
Computational Visual Media
https://doi.org/10.1007/s41095-020-0167-7 Vol. 6, No. 2, June 2020, 157–168

Research Article

A detail preserving neural network model for Monte Carlo
denoising

Weiheng Lin1, Beibei Wang1 (�), Lu Wang2 (�), and Nicolas Holzschuch3

c© The Author(s) 2020.

Abstract Monte Carlo based methods such as path
tracing are widely used in movie production. To
achieve low noise, they require many samples per pixel,
resulting in long rendering time. To reduce the cost,
one solution is Monte Carlo denoising, which renders
the image with fewer samples per pixel (as little as
128) and then denoises the resulting image. Many
Monte Carlo denoising methods rely on deep learning:
they use convolutional neural networks to learn the
relationship between noisy images and reference images,
using auxiliary features such as position and normal
together with image color as inputs. The network
predicts kernels which are then applied to the noisy
input. These methods show powerful denoising ability,
but tend to lose geometric or lighting details and to
blur sharp features during denoising.
In this paper, we solve this issue by proposing a novel

network structure, a new input feature—light transport
covariance from path space—and an improved loss
function. Our network separates feature buffers from
the color buffer to enhance detail effects. The features
are extracted separately and then integrated into a
shallow kernel predictor. Our loss function considers
perceptual loss, which also improves detail preservation.
In addition, we use a light transport covariance feature
in path space as one of the features, which helps to
preserve illumination details. Our method denoises
Monte Carlo path traced images while preserving details
much better than previous methods.

1 School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094,
China. E-mail: W. Lin, 442920398@qq.com; B. Wang,
beibei.wang@njust.edu.cn (�).

2 School of Computer Science and Technology, Shandong
University, Jinan 250100, China. E-mail: luwang
hcivr@sdu.edu.cn (�).

3 Univ. Grenoble-Alpes, Inria, CNRS, Grenoble INP, LJK,
38000 Grenoble, France. E-mail: Nicolas.Holzschuch@inria.fr.

Manuscript received: 2020-02-06; accepted: 2020-02-22

Keywords deep learning; light transport covariance;
perceptual loss; Monte Carlo denoising

1 Introduction
Monte Carlo based methods are widely used for
rendering in movie production [1], as they are
physically based and can produce unbiased results.
However, they require many samples per pixel to
produce noise-free results. To reduce rendering costs,
one solution is generate a noisy image with fewer
samples and use denoising methods to remove the
noise. This is called Monte Carlo rendering denoising.
Several Monte Carlo rendering denoising methods

use deep learning. Bako et al. [2] used a convolutional
neural network (CNN) to predict final denoised pixel
values as a highly non-linear combination of input
features. More precisely, they decouple diffuse and
specular lighting in the rendered image and use
two networks for learning. Instead of learning the
denoised pixel value directly, they learn a kernel for
each pixel and apply the kernel to neighbors of each
pixel to reconstruct the denoised color. Vogels et
al. [3] further improved on this work, using residual
blocks to accelerate the convergence of the network.
They consider the rendering sources of the images,
e.g., different renderers, different filtering methods
to avoid limitations of inputs. They also solve the
temporal coherency issue between different images.
These methods very efficiently denoise Monte Carlo

rendered images, but they tend to remove details
(see Fig. 1), decreasing the quality of the resulting
image. Details can come from geometry (see Fig. 1) or
from lighting effects (see Fig. 9). Existing denoising
algorithms capture details by extracting features from
the color buffer and auxiliary buffers containing, e.g.,
positions and normals. However, details may only

157

158 W. Lin, B. Wang, L. Wang, et al.

Fig. 1 Comparison of output of our network and the Kernel Predicting Convolutional Network (KPCN) using the same dataset for training.
Our model preserves details better, due to the novel network structure, a new feature (light transport covariance in path space), and the
perceptual loss function. Quantitative error metrics (RelMSE and DSSIM) also confirm the higher quality of our method.

