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Abstract
an image into different regions by creating boundaries

Segmentation is the act of partitioning
between regions. k-means image segmentation is the
simplest prevalent approach. However, the segmentation
quality is contingent on the initial parameters (the
cluster centers and their number). In this paper, a
convolution-based modified adaptive k-means (MAKM)
approach is proposed and evaluated using images
collected from different sources (MATLAB, Berkeley
image database, VOC2012, BGH, MIAS, and MRI).
The evaluation shows that the proposed algorithm
is superior to k-means++, fuzzy c-means, histogram-
based k-means, and subtractive k-means algorithms
in terms of image segmentation quality (Q-value),
computational and RMSE. The proposed
algorithm was state-of-the-art
learning-based methods in terms of IoU and MIoUj it

achieved a higher MIoU value.

cost,
also compared to

Keywords clustering; modified adaptive k-means
(MAKM); segmentation; @Q-value

1 Introduction

1.1 Overview

Segmentation is the act of partitioning an image into
different regions by creating boundaries that keep
regions apart. It is one of the most used steps in
After segmentation,
pixels belonging to the same partition have higher

zoning pixels of an image [1].
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similarity values, but higher dissimilarity with pixels
in other partitions. Segmentation is a technique used
in many fields including health care, image processing,
traffic image, pattern recognition, etc. According to
the review in Ref. [1], image segmentation techniques
can be categorized into two types: layered-based
segmentation and block-based segmentation. In
layered-based segmentation, the image is divided into
layers such as background, foreground, and mask
layers. Reconstruction of the final image is decided
using the mask layer [2]. This method is not widely
applicable to medical image segmentation. Block-
based segmentation divides the image into unequal
blocks using attributes such as color, histogram,
pixels, wavelet coefficients, texture, and gradient [1, 2].
Block-based segmentation can be further grouped into
methods based on discontinuity or similarity in the
image. It can also be further grouped into three
categories: region-based, edge- or boundary-based,

and hybrid techniques [1, 2].
1.2 Edge-based segmentation

The discontinuous nature of pixels characterizes all
algorithms in the edge-based segmentation family
[2]. In this type of image segmentation, images are
segmented into partitions based on unanticipated
changes in gray intensity in the image. In most cases,
edge-based segmentation techniques can identify
corners, edges, points, and lines in the image.
However, pixel miscategorization errors are the main
limitation of the edge-based segmentation category.
The edge detection technique is an example of this

class of segmentation method [2].
1.3 Region-based segmentation

Edge-based techniques
discontinuous nature of pixels.

the
However, region-

segmentation use

based techniques use similarity of pixels in the image.
Edges, lines, and points are attributes that decide the
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effectiveness of region-based techniques. Algorithms
like clustering, splitting and merging, normalized
cuts, region growing, and thresholding belong to the
region-based segmentation family [1, 2]. Our main
interest is in clustering algorithms. Schwenker and
Trentin [3] presented traditional machine learning
as supervised and unsupervised learning: supervised
learning associates every observation of the samples
with a target label whereas this is not the case in
unsupervised learning. Clustering algorithms are very
important, especially for unlabeled larger dataset
classification [3]; they belong to the unsupervised
category. However, there is another machine learning
approach, partially supervised machine learning,
which lies between unsupervised and supervised
machine learning. A detailed review is given in

Ref. [3].
1.4 Learning-based segmentation

Deep learning models are well known in object
detection, feature extraction, and classification. In
addition, semantic image segmentation or image
labeling is also an area in which deep learning has
been applied. Semantic segmentation is a technique
in which semantic labels (like “cat” or “bike”) are
assigned to every pixel in the image [4]. The most
common models that have been applied to semantic
image segmentation include FCN-8s [5], DeepLab [4],
DeepLab-Msc [4], MSRA-CFM [6], TTI-Zoomout-
16 [7], DeepLab-CRF [4], DeepLab-MSc-CRF [4],
DeepLab-CRF-7x7 [4], DeepLab-MSc-LargeFOV [4],
DeepLab-MSc-CRF-LargeFOV [4], and Front-End
Modules [8]. Consecutive application of pooling in
deep convolutional neural networks (DCNNs) reduces
feature resolution and allows DCNNs to learn abstract
representations of objects [9].

2 Related work

2.1 k-means segmentation

There has been much research on image segmentation
for different application areas,
techniques from conventional and learning-based
methods. Among many segmentation algorithms,
k-means is one of the simplest for generating a region

using various

of interest [10-12]. It has a time complexity of O(n)
for n samples [13]. However, it is sensitive to outliers
and initialization parameters [14]. As a result, it
gives different clustering results with different cluster
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Much
research has considered how to initialize the centers

numbers and initial centroid values [12].

for k-means with the intention of maximizing the
efficiency of the algorithm. In the k-means clustering
algorithm, each pixel belongs to only one cluster
and center, so it is a hard clustering algorithm
[10, 11]. Some recent works in clustering methods of
segmentation and deep learning based segmentation
are addressed in Sections 2.2 and 2.3 respectively.

