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Abstract
been shown to be effective for denoising Monte Carlo

Learning-based techniques have recently

rendering methods. However, there remains a quality
gap to state-of-the-art handcrafted denoisers. In
this paper, we propose a deep residual learning
based method that outperforms both state-of-the-art
handcrafted denoisers and learning-based denoisers.
Unlike the indirect nature of existing learning-based
methods (which e.g., estimate the parameters and
kernel weights of an explicit feature based filter), we
directly map the noisy input pixels to the smoothed
output. Using this direct mapping formulation, we
demonstrate that even a simple-and-standard ResNet
and three common auxiliary features (depth, normal,
and albedo) are sufficient to achieve high-quality
denoising. This minimal requirement on auxiliary
data simplifies both training and integration of our
method into most production rendering pipelines. We
have evaluated our method on unseen images created
by a different renderer. Consistently superior quality

denoising is obtained in all cases.

Keywords Monte Carlo rendering; denoising; deep
learning; deep residual learning; filter-
free denoising

1 Introduction

Monte Carlo rendering methods have become the
mainstream photo-realistic image synthesis technique
because of their generality, fast start-up,
Unfortunately, such methods

and
progressive nature.
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take a prohibitive amount of time to obtain a noise-
free image. While light transport techniques [1-3]
can accelerate the integration process, noise-free
images remain computationally expensive. Image-
based denoising techniques have matured quickly in
recent years. They take less processing time and
are often easy to integrate into existing rendering
pipelines. Several post-processing image denoisers
have been proposed which achieve high-quality results
[4-6].

Recently, learning-based approaches [7, 8] have
been demonstrated to provide an effective means
to denoising. However, their current results do not
show a significant improvement in quality over state-
We believe that
their mildly incremental improvements are due to the
joint filtering model commonly found in mainstream

of-the-art handcrafted denoisers.

image-based denoisers. The passive roles of their
neural networks in filter kernel estimation fail to
unleash the full power of deep learning. While the
state-of-the-art deep learning method proposed by
Ref. [7] requires a large number of auxiliary features,
their true benefit is dubious.

In this paper, we propose a filter-free direct
denoising method based on supervised learning using
a standard-and-simple deep residual network (ResNet)
[9]. Unlike previous learning-based methods which
require a large number of auxiliary features, ours
requires only three: depth, view-space normal, and
albedo. We train our simple network to map the noisy
inputs directly to high-quality noise-free outputs
using our own dataset. The training takes less than
36 hours.
both state-of-the-art learning-based denoisers and
carefully handcrafted image denoisers, in terms of
visual quality. Figure 1 compares our denoising
results with those from two leading denoisers, NFOR
[5] and KPCN [7].

Nevertheless, our network outperforms
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(a) Input, SSIM=0.7082  (b) NFOR, SSIM=0.9737  (c) KPCN, SSIM=0.9397 (d) Ours, SSIM=0.9826

(e) Reference (2048 spp)

Fig. 1 We propose a filter-free direct denoising method based on supervised learning with a deep residual network [9, 10]. Our network takes
the noisy image together with depth, screen-space normal, and albedo as input (9 channels total), and it directly outputs a noise-free result
with no intermediate filtering step. Both our network and KPCN [7] are trained with our own dataset (rendered using RenderMan) which
covers diverse shading and distributed effects found in modern rendering methods. The above images compare the denoising performance of our
network with other leading methods using a noisy image with depth of field effect rendered at 8 samples per pizel using the Tungsten renderer

(The Wooden Staircase scene by Wigd2 from Ref. [11])

The key to achieving such high quality using a
simple ResNet and just three auxiliary features is
the notion of deep residual learning; its unique
design forces the network to learn the difference
between its input and the expected output, i.e., the
residual. In a supervised learning setting, the network
learns to map the differences between the noisy input
and the corresponding ground truth. Furthermore,
the shortcut connections of ResNet allow reuse of
upstream features to establish a multi-scale alike
mapping capability. All these features make ResNet
a perfect candidate for our denoising task. In
addition, the batch normalization [12] layers in
ResNet make it resilient to high dynamic range data
(typical of our noisy color inputs), and scale well in
depth.
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To validate our method, we have tested it on
a rich variety of scenes (not included in our
training data) rendered by a different renderer.
Extensive experiments and quantitative evaluation
show that our method consistently outperforms other
state-of-the-art denoising methods. In short, our
contributions are:

e A deep learning based single image denoising
method for Monte Carlo rendering. Our simple
ResNet generalizes well, and utilizes only three
standard auxiliary features as additional input.
It integrates transparently into existing rendering
pipelines without need for adaptation.

e We identify and demonstrate the benefits of
residual learning for high-quality denoising of the
output of Monte Carlo rendering methods.
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e We demonstrate the advantage of direct denoising
using a deep neural network, and identify the
importance of auxiliary feature selection and its
balance with network capacity.