be obvious in a subset of the features; for example,
complex lighting might show obvious differences in
the color buffer, but have no discontinuities in the
position or normal buffer, while complex geometry
would show the opposite tendency. Training on all
features together results in excessive blurring.
In this paper, we solve this issue by separating

auxiliary feature buffers and the color buffer to
enhance details. We extract their features separately,
and then integrate them into a shallow kernel
predictor. Our loss function considers perceptual loss,
which also improves detail preservation. In addition,
we introduce a light transport covariance feature in
path space as one of the features. The covariance
matrix represents frequency of light transport in the
path space, which captures complex lighting details.
Overall, our model preserves geometric and lighting
details much better than previous methods.
In the next section, we review some previous work

on Monte Carlo denoising and deep neural networks.
Then, we review KPCN [2] and covariance tracing
[4] in Section 3. Section 4 presents our method, and
we explain implementation details in Section 5. We
present our results, compare them with those from
other methods, and analyze performance in Section 6.
We conclude in Section 7.

2 Previous work
2.1 Machine learning based Monte Carlo

denoising
Kalantari et al. [5] introduced neural networks for
Monte Carlo denoising. Their algorithm learns
the relationship between noisy images and ideal
filter parameters with a multilayer perceptual neural

network, and then uses the learned model for new
scenes for a wide range of distributed effects. Bako
et al. [2] introduced a convolutional neural network
(CNN) model to predict local weighting kernels to
filter pixels from their neighbors. Their method is
called KPCN. They decompose input into diffuse and
specular components for which they train separate
CNN models. The KPCN method is more efficient
than earlier Monte Carlo denoisers. Vogels et al. [3]
further improved denoising by combining KPCN with
a number of task-specific modules, e.g., a source-
aware encoder, and optimizing the assembly using an
asymmetric loss, resulting in a more robust solution.
Chaitanya et al. [6] proposed a recurrent neural

network (RNN) model for interactive rendering which
considers temporal coherency.
Gharbi et al. [7] applied learning directly between

samples and kernel parameters, instead of starting
with noisy images. Since samples include more
information, it produces higher quality even with
only a few samples.
Yang et al. [8] proposed a dual-encoder network.

The method first fuses feature buffers using a sub-
network, then separately encodes the fused feature
buffers and color buffer, and finally reconstructs a
clean image using a decoder network. In comparison,
our method does not first fuse auxiliary feature
buffers, and adds a light transport covariance buffer
which represents the frequency of the light transport.
We use a residual network to filter the color buffer
and auxiliary feature buffers separately, and then
integrate their feature maps for a shallow kernel
predictor network. Hence our algorithm is based
on kernel prediction rather than being an end-to-end
method.

A detail preserving neural network model for Monte Carlo denoising 159

2.2 Image space Monte Carlo denoising
Another avenue of work denoises Monte Carlo
rendered images only in image space. It achieves
high-quality results at reduced sampling rate [9].
Zero-order linear regression model based methods

[10–13] use a non-local means filter in a joint filtering
scheme, and combine color and auxiliary feature
buffers robustly for denoising. These methods have
well-chosen weighting kernels and can yield good
performance, but are limited by their explicit filters,
which make their filter kernel less flexible.
First-order [14, 15] or higher-order models [16] for

Monte Carlo denoising are less constrained. They
directly exploit the correlation between the auxiliary
buffer and the color buffer, allowing for better use
of neighborhood data. First order methods have
problems dealing with low frequency noise, but higher-
order methods can suffer from over-fitting.
Boughida et al. [17] proposed a non-local Bayesian

collaborative filter, which globally produces high
quality denoising, especially in dark areas.

3 Background
3.1 Problem statement
The problem of denoising Monte Carlo rendering can
be formulated as

ĉ = Φ(x; θ) (1)
where ĉ is the denoised result, Φ is a filter for
denoising, x is the noisy input data, and θ are
parameters controlling Φ. x = [c, f] consists of the
average RGB color c and optional auxiliary feature
buffers f obtained from a renderer.
Following the previous deep learning based Monte

Carlo denoising method, we chose a convolutional
neural network as the filter Φ. We formalize
it as a supervised learning problem that uses a
data set containing N example pairs of noisy
inputs {x1, . . . , xN } and corresponding ground truth
{r1, . . . , rN } to optimize the parameters of the
network:

θ̂ = argmin
θ

1
N

N∑
n=1

l(rn,Φ(xn; θ)) (2)

where l is an optional loss function giving the
difference between the filtered color and ground truth.
After training the network, the denoised result ĉ

should be noise-free and preserve scene details.