2.2 Clustering methods for segmentation

In Ref. [15], adaptive k-means clustering is introduced
to ameliorate the performance of k-means. Here, the
initialization parameters remain consistent for several
iterations. However, the initial seed point is computed
simply by taking the usual mean of all data values in
the input image, making it a simple post-processing
operation for good quality image segmentation.

A first attempt to ameliorate the deficiencies of
k-means clustering with respect to outliers occurred
three decades ago. Bezdek [16] came up with a
new algorithm named fuzzy c-means (FCM) in 1981.
This algorithm is a membership-based soft clustering
algorithm.

FauBler and Schwenker [17] proposed an algorithm
that divides the samples into subsets to perform
clustering in parallel, and merges the output
repeatedly. In their proposed approach they used
many kernel-based FCM clustering algorithms. Two
datasets (the Breast Cancer database from the UCI
repository and Enron Emails) were used to evaluate
their algorithm. The experimental analysis proved
that the algorithm has high accuracy and works
well for large real-life datasets. Benaichouche et
al. [18] brought in a region-based image segmentation
algorithm using enhanced spatial fuzzy FCM. Lei et
al. [19] explained that traditional FCM is susceptible
to noise, and describes improvements based on
This
solves the robustness problem but greatly increases
the computational complexity. First, they used
morphological reconstruction to smooth images to
enhance robustness and then applied FCM. They
also modified FCM by using faster membership
filtering instead of the slower distance computation

the addition of local spatial information.

between pixels within local spatial neighborhoods
and their cluster centers. The gray-level histogram
of the morphologically reconstructed image is used
for clustering. The median filter is employed to avoid
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noise from the fuzzy membership matrix generated
using the histogram. The paper demonstrated
that the proposed algorithm is faster and more
efficient when compared to FCM and other types
of modification.

Arthur and Vassilvitskii [20] introduced a new
algorithm called k-means++ that improves upon
the initial selection of centroids. The selection for
initial clusters is started by selecting one initial center
randomly. The other cluster centers are then selected
to satisfy specific probabilities determined by “D?
weighting”. The probabilities are defined based on
the squared distance of each point to the already
chosen centers. The paper claims that k-means++
outperforms the original k-means method in achieving
lower intra-cluster separation and in speed. The
number of clusters is still chosen by the user. But
the algorithm is faster and more effective and even
provided as a library in MATLAB.

Zhang et al. [21] used Mahalanobis distance
instead of Euclidean distance to allocate every data
point to the nearest cluster. Using their new
clustering algorithm, PCM clustering, they got better
segmentation results. However, their algorithm also
has high computational cost and the challenge of
initializing parameters.

Purohit and Joshi [22] presented a new approach
to improve k-means with aim of reducing the mean
square error of the final cluster and attaining
minimum computation time. Yedla et al. [23] also
introduced an enhanced k-means clustering algorithm
with better initial centers. They achieved an effective
way to associate data points with appropriate clusters
with reduced computation time compared to standard
k-means.

Dhanachandra et al. [12] initialized k-means
clustering using a subtractive clustering approach
which attempted to find optimal centers based on
data point density. The first center is chosen to have
the highest density value in the data points. After
selecting the first center, the potential of the data
points near this center decreases. The algorithm then
tries to find other centers based on the potential
value until the potential of all grid points falls
below some threshold. The algorithm is effective
at finding centers but the computational complexity
increases exponentially as the number of data points

increases. The standard k-means algorithm is then
initialized with these centers. Since the aim of the
paper was the segmentation of medical images, which
suffer from poor contrast, a partial spatial starching
contrast enhancement technique was applied. After
segmentation, filtering is applied to avoid unwanted
regions and noise. The paper attempted to illustrate
the out-performance of subtractive clustering based
k-means over normal k-means. However, it failed
to compare it to other methods. Subtractive
clustering has a higher computational time than other
clustering methods, which is the main drawback of
this technique.

Kiugtikkiilahl et al. [24] tried to initialize k-means
First,
they used histogram values to determine peaks and

by finding both k& and centroid locations.
pits. Then, by calculating the distances between
adjacent peaks and pits, a vertical sweep is done
to find the highest peak within some threshold
distance. Horizontal sweeping is followed to group
peaks that are close to each other, replacing them
with a representative by calculating the mean distance
and choosing peaks which are above the mean. Once
k and centroids have been obtained, the standard
k-means method is used for clustering. Even though
the approach is dependent on human involvement for
assigning the threshold for the vertical sweep, the
algorithm automated the k-means method.

2.3 Deep learning in image segmentation

Recently a number of deep learning models have
shown astounding results in semantic segmentation
[4, 25, 26].

According to Ref. [26],
shown its success in handwritten digit recognition,

deep learning has

speech recognition, image categorization, and object
detection in images. It has also been applied
to screen content image segmentation, and proven
its application to semantic pixel-wise labeling [25].
Badrinarayanan et al. [26] proposed SegNet, a method
for semantic pixel-wise segmentation of road scenes,
and tested their algorithm using the CamVid road
scenes dataset. They used three popular performance
evaluation parameters: global accuracy, class average
accuracy, and mean intersection over union (MIoU)
over all classes.