2 Related work

In this section, we review selected image-based
denoising methods and deep learning techniques
closely related to our work. A thorough review of
denoising Monte Carlo rendering output, including
a priori methods which study origins of sampling
noise in the rendering process, is available in Ref. [13].
Given the wide spectrum of deep learning techniques
and applications, even a brief review is beyond the
scope of this paper, and we refer to Refs. [14-16] for
comprehensive reviews.

2.1 Joint filtering methods

Auxiliary features, such as depth, normal, and
albedo computed during most Monte Carlo rendering
methods, possess strong correlations with image
structures and details seen in the rendered color
image. More importantly, such feature data are often
considerably less noisy than the rendered image itself,
even when the sampling rate is low. Many successful
denoising techniques adapt various edge-aware non-
linear image filters to leverage this correlation to
produce powerful joint filtering methods.

McCool [17] leverages the feature data to produce a
coherence map which controls an anisotropic diffusion
[18] filtering process. Dammertz et al. [19] adapts
auxiliary features as edge-stopping functions in their
edge-avoiding wavelet [20] framework. Sen and
Darabi [21] adapt the kernel weights of a cross-
bilateral filter [22-24] using mutual information,
which helps to suppress the influence of random
inputs. Li et al. [25] propose use of an SURE
estimator [26, 27] to select the best per-pixel result
among a set of cross-bilateral filtered candidates
created with different bandwidths. Rousselle et al. [6]
use both cross-bilateral and non-local means filtering
[28] in their framework to produce a set of improved
candidates for selection via SURE estimation. First-
order regression-based methods using local regression
and linear models have been proposed by Refs. [4, 29].
Bitterli et al. [5] use a holistic first-order regression
approach, which is considered to be the state-of-the-
art joint filtering method.

2.2 Learning-based filtering methods

Regression-based joint filters aim to produce smooth
results from the noisy inputs; there is always a risk
of over-fitting to the noise. It is known they do
not handle highly noisy inputs well. Kalantari et
al. [8] propose the first supervised machine learning
method to estimate the ideal parameters of their cross-
bilateral filter model. Unlike traditional regression-
based approaches, a supervised learning model is
trained with a large number of noisy and ground
truth image pairs. A neural network such as the
multilayer perceptron used in Ref. [8] can learn the
complex relationship between the noisy inputs and the
ground truth. Bako et al. [7] recognize the potential
benefits of deep convolutional neural networks, and
further delegate the task of determining the ideal
filter kernel (bandwidth is preassigned) to the neural
network. They also report the difficulties faced by
their direct CNN denoising attempt including slow
training convergence and potential color shifts.

2.3 Deep learning for inverse problems

Deep convolutional neural networks have demon-
strated their great feature extraction power in
many difficult image classification problems [30-32].
Supervised learning methods using CNN have also
shown impressive results in image denoising [33],
and many inverse problems such as inpainting [34],
deconvolution [35], and super-resolution [36, 37].
These inverse problems share a common challenge,
to reconstruct an output based on inputs with
incomplete information. The capability of a CNN
is known to directly depend on its depth [38] but
it is not a simple matter of stacking more layers to
improve capability. The various training difficulties
related to deep neural networks have been studied and
several practical means [12, 39] exist to tackle them.
As a result, denoising Monte Carlo rendering outputs
with a deep neural network is likely to meet the
challenges of training convergence, the high dynamic
range of the image data (both reported in Ref. [7]),
and selection of auxiliary features as additional inputs
to the network.

3 Direct denoising using a deep residual
network

In the following, we present the details of our deep
learning based direct denoising approach, and the

(@) TSINGHUA

UNIVERSITY PRESS

@ Springer



242

K.-M. Wong, T.-T. Wong

key design considerations that govern our network
architecture and selection of auxiliary features.

3.1 Filter-free direct denoising model

Most regression-based joint filtering methods for
denoising Monte Carlo rendering outputs share a
generic model which reconstructs the noise-free image
by filtering the noisy input colors. They compute the
filtered color ¢&; of pixel i as a weighted sum of the
colors of pixels in a neighborhood N (i) centered at

éi: Z Wi, j Cj (1)

JEN (i)

pixel i:

where w; ; is the normalized contribution weight of
color ¢; of pixel j to the result; the exact expression
of this weight is determined by the filter model used
in a specific method.