3.2 Kernel prediction convolutional network
3.2.1 Origins
Bako et al. proposed the first CNN based Monte
Carlo denoising method. They decouple the rendered
output into diffuse and specular components. The
two components are preprocessed, and used to train
individual CNN networks which output separate
kernels used to obtain denoised diffuse and specular
components. An inverse preprocessing transform then
combines them to produce the final denoised result.
Details can be found in Ref. [2].
3.2.2 Input features
The renderer decomposes rendered outputs into
diffuse and specular components. The rendered
outputs include color buffers consisting of diffuse
color (3 channels), specular color (3 channels), and
their color variances, and auxiliary feature buffers
consisting of normals (3 channels), depth (1 channel),
albedo (3 channels), and their feature variances.
Variances are converted to a single channel using
luminance.
3.2.3 Network architecture
KPCN uses a plain 9-layer CNN. In the first eight
layers, the network applies a linear convolution to
the previous layer’s output, adds a constant bias, and
then applies a Relu activation function. In the last
layer, it outputs a K × K kernel of scalar weights
instead of directly outputting a denoised pixel.
3.2.4 Loss function
The loss function should represent the perceptual
difference between the estimated and reference color
well and be easy to optimize. KPCN uses L1 loss to
optimize its network. The authors experimented with
several loss functions, including L1, relative (rel) L1,
L2, rel L2, and SSIM (Structural Similarity). Their
experimental results show that optimization of the
L1 loss function is best:

l1 = |cdenoised − creference| (3)

3.3 Light transport covariance in path space
Durand et al. [19] introduced a framework for
frequency analysis of light transport. They compute
the frequency content of the local light field around
a given ray. The local light field is defined as a 4D
function, with two spatial dimensions and two angular
dimensions (see Fig. 2). Standard operations on light
transport, such as transport in free space or reflection,

160 W. Lin, B. Wang, L. Wang, et al.

Fig. 2 The local light field is defined as a 4D function around the
central ray (ω), parameterized by two spatial coordinates (δx and δy)
and two angular coordinates (δθ and δφ) [18].

transform into operations on the Fourier spectrum of
the local light field. Running computations with
the full Fourier spectrum of the local light field
is impractical. Belcour et al. [20] introduced an
approximate representation for the Fourier spectrum
of the local light field: the covariance matrix.
The key idea of Belcour et al. is to compute the

covariance matrix of the Fourier spectrum of the local
light field using matrix operations corresponding to
basic operations of light transport (transport in free
space, reflection, occlusion). See Ref. [4] for the
detailed computation of these operations.

4 Method
4.1 Network architecture
Our network consists of four parts (see Fig. 3(a)):
data preprocessing (see Section 5.1), feature extrac-
tion, shallow kernel prediction, and reconstruction.
In preprocessing, we separate features into diffuse

and specular components, as in Bako et al. [2]:
factoring out albedo from the diffuse component,
applying a logarithmic transform to the specular
component, scaling depth to the range [0, 1], and
taking gradients for all buffers including diffuse,
specular, normal, albedo, and depth, with the
addition of a light transport covariance feature (see
Section 4.2).
Inspired by Simonyan and Andrew [21], in feature

extraction, we first separate diffuse and specular
components into a color component and a feature
component respectively, to enhance detail capture.
Each component is then sent to a feature extractor,
which is a residual network (Fig. 3(b)). Our residual

network consists of eight residual blocks and two
convolutional layers at the beginning and the end.
As in Vogels et al. [3], the residual block has a two-
layer network structure, with each layer containing
a Relu activation function and a convolution layer.
At the end of the residual block, the output of the
convolutional layer and the input of the residual block
are summed. Then the filtered color component and
feature component are concatenated and fed into
the next part of the framework. We use a residual
network rather than a CNN, because a convolutional
network with too many hidden layers may result in
vanishing and exploding gradient, while a residual
network protects data integrity by directly passing
input data to the output (via skip connections) and
the network only needs to learn the difference between
inputs and outputs to simplify learning objectives.
The third part of our framework is a shallow kernel