Minaee and Wang [25] introduced an algorithm
for segmentation of screen content images into two
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layers (foreground and background). The foreground
layer mainly consists of text and lines and the

background layer consists of smoothly varying regions.

They compared their results with two algorithms
(hierarchical k-means clustering in DjVu, and a shape
primitive extraction and coding (SPEC) method) in
terms of precision and recall values using five test
images. The proposed approach scored 91.47% for
precision and 87.73% for recall.

Chen et al. [4] proposed a technique that embeds
multiscale features in a fully connected convolutional
neural network to perform pixel-based semantic
segmentation through pixel-level classification. They
introduced an attention model to softly determine
the weight of multi-scale features at each pixel
They trained the FCN with multiscale
features obtained from multiple resized images using
a shared deep network. The attention model played
the role of average pooling and max-pooling. Besides

location.

feature reduction, the attention model overcame one
of the challenges of deep learning: it enabled the
authors to visualize the features at different positions
along with their level of importance. They proved the
effectiveness of their approach using three datasets:
PASCAL-Person-Part, VOC 2012, and MS-COCO
2014.

As reviewed by Minaee and Wang [27], various
algorithms are in use to separate text from its
background. Approaches include clustering-based
algorithms, sparse decomposition based methods,
and morphological operations. In their paper,
they proposed an alternating direction method of
Lagrange multipliers (ADMM) for this problem. They
adopted the proposed algorithm to separate moving
objects from the background. In a comparison made
with the hierarchical k-means approach and sparse
decomposition, their proposed method scored higher
precision (95%), recall (92.5%), and F1 (93.7%)
The sparse decomposition approach was
proposed by themselves in Ref. [28].

values.

3 Materials and methods
3.1 Dataset

Images used in this paper are from different sources.

Some are from the MATLAB image database
and
datasets (BSD) [29]. The same images were used in

some from the Berkeley segmentation

(o) h ¥ 1
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Refs. [12] and [30] to evaluate their segmentation
algorithms. The images used for the first experiment
are MRI (mri.tif), Bag (bag.png), Cameraman
(cameraman.tif), Coins (coins.png), Moon (moon.tif),
Pout (pout.tif), and Glass (glass.png). We ran
the second experiment using AT (AT3_1m4_01.tif),
Lena (lena.png), Valley (valley.jpg), Airplane
(airplane.jpg), Mountain (mountain.jpg), and Breast
(bet06.jpg) images [31].  Further experimental
analysis was done to measure the effectiveness of
our proposed segmentation algorithm using the

VOC2012 challenge datasets [32].
3.2 Proposed approach

Our proposed segmentation approach is convolution
based, as indicated in Fig. 1. First, the histogram

Images
(BSD, VOC2012, BGH, MIAS, MRI)

Segmentation

Compute amplitude
threshold, 7p

.

Compute window size
using 7p

Histogram of gray
image

”

2D convolution

—

Initial seed
generation

Modified adaptive A-
means (MAKM)

!

Post-processing >

Region of interest
(ROI)

Computing evaluation
parameters

(@-value, RMSE, E
Time, MAE, MSE,

PSNR, loU, MloU)

Comparing the proposed
algorithm with clustering and
learning based segmentation

methods

Fig. 1 Flowchart of our convolution-based segmentation algorithm.
First, histograms of the grayscale image of the original image are
generated. Second, amplitude thresholds, T'p, are computed using
the histogram levels. Third, the dynamic window size is computed
using an amplitude threshold for each image. This is followed by a
2D convolution operation. Finally, the mean of the convolution is set
as the initial seed to generate other new seed values that can be used
as the centers of clusters, which are then used to perform clustering.
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distribution (a;;) of the grayscale image is generated
for each image. Second, out of the generated
histogram values we select only those with a;; > 1.
Third, we computed the ratio of the sum of the
selected histograms to the number of occurrences
(lp) of such histogram values to obtain the amplitude
threshold (T'p). Fourth, we added the histogram
values > Tp and divided by a to get a window
size. See Algorithm 1; « is computed as indicated
at the end of Algorithm 1. Finally, the convolution
operation is performed and the result is converted
to an array to compute the mean value used as the
initial seed point of the convolution-based modified
adaptive k-means (MAKM) segmentation algorithm.
The parameters used in the proposed algorithm are
constant for each image and the segmentation result
is consistent for a number of iterations which is not
true for the other clustering algorithms (FCM, HBK,
SC, and k-means++) used for comparative analysis.
The pseudocode of the proposed algorithm is given
in Algorithm 2.