Xu and Pattanaik [41] propose one of the earliest
joint filters for denoising Monte Carlo rendering
output. Their method augments the bilateral filter
using pre-filtered pixels for range filtering. The
general strategy of joint filtering is to exploit the
correlations between various auxiliary features and
the color input [42, 43]. In all cases in both the latest
techniques [6, 25, 44] which apply error estimation
to select filter parameters, and the state-of-the-art
regression-based approaches [4, 5], the joint filter
variants can be expressed in the following form:

éi = Z F(ml, Ty, 01‘)]‘) Cj (2)

JEN(4)

where x; and x; are the inputs based on the
selected auxiliary features and c¢; is the color of
pixel j. 6; ; represents the filter specific parameters
of the kernel function F'(-) defined by the method.
Recent supervised learning techniques estimate
the joint filter parameters [8] or even predict the
per-pixel kernel function [7].
how sophisticated the joint filter design is, its

However, no matter

fundamental filtering formulation stays unchanged
and is ultimately dependent on the noisy input colors.

This joint filtering approach unfortunately limits
the solution space. One obvious potential con-
sequence is the difficulty of producing good results
when the color inputs are very noisy. This is
especially common in high dynamic range Monte
Carlo renderings as the non-converged samples often
exhibit high variance.

In order to take full advantage of deep learning
(especially its unparalleled non-linear mapping
(B) TRINGHYA ) Springer
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capability), we propose to solve the Monte Carlo
denoising problem by learning a direct mapping
from the noisy rendered images to the corresponding
high-quality noise-free results. Our filter-free direct
denoising model is expressed as follows:

where G(-) is the mapping to be learned by our
method, N (7) is the neighborhood centered at pixel

1, and the input is x;. In our method, the feature
vector comprises:

CEi:{Ci(T,g,b), Zi, ni(m>y)7 ai(ryg7b)} (4)
with ¢;, color, z;, depth, n;(z,y), view-space normal,
and a;(r, g,b), albedo, of a noisy input pixel 7. In
order to learn such a challenging mapping, we need
a neural network which is easy to train, and has the
capacity to realize that highly non-linear mapping.
In the next section, we present a network architecture
which has a proven record of dealing with natural
image inverse problems of a similar nature to our
denoising problem. We then discuss the rationale
behind the selection of features in Section 3.3.

3.2 Network architecture

We consider the key characteristics of our problem
relevant to network architecture and training. The
two primary concerns identified are as follows:

1. The network is expected to map from the noisy
inputs directly to the corresponding noise-free
results while exploiting the correlations between
the auxiliary features and noisy color inputs.

2. Monte Carlo rendered image data have high

dynamic range, which have the potential to cause

instability during training.

The first concern indicates the need for a network
capable of learning a complex mapping, and is good
at denoising-like tasks. The second concern over
stability during training is due to the potentially
large changes in inputs during training. Overall, we
need a network which scales well with depth [31, 38]
in terms of both learning capacity and stability of
training.

We propose to use a deep residual learning (ResNet)
[9] based architecture for our method, as shown
in Fig. 2. This type of network has shown good
performance on several inverse problems [37, 40, 45].
Deep residual learning pioneered by He et al. [9]
set several records in image recognition challenges.
The depth of a ResNet can reach over one hundred
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Fig. 2 Our network is based on the ResNet architecture [9]. We use 16 ResBlocks (basic ResNet building blocks). Various ResBlock variants
exist [10, 37, 40]. Experiments showed that our current choice (see Fig. 3) performs best for our application in terms of both training efficiency
and quality of output. There are a total of 35 convolutional layers, and 19,592,704 trainable parameters in our network.

convolutional layers with continued improvement in
performance.

The basic building block of ResNet is a small
unit of stacked convolutional layers with a shortcut
connection, shown as a ResBlock in Fig. 3. If we
expect a ResBlock to learn a mapping H (x) with an
input @, the stacked layers inside are now effectively
learning a residual mapping F'(x) = H(x) — «. This
recasting makes certain mappings easier to learn, for
example an identity mapping, i.e., H(x) = x, and
F(x) = 0. In this case the ResBlock has to learn
nothing. An identity mapping can be hard to learn
for an ordinary convolutional network.

This shortcut connection in practice allows an
upstream block to share its input data with any
downstream block via a coordinated identity mapping
if desired. This unique feature is actually the key
which makes ResNet a powerful mapping learner
because data are free to flow across the network
instead of in a layer-by-layer fashion.