prediction network (Fig. 3(c)), which consists of only
four traditional convolutional layers. Two kernel
predictors output two 21 × 21 kernels to denoise
diffuse and specular buffers separately. We use a
shallow network rather than a deep network, as a deep
network makes optimization of the feature extractor
more difficult, leading to degradation of the quality
after training.
Finally, the inverse of the preprocessing transform

is applied to the denoised data (i.e., multiplying
irradiance by the albedo and applying an exponential
transform to the specular component), and then the
denoised diffuse and specular images are combined
to obtain the overall denoised image.

4.2 Light transport covariance feature
We introduce light transport covariance defined by
Belcour et al. [4] as one of the input features, as it
can represent the frequency of the light transport to
help detail preservation.
The covariance matrix is denoted Σ. For a function

f defined over a 4D domain, this 4 × 4 matrix is
defined by

Σi,j =
∫

x∈Ω(x · ei)(x · ej)f(x)dx∫
Ω f

(4)

where ei is the ith basis vector of the 4D space Ω and
x · y denotes the dot product of vectors x and y.
The eigenvectors of the covariance matrix indicate

in which directions function f spreads most and least;
its eigenvalues are the variance of the function in all
4 principal directions.

A detail preserving neural network model for Monte Carlo denoising 161

Fig. 3 (a) Framework. The renderer decomposes rendered outputs into diffuse and specular components which are preprocessed independently.
In both, their features are separated into a color component and a feature component. These are fed into a residual network receptively to
extract features and the extracted features are concatenated. Next, two kernel predictor networks filter the extracted features and output two
21 × 21 kernels, which are used to denoise preprocessed diffuse and specular buffers. Finally, these denoised results are combined to obtain
the full denoised image. (b) The residual network architecture, with eight residual blocks. (c) The kernel predictor architecture, with four
convolutional layers.

We next compute the determinant η of the
covariance matrix, by

η =
√

|Σ| (5)
η lies in [0, 1]. The higher the value of η, the larger the
frequency content at this location. η = 0 corresponds
to a uniform, constant distribution (low frequency),
and η = 1 corresponds to a Dirac delta function
(high frequency). We use the determinant of the
covariance matrix as a feature for training. This
feature benefits complex lighting detail preservation
(see Fig. 9). Figure 4 visualizes this feature.

Fig. 4 A light transport covariance buffer. Left: the full color buffer.
Right: the corresponding light transport covariance buffer.

4.3 Loss function
Our loss function is defined as

l = ls + lp (6)
where ls is the symmetric mean absolute percentage
error (SMAPE), which has good stability in HDR
images:

ls =
|cdenoised − creference|

(|cdenoised| + |creference| + ε)/2
(7)

where ε is a small number, taken to be 10−8 in our
implementation.
We also include the perceptual loss lp:

lp =
1

whd
‖φ(cdenoised) − φ(creference)‖2 (8)

where φ is a feature extractor, and w, h, and d

represent the width, height, and depth of the denoised
image respectively. Following Ref. [22], we use pre-
trained VGG-19 [23] as the feature extractor φ,
as VGG-19 can provide high-dimensional feature
information for an image. Using the perceptual loss

162 W. Lin, B. Wang, L. Wang, et al.

helps to preserve more details in the denoised image
(see Fig. 11).

5 Data creation and training

5.1 Data creation
For training, we rendered images and buffers with
the Tungsten renderer [24] to give our dataset.
A training a neural network requires a large and
representative dataset to avoid overfitting. Thus, in
order to generate sufficient data, we modified publicly
available scenes [25] (see Fig. 5) by varying camera
parameters, materials, and light sources. The noisy
images were rendered with 32 samples per pixel (spp)
or 128 spp, and the reference images were rendered
with 8192 spp. The resolution of these images was
1280 × 720. We rendered about 220 scenes as our
training set and about 20 scenes as our validation set.
Following Bako et al. [2], we decompose rendered

outputs into diffuse and specular buffers. In addition
to the feature buffer used in KPCN, we add a
light transport covariance feature buffer (see Fig. 4)
(1 channel). The renderer outputs 20 channels
in total (diffuse, specular, albedo, normal, depth,
light transport covariance, and their corresponding

variances). We factor out the albedo from the diffuse
channel and apply a logarithmic transform to the
specular channel. We take gradients in both x and y

directions for all buffers, and linearly scale the depth
and light transport covariance buffer to the range
[0, 1] for each frame.