Algorithm 1 Pseudocode for window size generation

Get input image and convert to gray image
Image = readimg)()
if (channels(Image)> 3) then
grayimage = rgb2gray (Image)
else
grayimage = Image
end if
Calculate the Amplitude Histogram Threshold
Hist = histogram (grayimage)
for i = 0:255 do
if (a;; > 1) then
lo=1lo+1
Sumg,, = Sumg,, + ai;
end if
end for
Tp = Sumg,, /lo
Window size determination, w
for i =0:255 do
if (a;; = Tp) then
Sumg,,s,, = SuMg,sr, + a1
end if
end for
w = SuMa,;s 7, /@
Determine a:
hist = imhist(img, k), k = 256
hist2 = max(hist—T'p 4 1,0)
nonzeros2 = find(hist2)
It = length(nonzeros2)
a = 1+floor(min(9,1t/2))

Algorithm 2 Pseudocode for modified adaptive k-means

Input: window size w and gray image
Perform Convolution operation
gray=conv2(gray,ones(w)/(w?),’same’)
Place the convolution result in an array
array = gray(:)

Initialize iteration Counters: i = 0,
while true do

J=0

Initialize seed point, seed = mean(array)
Increment counter for each iteration, ¢ =i+ 1
while true do
Initialize counter for each iteration, j = j + 1
Compute distance between seed and gray value
dist = sqrt((array—seed)?)
Compute bandwidth for cluster center
distth= sqrt(sum((array—seed)?) /numel(array))
Check values are in selected bandwidth or not
qualified = dist<distth
Update mean
newseed = mean(array(qualified))
condition for termination
if (seed = newseed or j>10) then
j=0
Remove values assigned to a cluster
Store center of cluster
center(i) = newseed
break
end if
Update seed: seed = newseed
check maximum number of clusters
if (isempty(array) or ¢ > 10) then
Reset counter: ¢ =0
break
end if
end while
Sort centers
Compute distances between adjacent centers
Find minimum distance between centers
Discard cluster centers less than distance
Make a clustered image using these centers
end while

3.3 Evaluation

In this paper we use the Q-value criterion [30],
computational cost [30], root mean squared error
(RMSE) [33, 34], standard deviation, mean absolute
error (MAE), intersection over union (IoU) [35], mean
intersection over union (MIoU) [35], entropy (E),
and peak signal to noise ratio (PSNR) to assess our
proposed, convolution-based, modified adaptive k-
means segmentation algorithm.

The Q-value measures image segmentation quality
taking into consideration both small and large regions
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in the final segmented images. The @) value evaluation
function used in this paper is given by
\/E R 6% R Al 2
Q=Y L (BN
(NM) im1 1+ log A; A;

where N and M are the numbers of rows and columns

in the image respectively, R is the total number
of regions in the segmented image, e; is the color
difference between the original and segmented image,
A, is the area of region i, and R(A;) is the number of
regions with the same area as A;. The area of each
region A; is the number of pixels constituting that
region; empty regions and regions with 1 pixel are left
unconsidered. Smaller values of () represent better
segmentation results whereas higher values indicate
higher color errors due to either under-segmentation
or over-segmentation. e; is given by

€ = \/ -Tsz;ysz - O(xoiayoi))zv i=1:R (2)
where S and O are points in 2D Euclidean space with
coordinates S(xs;, ys;) for the segmented image and

O(Z i, Yoi) for the original (raw) image.

RMSE measures how much the output image
deviates from the input image. Mean squared error
(MSE) is given by
Ng—1my—1
where r(z, y) and t(x, y) are grayscale values at
position x, y in the raw and segmented images. RMSE
is the square root of the MSE [33, 34].

RMSE = vMSE (4)

A smaller value means higher image segmentation

MSE = tx,y)? (3

quality.

For the VOC2012 challenge datasets, popular
performance evaluation parameters include global
accuracy, class and mean
intersection over union (MIoU) for all classes [26].
Global accuracy is the percentage of pixels correctly

classified in the dataset whereas the mean of the

average accuracy,

predictive accuracy over all classes is class average
accuracy. In this paper, we use MIoU to compare
the performance of our algorithm with learning-based
segmentation methods. MloU is defined as

MIoU = > "ToU/N (5)
where intersection over union (IoU) is defined in
Eq. (6) and N is the number of objects considered

from the dataset for a particular experiment.
Area(overla
ToU = —( p)

(6)

Area(union)

1@? 'Euglvlsllivsﬁv*géé?s @ SPl'lnger

Algorithm 3 Pseudocode for mean @ values and standard
deviation
Initialize Q@ = 0
Perform 10 iterations
for j =1:10 do
Identify the unique label from the indexed image
Calculate the number of unique labels and initialize to
number of regions (R)
Convert the indexed images to gray-scale using
mat2gray
Compute color error (e;) and area (A;) for each region
fori=1:R do
Find number of regions with the same area as A; and
initialize it to R(A;)
Compute Q; for each region
Q=Q+Qi
end for
end for
Compute mean of @ and standard deviation (o)

Algorithm 4 Pseudocode for computation of RMSE

Initialize Squared Error, £ = 0
Perform 10 iterations
for j =1:10 do
Get labeled images with their respective centers
fori=1: Rdo
Compute Squared Error (SE) for each region
end for
fori=1:R do
Compute sum of F,
E=E+E;
end for
Compute RMSE for each iteration
end for
Compute mean RMSE and standard deviation (o)

where area of overlap is the area between the
predicted bounding box and the ground-truth
bounding box, and area of union is the area covered
by both the predicted bounding box and the ground-
truth bounding box.

