated tangent directions,
we wish to find a curve satisfying these G1 conditions.
See Algorithm 2, which uses a knot sequence which
is uniformly spaced everywhere except at its ends.
Due to affine invariance, without loss of generality
we can fix the origin at the initial control point C0,
and set the x axis to the tangent direction T0 (see
Fig. 8). The end control point should be located in
the first quadrant with a proper tangent direction,
limited between the two dashed lines (see Fig. 8).
We proceed as follows. Compute the intersection

M of the two tangent directions. Select parameters
t1, t2x, t2y, and t3 for the middle three control points
respectively. Set C1 = t1P , C3 = (1− t3)M + t3C4,
C2 = (t2xC4.x, t2yC4.y) (see Fig. 9). From Eqs. (3),
(5), and Lemma 1, we can deduce that 0 < t1 < 1/6,
0 < t3 < 4/5, 3t1 < t2x < C3.x/C4.x, 0 < t2y <

Algorithm 2
Input: two endpoints with associated tangent directions
(see Fig. 8)
Output: planar cubic B-spline segment with monotonic
curvature.
Initialize: δ = 0.02, n = 4

for t1 = 0 to 1/6 step δ do
C1 = t1P

for t3 = 0 to 4/5 step δ do
C3 = (1 − t3)M + t3C4

for t2x = 3t1 to C3.x/C4.x step δ do
C2.x = t2xC4.x

for t2y = 0 to t3/2 step δ do
Success = False
C2.y = t2yC4.y

C2 = (C2.x, C2.y)
Compute C1

i , C2
i

if (C1
i and C2

i satisfy Lemmas 1–3) then
return control points

end if
end for

end for
end for

end for

1/2t3. As long as the intersection point M is located
between the two dashed lines in Fig. 8, this can always
be done.

Fig. 8 Given data to interpolate.

Fig. 9 Generating the middle control points.
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2 Examples of curve interpolation
This section gives examples to demonstrate the
effectiveness of our new design approach.
The first example is a cubic B-spline curve with five

control points (see Fig. 10(a)). From Theorem 1, it
can be inferred that the B-spline curve has monotonic
curvature, as confirmed in Fig. 10(b).

Fig. 10 Designing a B-spline curve using Algorithm 1.

Figures 11–13 show applications of Algorithm 2 to
curve completion for occluded objects. Figure 11(a) is
a partially occluded bird; in Fig. 11(b) we use a cubic
B-spline curve constructed by our method to complete
its boundary. Figure 12 shows an example of leaf vein

Fig. 11 Bird silhouette completion using Algorithm 2.

Fig. 12 Leaf vein completion using Algorithm 2.

completion. Lastly, the curve in Fig. 13 completes
the edge of a wine glass in an artistic photograph.

Fig. 13 Wine glass silhouette completion using Algorithm 2.
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