5.2 Implementation and training
We implemented our network in TensorFlow [26]
and used the ADAM [27] optimizer to optimize the
parameters. Weights were initialized using the Xavier
method [28].
To perform training, we split the processed data

into 128 × 128 patches, and then shuffled them
and fed them into the network. The corresponding
networks for diffuse and specular denoising pipelines
were trained independently. The loss for the diffuse
denoising pipeline network is computed between
the denoised irradiance and the reference irradiance,
while the loss for the specular denoising network is
computed in the log domain. For each 500 iterations,
we use 10 patches to train the network with learning
rate, �η = 10−4. The process of selecting patches
follows Bako et al. [2]. Each network is trained for
approximately 50k iterations during 1.5 days on a
Tesla K80 GPU.

Fig. 5 Example images from our dataset. We modify camera, materials, and light sources of some publicly available scenes to enrich our
dataset.

A detail preserving neural network model for Monte Carlo denoising 163

6 Results
We compare our results to those produced by four
state-of-the-art methods: NFOR [15], KPCN [2],
BCD [17], DEMC [8], and to reference images. We
use DSSIM (structural dissimilarity) and RelMSE
(relative mean squared error) as metrics to evaluate
quality of the results. The input images were rendered
with 32–128 spp, and the references were rendered
with 8912–20000 spp.

6.1 Model validation
Figure 6 compares results from our model with the
other four methods and reference images. The error
metrics show that our model produces higher quality
results and preserves details better. NFOR blurs
the details of textures and lighting, and produces
artifacts with low frequency noise. BCD still has

some noise in many geometric details. Compared to
NFOR and BCD, KPCN has better overall denoising
effects, but it has blurring and aliasing in some tiny
details. DEMC is better than KPCN in preserving
geometric details on some scenes, but it is not as good
as our method in processing high-frequency lighting
details.
In Fig. 8, we show the error as a function of number

of iterations for KPCN and our model. From 1k
iterations, we perform validation every 2k iterations
and calculate RelMSE. Our method consistently has
smaller error than KPCN.

6.2 Model structure validation
In Fig. 7, we focus on network structure, and disable
light transport covariance and perceptual loss for
network training in our model. We compare our
model without these features to the state-of-the-art

Fig. 6 Comparison of our method to four other state-of-the-art methods NFOR [15], KPCN [2], BCD [17], DEMC [8], and reference images.
KPCN’s input features and loss function are as in the original paper (Section 3.2). Our model includes light transport covariance, besides the
features of KPCN, and is trained with the loss function in Section 4.3. KPCN, DEMC, and our model have identical other training settings (see
Section 5.2) and used the same dataset for training.

164 W. Lin, B. Wang, L. Wang, et al.

Fig. 7 Network structure comparison between our model (str. means network structure only) and previous works. To validate the effect of
network structure, our network training does not use light transport covariance and perceptual loss. KPCN, DEMC, and our method have the
same training settings (see Section 5.2) other than the network structure. Even without light transport covariance and perceptual loss, our
method provides a better result.

Fig. 8 RelMSE as a function of training iterations for our method
and KPCN. Our method is consistently better than KPCN.

methods. The error metrics show that our model
produces higher quality results which preserve details
better, while KPCN has aliasing or blurring in some
details.

6.3 Light transport covariance buffer validation
We validate the impact of the light transport
covariance buffer for scenes with complex lighting.