4 Results and discussion

The outcomes of the experiments we conducted
using the proposed technique show that gray image
segmentation task can be carried out efficiently while
initialization of parameters is done automatically. All
experiments were performed in MATLAB version
2016b and run on a 3.00 GHz Intel Core i7-
4601M CPU, under the Microsoft Windows 10
operating system. The performance of the proposed
segmentation algorithm was evaluated using RMSE,
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Q-value, computation time, MAE, E, PSNR, ToU,
and MIoU. RMSE and MAE were used for standard
quality measurement of the segmented output
image. It tells us the degree of deviation between
The
same evaluation parameters were used for other

the output image and the input image.

selected clustering segmentation algorithms for
comparative analysis, but for the deep learning based
segmentation algorithm, only IoU and MIoU were
used for comparison with the proposed segmentation
algorithm. Some performance aspects of the proposed
method are discussed in this section.

To evaluate the proposed image segmentation
approach, we used images that were also used in
Refs. [12] and [30].
used MRI (mri.tif), Bag (bag.png), Cameraman
(cameraman.tif), Coins (coins.png), Moon (moon.tif),
Pout (pout.tif), and Glass (glass.png). The results
obtained are indicated in Figs. 2-6 and Tables 2—4.

In Table 1, we list images with their respective sizes

In the first experiment, we

and number of cluster for every clustering algorithm
considered in this paper. In Table 2, we compare other
clustering algorithms with our proposed algorithm
in terms of segmentation quality. Since the cluster
centers varying for K++, FCM, and HBK, the Q-
value in Table 2, RMSE in Table 3, and computation
cost in Table 4 are computed 10 times and their
mean value and standard deviation are determined.

However, in the proposed modified adaptive k-
means clustering method, the cluster centers are
consistent for any number of iterations. Compared
to other clustering algorithm, histogram-based k-
means (HBK) had the lowest segmentation quality
for moon.tif, as indicated in Table 2. Comparing
K++ and FCM with HBK shows that K++ and
FCM had lower ) score. However, adaptive k-means
and modified adaptive k-means methods outperform
these three algorithms, even if the adaptive k-means
algorithm needs post-processing image to find the
region of interest. In some cases, MAKM performs
better than AKM, for example for images glass.png,
pout.tif, and mri.tif.

In terms of RMSE, FCM had highest score for
pout.tif which shows that it is the worst performing
clustering algorithm: see Table 3. However, our
proposed approach had the minimum RMSE value
for all images used in the experiment.

To evaluate the attainment of the proposed
technique in image segmentation for other gray
images, further experiments were conducted on some
commonly used images: AT3_1m4 01.tif, lena.png,
valley.jpg, airplane.jpg, mountain.jpg, and bet06.jpg.
The subtractive k-means algorithm has the highest
computation cost for all images, although in some
cases it shows better segmentation quality than K-++,
HBK, and FCM.

(a) Original (b) K++ (c) HBK

(d) FCM (e) AKM

(f) MAKM

Fig. 2 MRI-labeled image segmented using various approaches.

(f) MAKM

) TSINGHUA & Springer
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(a) Original (d) FCM
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Fig. 4 Cameraman-labeled image segmented using various approaches.
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(a) Original (d) FCM

(a) Original (b) K++ (c) HBK (d) FCM (e) AKM (f) MAKM

Fig. 6 Moon-labeled image segmented using various approaches.
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Table 1 Number of clusters used in each algorithm for each respective images

Image Size K++ HBK FCM SC AKM MAKM (proposed)
MRI 128x128 3 3 4 2 3 3
Bag 250x 189 3 3 4 4 5 4
Cameraman 256x256 3 3 4 3 4 4
Experiment-1 Coins 246 x300 3 3 4 2 4 3
Moon 537x358 3 3 4 2 4 4
Pout 291x240 3 3 4 2 3 4
Glass 181x282 3 3 4 5 3 3
AT3.1m4.01 (AT) 480640 3 3 4 1 5 5
Lena 512x512 3 3 4 4 3 3
Experiment-2 Valley 321x481 3 3 4 5 4 4
Airplane 321x481 3 3 4 2 4 4
Mountain 321x481 3 3 4 2 4 3
Breast 384x512 3 3 4 2 6 5

Table 2 Comparison of algorithms in terms of mean Q-value and standard deviation (Q-value, o)