In Fig. 9, we show the impact of adding the light
transport covariance buffer to the training, for both
KPCN and our model. In both cases, adding
light transport covariance significantly improves the
handling of high frequency details. Light transport
covariance can represent the frequency of the light
transport so that neural networks can learn more
features of high frequency light details. As shown
in Fig. 9, the caustics, glossy, and specular details
are preserved better when using the light transport
covariance buffer.
In Fig. 10, we show the impact of the number of

samples per pixel (spp) on denoising quality when
using the light transport covariance buffer. Our
networks are trained with only SMAPE loss, to
validate the effects of light transport covariance.
The test data consists of several scenes rendered at
different sample counts (8, 16, 32, 64, and 128 spp),
and filtered with four models (our model training
with/without light transport covariance, KPCN
training with/without light transport covariance).
The error between the filtered results and the
references is calculated and averaged. Our method

A detail preserving neural network model for Monte Carlo denoising 165

Fig. 9 Comparison of training with and without light transport covariance. We use the feature buffer with and without light transport
covariance to train KPCN and our method. Specially selected scenes show the advantages of training with the light transport covariance (cov.
means light transport covariance).

Fig. 10 RelMSE comparison between our method (with light
transport covariance), our method (without light transport covariance),
KPCN (without light transport covariance), and KPCN (with light
transport covariance) for varying sample counts.

with covariance produces the best result for any level
of input noise. In addition, light transport covariance
can help improve the denoising quality for both our
method and KPCN, especially for low numbers of
samples per pixel.

6.4 Loss function validation
To validate the effects of perceptual loss used in
our loss function, we compare our method with and
without perceptual loss in Fig. 11. With perceptual

Table 1 Cost of using light transport covariance. We implemented
light transport covariance in the Tungsten renderer and experimented
with four scenes, rendered at 128 spp and 512 × 512 resolution

Scene
Time Time

Cost
without cov. with cov.

Bathroom 3 m 07 s 3 m 32 s +13.37%
Classroom 2 m 53 s 3 m 15 s +12.72%

Kitchen 3 m 30 s 3 m 50 s +9.52%
Living-room 2 m 56 s 3 m 17 s +11.93%

loss, geometric details are further restored, giving
results closer to the reference than denoised results
when only trained with SMAPE. Training with
perceptual loss helps the denoising result to be more
similar to the reference for high-level features, making
geometric details sharper.

6.5 Shallow kernel predictor validation
We used a shallow network (4 layers) for our
kernel predictor. We compare this shallow network
with a deep network (10 layers) in Fig. 12. The
shallow network works better than a deep network.
The latter makes optimization of the feature
extractor more difficult, leading to degradation
of the training quality. Therefore, we use a
shallow network for kernel prediction, for better
performance and to reducing the number of network
parameters.

166 W. Lin, B. Wang, L. Wang, et al.

Fig. 11 Our method with and without perceptual loss (PL).

Fig. 12 Comparison of our method with shallow and deep kernel
predictors.

6.6 Validation of separating color and
auxiliary features

To validate the impact of separating color and
auxiliary feature, we trained a network whose
feature extraction uses only one residual network to
process color and auxiliary features. Otherwise, the
remaining network parameters and training settings
were the same as in our full model. Figure 13 shows

Fig. 13 Comparison of our method with and without separation
(sep.) of color and auxiliary features.

that separating color and auxiliary features leads
to smoother denoising results and preserve more
structural details. The RelMSE and DSSIM measures
also show that separating color and auxiliary features
leads to better performance: this can help the network
to learn more information from the auxiliary feature
buffer.

6.7 Limitations
We used perceptual loss for training, so that the
network can learn the relationship between the
denoising result and the reference in terms of high-
dimensional features, which can help preserve the
sharpness of some geometric details. However there
are also some limitations in our method. As shown
in Fig. 14, using perceptual loss for training can
sometimes make some details of the denoising results
too sharp and can result in some artifacts. In
future work, we will try to solve this problem by

Fig. 14 Limitations of training with perceptual loss.

A detail preserving neural network model for Monte Carlo denoising 167

choosing a more robust perceptual loss function and
by controlling its impact with a variable parameter.

7 Conclusions
We have presented a novel network for Monte Carlo
rendering denoising. Our network decouples features
and color, extracts features from them separately,
and integrates them into high-dimensional feature
information. We add an extra feature for training,
based on the covariance of light transport in path
space, and a perceptual loss function to preserve
details. We then use a shallow neural network to
learn kernels, and apply these kernels to produce the
denoised picture. Our new algorithm outperforms
the state of the art; it is better at preserving details
while reducing noise in the picture.
In this paper, we have only considered surface

rendering denoising. It would be an interesting
research direction to also consider volume denoising.
In addition, our model can be exploited for other detail
preserving applications, such as edge preservation.

References

[1] Keller, A.; Fascione, L.; Fajardo, M.; Georgiev, I.;
Christensen, P.; Hanika, J.; Eisenacher, C.; Nichols, G.
The path tracing revolution in the movie industry. In:
Proceedings of the ACM SIGGRAPH 2015 Courses,
Article No. 24, 2015.

[2] Bako, S.; Vogels, T.; McWilliams, B.; Meyer, M.;
NováK, J.; Harvill, A.; Sen, P.; Derose, T.; Rousselle, F.
Kernel-predicting convolutional networks for denoising
Monte Carlo renderings. ACM Transactions on
Graphics Vol. 36, No. 4, Article No. 97, 2017.

[3] Vogels, T.; Rousselle, F.; McWilliams, B.; Röthlin, G.;
Harvill, A.; Adler, D.; Meyer, M.; Novák, J. Denoising
with kernel prediction and asymmetric loss functions.
ACM Transactions on Graphics Vol. 37, No. 4, Article
No. 124, 2018.

[4] Belcour, L.; Bala, K.; Soler, C. A local frequency
analysis of light scattering and absorption. ACM
Transactions on Graphics Vol. 33, No. 5, Article No.
163, 2014.

[5] Kalantari, N. K.; Bako, S.; Sen, P. A machine
learning approach for filtering Monte Carlo noise. ACM
Transactions on Graphics Vol. 34, No. 4, Article No.
122, 2015.

[6] Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.;
Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila,

T. Interactive reconstruction of Monte Carlo image
sequences using a recurrent denoising autoencoder.
ACM Transactions on Graphics Vol. 36, No. 4, Article
No. 98, 2017.

[7] Gharbi, M.; Li, T. M.; Aittala, M.; Lehtinen, J.;
Durand, F. Sample-based Monte Carlo denoising using
a kernel-splatting network. ACM Transactions on
Graphics Vol. 38, No. 4, Article No. 125, 2019.

[8] Yang, X.; Wang, D.; Hu, W.; Zhao, L.-J.; Yin, B.-C.;
Zhang, Q.; Wei, X.-P.; Fu, H. DEMC: A deep dual-
encoder network for denoising Monte Carlo rendering.
Journal of Computer Science and Technology Vol. 34,
1123–1135, 2019.

[9] Sen, P.; Zwicker, M.; Rousselle, F.; Yoon, S.-E.;
Kalantari, N. Denoising your Monte Carlo renders:
Recent advances in image-space adaptive sampling
and reconstruction. In: Proceedings of the ACM
SIGGRAPH 2015 Courses, Article No. 11, 2015.

[10] Sen, P.; Darabi, S. On filtering the noise from the
random parameters in Monte Carlo rendering. ACM
Transactions on Graphics Vol. 31, No. 3, Article No.
18, 2012.

[11] Rousselle, F.; Manzi, M.; Zwicker, M. Robust denoising
using feature and color information. Computer Graphics
Forum Vol. 32, No. 7, 121–130, 2013.

[12] Moon, B.; Jun, J. Y.; Lee, J.; Kim, K.; Hachisuka, T.;
Yoon, S. E. Robust image denoising using a virtual
flash image for Monte Carlo ray tracing. Computer
Graphics Forum Vol. 32, No. 1, 139–151, 2013.

[13] Zimmer, H.; Rousselle, F.; Jakob, W.; Wang, O.; Adler,
D.; Jarosz, W.; Sorkine-Hornung, O.; Sorkine-Hornung,
A. Path-space motion estimation and decomposition for
robust animation filtering. Computer Graphics Forum
Vol. 34, No. 4, 131–142, 2015.