Image Size K++ HBK FCM SC AKM MAKM (proposed)
MRI 128 x128 0.40, 0.18 1.06, 0.60 0.87, 0.64 0.31, — 0.21, 0.00 0.20, 0.00
Bag 250% 189 0.44, 0.35 0.50, 0.43 0.39, 0.32 0.13, — 0.07, 0.00 0.12, 0.00
Cameraman 256 %256 0.39, 0.21 0.44, 0.28 0.48, 0.25 0.70, — 0.02, 0.00 0.05, 0.00
Coins 246 %300 0.26, 0.23 0.54, 0.37 0.42, 0.18 0.13, — 0.13, 0.00 0.13, 0.00
Moon 537x358 0.25, 0.36 0.87, 0.57 0.60, 0.51 0.06, — 0.01, 0.00 0.01, 0.00
Pout 291x240 0.28, 0.04 0.35, 0.14 0.40, 0.13 0.29, — 0.20, 0.00 0.03, 0.00
Glass 181x282 0.55, 0.24 0.46, 0.41 0.44, 0.29 0.62, — 0.15, 0.00 0.14, 0.00
Table 3 Comparison of algorithms in terms of mean RMSE and standard deviation (RMSE, o)
Image Size K++ HBK FCM SC AKM MAKM (proposed)
MRI 128x128 1.14, 0.00 1.14, 0.004 0.88, 0.006 0.91, — 1.03, 0.00 1.03, 0.00
Bag 250189 1.27, 0.004 1.27, 0.01 1.13, 0.001 1.36, — 1.29, 0.00 0.90, 0.00
Cameraman 256 x256 1.63, 0.001 1.62, 0.005 1.44, 0.01 1.63, — 1.47, 0.00 1.10, 0.00
Coins 246x 300 1.54, 0.002 1.54, 0.01 1.47, 0.004 1.50, — 1.61, 0.00 1.31, 0.00
Moon 537x 358 0.86, 0.001 0.86, 0.004 0.91, 0.001 0.76, — 0.88, 0.00 0.86, 0.00
Pout 291x240 1.81, 0.04 1.79, 0.02 1.91, 0.005 1.77, — 1.50, 0.00 1.48, 0.00
Glass 181x282 1.51, 0.00 1.51, 0.001 1.62, 0.005 1.77, — 1.4, 0.00 1.37, 0.00
Table 4 Comparison of algorithms in terms of mean computation time and standard deviation (time (s), o)

Image Size K++ HBK FCM SC AKM MAKM (proposed)
MRI 128x128 0.01, 0.005 0.02, 0.006 0.02, 0.009 5.00, 0.50 0.003, 0.001 0.004, 0.001
Bag 250189 0.08, 0.07 0.09, 0.03 0.06, 0.02 33.70, 1.02 0.012, 0.002 0.018, 0.011
Cameraman 256 X256 0.04, 0.02 0.09, 0.005 0.08, 0.01 62.77, 1.25 0.0116, 0.002 0.016, 0.004
Coins 246 %300 0.09, 0.07 0.11, 0.005 0.08, 0.01 75.90, 1.16 0.015, 0.004 0.022, 0.024
Moon 537x358 0.20, 0.11 0.26, 0.01 0.20, 0.007 1025.01, 5.69 0.041, 0.003 0.042, 0.005
Pout 291x240 0.02, 0.008 0.09, 0.005 0.06, 0.01 74.03, 0.75 0.015, 0.004 0.015, 0.004
Glass 181282 0.02, 0.006 0.07, 0.004 0.05, 0.02 39.44, 0.05 0.012, 0.008 0.011, 0.004

Table 5 Comparison of proposed algorithm with K++, HBK, FCM, and SC in terms of mean @Q-value for AT, LE, VA, AI, MT, and Breast
images

Image Size K++ HBK FCM SC MAKM (proposed)
AT3_1m4.01 (AT) 480x640 0.53 0.36 0.49 0.50 0.04
Lena (LE) 512x512 0.42 0.35 0.48 0.39 0.06
Valley (VA) 321x481 0.45 0.45 0.55 0.45 0.15
Airplane (AI) 321x481 0.40 0.29 0.36 0.41 0.10
Mountain (MT) 321x481 0.34 0.50 0.53 0.64 0.19
Breast 384x512 0.46 0.39 0.73 0.72 0.01
(B) TSANGHYUA &) Springer
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Table 6 Comparison of proposed algorithm with K4+, HBK, FCM, and SC in terms of mean RMSE for AT, LE, VA, AI, MT, and Breast

images
Image Size K++ HBK FCM SC MAKM (proposed)
AT3.1m4.01 (AT) 480x 640 0.83 0.83 0.82 0.74 0.69
Lena (LE) 512x512 1.00 1.00 1.10 1.12 0.84
Valley (VA) 321x481 1.23 1.23 1.20 1.42 1.06
Airplane (AI) 321x481 1.45 1.45 1.51 1.28 1.22
Mountain (MT) 321x481 0.95 0.95 0.88 0.78 0.72
Breast 384x512 0.56 0.58 0.59 0.50 0.56

Table 7 Comparison of proposed algorithm with K++, HBK, FCM, and SC in terms of mean computation cost (s) for AT, LE, VA, AI, MT,

and Breast images

Image Size K++ HBK FCM SC MAKM (proposed)
AT3.1m4.01 (AT) 480640 0.34 0.42 0.33 2846.45 0.14
Lena (LE) 512x512 0.21 0.34 0.27 2074.85 0.12
Valley (VA) 321x481 0.20 0.27 0.18 693.66 0.06
Airplane (AI) 321x481 0.12 0.23 0.14 648.50 0.05
Mountain (MT) 321x481 0.09 0.24 0.17 658.37 0.07
Breast 384x512 0.10 0.20 0.17 1092.93 0.05

From the data analysis, we observe that the
time taken by subtractive k-means becomes very
expensive for some images. The three image samples
with highest time cost are AT3_1m4_01.tif (2846 s),
lena.png (2075 s), and moon.tif (1565 s).