[14] Moon, B.; Carr, N.; Yoon, S.-E. Adaptive rendering
based on weighted local regression. ACM Transactions
on Graphics Vol. 33, No. 5, Article No. 170, 2014.

[15] Bitterli, B.; Rousselle, F.; Moon, B.; Iglesias-Guitián,
J. A.; Adler, D.; Mitchell, K.; Jarosz, W.; Novák, J.
Nonlinearly weighted first-order regression for denoising
Monte Carlo renderings. Computer Graphics Forum Vol.
35, No. 4, 107–117, 2016.

[16] Moon, B.; McDonagh, S.; Mitchell, K.; Gross, M.
Adaptive polynomial rendering. ACM Transactions on
Graphics Vol. 35, No. 4, Article No. 40, 2016.

[17] Boughida, M.; Boubekeur, T. Bayesian collaborative
denoising for Monte Carlo rendering. Computer
Graphics Forum Vol. 36, No. 4, 137–153, 2017.

[18] Liang, Y. L.; Wang, B. B.; Wang, L.; Holzschuch, N.
Fast computation of single scattering in participating

168 W. Lin, B. Wang, L. Wang, et al.

media with refractive boundaries using frequency
analysis. IEEE Transactions on Visualization and
Computer Graphics doi: 10.1109/TVCG.2019.2909875,
2019.

[19] Durand, F.; Holzschuch, N.; Soler, C.; Chan, E.; Sillion,
F. X. A frequency analysis of light transport. ACM
Transactions on Graphics Vol. 24, No. 3, 1115–1126,
2005.

[20] Belcour, L.; Soler, C.; Subr, K.; Holzschuch, N.;
Durand, F. 5D covariance tracing for efficient defocus
and motion blur. ACM Transactions on Graphics Vol.
32, No. 3, Article No. 31, 2013.

[21] Simonyan, K.; Zisserman, A. Two-stream convolutional
networks for action recognition in videos. In:
Proceedings of the Advances in Neural Information
Processing Systems 27, 568–576, 2014.

[22] Yang, Q. S.; Yan, P. K.; Zhang, Y. B.; Yu, H. Y.; Shi, Y.
Y.; Mou, X. Q.; Kalra, M. K.; Zhang, Y.; Sun, L.; Wang,
G. Low-dose CT image denoising using a generative
adversarial network with Wasserstein distance and
perceptual loss. IEEE Transactions on Medical Imaging
Vol. 37, No. 6, 1348–1357, 2018.

[23] Simonyan, K.; Zisserman, A. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[24] Bitterli, B. Tungsten renderer. Available at
http://noobody.org/tungsten.html.

[25] Bitterli, B. Rendering resources. 2016. Available at
https://benediktbitterli.me/resources/.

[26] Abadi, M.; Agarwal, A.; Barham, P. Tensorow: Large
scale machine learning on heterogeneous systems. 2015.
Available at http://tensorflow.org/.

[27] Kingma, D. P.; Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[28] Glorot, X.; Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In:
Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 249–256, 2010.

Weiheng Lin is a master candidate
in the School of Computer Science
and Engineering, Nanjing University of
Science and Technology (NJUST). He
received his bachelor degree from NJUST
in 2018. His research interests include
rendering and machine learning.

Beibei Wang is an associate professor
at NJUST. She received her Ph.D. degree
from Shandong University in 2014 and
visited Telecom ParisTech from 2012
to 2014. She worked as a postdoc in
INRIA from 2015 to 2017. She joined
NJUST in March 2017. Her research
interests include rendering and game

development.

Lu Wang is a professor at the School
of Software, Shandong University. She
received her Ph.D. degree from Shandong
University in 2009. Her research interests
include photorealistic rendering and high
performance rendering.

Nicolas Holzschuch is a senior
researcher at INRIA Grenoble Rhône-
Alpes, and the scientific leader of
the MAVERICK research team. He
received his Ph.D. degree from Grenoble
University in 1996 and his habilitation
in 2007. He joined INRIA in 1997. His
research interests include photorealistic

rendering and real-time rendering, with an emphasis on
material models and participating media.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