In the experimental results presented in Table 2,
K++ shows better performance than FCM and
HBK, except for some image samples: glass.png

for both HBK and FCM, and bag.png for FCM.

However, in the second experiment using images
like AT3_1m4 _01.tif, lena.png, valley.jpg, airplane.jpg,
mountain.jpg, and bet06.jpg, HBK proved to provide
the best image segmentation quality except for
mountain.jpg. The modified adaptive k-means
algorithm has better image segmentation quality, and
minimum RMSE for all cases discussed. It scored well
for the breast image compared to other images. The
low computation cost of our proposed approach makes
it more suitable for image segmentation. The sample
indexed images in the second experiment are given in
Fig. 7. The final results of the experiment show that

(a) Original

(b) K++

the overall achievement of the proposed modified
adaptive k-means is superior to other clustering
algorithms in terms of image segmentation quality
(Q-value), computational cost, and RMSE.

For further analysis, we considered additional
images from the VOC2012 challenge dataset and
mammography images from Bethezatha General
Hospital (BGH) and MIAS.

Four randomly selected images (dog, airplane,
plant, and person) from VOC2012 were used to
compare the proposed algorithm to three clustering
algorithms (AKM, FCM, K++) in terms of @, time,
MAE, E, and PSNR. For all images our proposed
algorithm scored better for @), computation time,
and PSNR compared to other clustering algorithms,
but not for MAE and entropy: see Table 8. In the
case of the “person” image, our proposed algorithm
scored minimum MAE compared to other algorithms,
indicating good performance for this particular image.

Comparative performance of the proposed
algorithm for two randomly selected MRI images is

,Q

(f) MAKM

>

(d) FCM (e) AKM

Fig. 7 Lena-labeled image segmented using various approaches.
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Table 8 Comparison of proposed method with clustering algorithms in terms of @, computation time, MAE, entropy, PSNR, precision (P),
recall (R), and F-score (F'1) using VOC2012 dataset

Image Algorithm Q Time (s) MAE Entropy PSNR P R F1
AKM 0.042 0.106 6.07 1.53 47.25 89.3 61.7 72.9
Dog FCM 0.431 0.345 3.22 1.83 46.98 86.9 92.2 89.5
k-means++ 0.209 0.248 2.76 1.94 46.64 84.8 99.5 91.6
Proposed 0.040 0.052 3.89 1.79 47.28 90.3 80.4 85.1
AKM 0.031 0.041 0.407 1.54 43.55 95.0 89.6 92.2
Plane FCM 0.743 0.212 0.302 1.71 43.11 91.2 98.7 94.8
k-means++ 1.00 0.120 0.252 1.63 43.16 94.2 96.6 95.4
Proposed 0.030 0.036 0.337 1.58 43.59 95.3 92.4 93.8
AKM 0.012 0.054 0.331 1.63 45.78 71.1 81.7 76.0
Plant FCM 0.041 0.286 40.60 1.64 45.73 0.0 1.3 0.0
k-means++ 0.621 0.107 43.30 1.64 45.65 0.0 0.0 0.0
Proposed 0.011 0.061 0.332 1.63 45.84 72.1 82.8 7.2
AKM 0.095 0.11 12.72 1.92 48.67 83.6 88.8 86.1
Person FCM 0.139 0.58 16.30 1.62 47.72 92.2 68.1 78.3
k-means—++ 0.35 0.65 14.09 1.72 47.34 92.9 72.8 81.6
Proposed 0.094 0.050 5.11 2.06 48.71 84.9 99.9 91.8

given in Table 9. The proposed algorithm performs
better in terms of MSE, @), and computation time
for both MRI images. However, the second MRI
recorded a higher IoU value than the first image, as

Table 9 Comparison of proposed algorithm with clustering image
segmentation algorithm in terms of MSE, Time, and @ for two MRI
images

indicated in Table 10. Segmentation results for the
second MRI image are given in Fig. 11.

A comparison of the proposed algorithm with
learning-based and clustering algorithms is presented
in Table 11. The comparison terms of IoU and MIoU
indicate that the proposed algorithm scored higher
TIoU and MIoU for plant and person images, but
for the dog and plane images, k-means++ scored

Image Method MSE Time Q
AKM 0.67 0.03 0.009
FCM 0.74 0.16 0.238 Table 10 Comparison of proposed algorithm with clustering
MRI1 k-means++ 0.77 0.37 0.053 algorithm in terms of IoU and MIoU for two MRI images
Proposed 0.66 0.02 0.008 Method MRI_1 MRI_2 MIoU
AKM 0.74 0.03 0.020 AKM 63.19 58.19 60.69
MRI2 FCM 0.85 0.16 1.585 FCM 79.21 62.93 71.07
k-means++ 0.91 0.30 1.492 k-means++ 77.90 83.96 80.93
Proposed 0.73 0.02 0.019 Proposed 64.22 86.33 75.28

(a) Original annotated breast
from MIAS dataset

(b) Extracted region with
cancer from (a)

(c) Original annotated breast
from BGH dataset

(d) Extracted region with
cancer from (c)

Fig. 8 Examples of annotated and extracted region with cancer for breast mammographic images from BGH and MIAS datasets using

proposed method.
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(a) Original annotated dog (b) Segmentation result

Fig. 9 Annotated and respective segmentation result for dog from
VOC2012 challenge datasets using proposed method.

higher values of IoU and MIoU. Figures 8-10 present
segmentation results for the proposed algorithm for
images randomly selected from VOC2012, BGH, and
MIAS datasets.

(a) Original annotated plane (b) Segmentation result

5 Conclusions

In this study, we presented a convolution-based
modified adaptive k-means algorithm, to get the best
out of the normal k-means method during image
segmentation. Firstly, an automatic window size
generation approach was designed to perform the
convolution process to get the central value for every
convolution step, and the mean of these values is
assigned as the initial seed point. Then, using this
seed point, the cluster centers and number of clusters
are determined as initial parameters and given to
the adaptive k-means algorithm. A comparative
analysis of the proposed modified adaptive k-means
with K++, HBK, and SC methods was made in terms
of image segmentation quality (@), RMSE, and time.
The results obtained confirmed the advantages of
our proposed modified adaptive k-means algorithm.

)RR

(c) Original annotated person (d) Segmentation result

Fig. 10 Annotated and respective segmentation result for plane and person from VOC2012 challenge datasets using proposed method.

Table 11 Related works from learning-based methods and clustering algorithms for comparison with proposed method in terms of IoU and

MIoU for selected images from VOC2012 dataset

Author(s), year, and citation Method Dog Plane Plant Person MIoU
Long et al., 2015 [5] FCN-8s 71.8 76.8 45.2 73.9 66.92
Chen et al., 2016 [4] DeepLab 68.7 72 50.8 73.6 66.28
Chen et al., 2016 [4] DeepLab-Msc 68.4 74.9 51.7 75.0 67.5
Dai et al., 2015 [6] MSRA-CFM 69.1 75.7 50.4 67.5 65.68
Mostajabi et al., 2015 [7] TTI-Zoomout-16 74.0 81.9 68.8 44.3 67.25
Chen et al., 2016 [4] DeepLab-CRF 75.2 78.4 54.7 77.6 71.48
Chen et al., 2016 [4] DeepLab-MSc-CRF 74.3 80.4 56.9 79.0 72.65
Chen et al., 2016 [4] DeepLab-CRF-7x7 78.9 83.9 60.3 80.6 75.93
Chen et al., 2016 [4] DeepLab-MSc-LargeFOV 78.5 83.5 58.2 79.7 74.98
Chen et al., 2016 [4] DeepLab-MSc-CRF-LargeFOV 79.0 84.4 59.7 80.8 75.98
Liu et al., 2015 [36] ParseNet Baseline 73.1 82.6 51.9 78.6 71.58
Liu et al., 2015 [36] ParseNet 7.1 84.1 52.6 78.2 73.0
Reproduced by Ref. [36] Hypercolumn 72.1 68.7 52.6 72.9 66.58
Yu and Koltun, 2015 [8] Front-End Module 73.1 82.2 56.6 79.1 72.75
Reproduced AKM 57.4 85.6 61.30 75.6 69.98
Reproduced FCM 81.0 90.1 0.0 64.3 58.85
Reproduced k-means—++ 84.5 91.2 0.0 68.9 61.15
Proposed method MAKM 74.0 88.16 61.32 85.0 77.12
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(a) Original annotated MRI  (b) Extracted region with

tumor from (a)

Fig. 11 Examples of annotated and extracted region with tumor for
MRI image using proposed method.

Furthermore, an objective comparison of the proposed
modified adaptive k-means algorithm with another
soft clustering algorithm, FCM, also proved the
advantages of our proposed technique.

To evaluate the robustness of our algorithm we ran
additional experiments using the VOC2012 challenge
dataset and MRI images, comparing the proposed
segmentation algorithm with learning-based methods
in terms of IoU and MIoU. They found that our
algorithm outperforms learning-based methods for
the VOC2012 challenge dataset.

In work, we hope to apply our method to breast
cancer image analysis. After segmentation, texture
features (quantized compound change histogram,
Haralick descriptors, edge histogram MPEG-7, Gabor
features, gray-level c-occurrence matrix, and local
binary patterns) and shape features (centroid distance
function signature, chain code histogram, Fourier
descriptors, and pyramid histogram of oriented
gradients) can be extracted and used as input to
various classifiers to distinguish between normal and
abnormal mammograms.
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