The residual learning capability also makes ResNet
an ideal candidate for the denoising task in a
supervised learning setting as it can focus on learning

@
&
2
M
>
c
o
(%]

BatchNorm
Param. RelLU
Conv 3x3x128

BatchNorm

ResBlock

Fig. 3 Inside our ResBlock, there are 2 convolutional layers, each
having 128 filters of size 3 x 3. Each convolutional layer is followed by
a batch normalization layer [12] to form a sub-unit, and a parametric
rectifier [32] is sandwiched between these two sub-units.

and mapping the differences between the noisy input
and the corresponding ground truth at different scales.
Each ResBlock includes a batch normalization layer
[12] which improves training stability by suppressing
the internal covariate shift [12] caused by large
changes in inputs between layers. Although He et al.
[10] propose an improved ResBlock, we found that
the one proposed in Ref. [37], which includes the use
of a parametric rectifier [32] as an activation unit,
performed best in our experiments. We also include
a network wide skip connection [10, 37, 46] for added
mapping flexibility.

3.3 Auxiliary feature
processing

selection and pre-

In our filter-free model, there is no predefined filter
which governs the choice of auxiliary features to be
learned by the neural network, unlike in Ref. [8].
Bako et al. [7] use a 27-channel input to each of their
filter pipelines, presumably to maximize the potential
benefits of using more auxiliary features. However,
the overall benefits of auxiliary feature inputs depend
naturally on the learning capacity of the network,
and we suspect it may be incapable of learning such
a complicated mapping. We performed a simple
experiment using the diffuse filter pipeline of KPCN
[7]. The color, depth, and normal related auxiliary
features were selected to form an 11-channel subset
from their original input to train the same network.
Figure 4 shows that the KPCN network trained with
the subset input achieves a lower training loss, and
the 11-channel trained network delivers similar and
a few better denoising results, but we did not pursue
this further. This simple experiment reflects the
importance of evaluating a network’s capacity relative
to its input.
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KPCN traing loss comparison, 11-channel vs. 27-channel
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Fig. 4 Comparison of the KPCN (diffuse pipeline) [7] training loss
for an 11-channel subset of the input (color, depth, and normal related
only) and the original 27-channel input.

In order to verify the candidate auxiliary features
we planned to use, we relied on a smaller §-ResBlock
ResNet (2 convolutional layers of 64 filters of size
3x3 per block) to evaluate their usefulness. Figure 5
shows the impact of selected combinations of auxiliary
features on the L1 training loss. Our candidate
auxiliary features, depth, view-space normals, and
albedo are shown to be useful but albedo provides
only marginal improvement to the loss. Furthermore,
the inclusion of view-space normals and albedo seems
to accelerate training convergence.

From a practical point of view, the selection of
auxiliary features should also consider the ease of

Auxiliary feature impact
0.0300

—— RGB, depth
—— RGB, depth, normal.xy
—— RGB, depth, normal.xy, albedo

0.0275

0.0250

0.0225 A

0.0200 A

L1-loss

0.0175 4

0.0150 4 i L
' ' A T n ‘

AT
0.0125 - P A L |

0.0100

T T T 1
400000 600000 800000 1000000

Training iteration

T
0 200000

Fig. 5 Impact of auxiliary features on a smaller ResNet similar to
our network.
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adoption as mentioned in Ref. [5], so we chose the
most common ones which are readily available from
most renderers. In a supervised learning setting,
the ground truth images already provide much
information, and we believe the per-pixel statistical
information may not be as useful to us as they are
in the regression-based methods. In addition, the
feature extraction power of CNNs is well recognized
[30, 47], so we chose to include only primary auxiliary
features.

Lastly, we follow Ref. [7] to apply range com-
pression via logarithmic transform as a pre-processing
step to our high dynamic range inputs, i.e., color and
depth. This compression step improves the results in
terms of smoothness. In short, our 9-channel input
for training is as follows:

e noisy color (3 channels, range compressed),
depth (1 channel, range compressed),
view-space normals (2 channels),

albedo (3 channels).

4 Implementation and network training

In this section, we present details of training data
preparation, and implementation of our network
model. We also discuss the impact of loss functions
and concerns about the capacity of our network.

4.1 Training data preparation

To the best of our knowledge, there is no publicly
available training dataset dedicated to the Monte
Carlo rendering denoising task. Knowing the
quality of data has an important impact on the
trained denoiser’s performance, so we have invested
considerable time in carefully preparing a reasonably
large dataset which covers a wide range of object
scale, shading, and distributed effects seen in most
modern renderings. Figure 6 shows selected ground
truth images from our dataset.

We imported assets at different scales collected
from various public resource archives (full credits are
included in our Electronic Supplementary Material
(ESM)) into Autodesk Maya to create our scenes. By
applying different lighting (both analytical lights and
image-based lighting), materials (mostly physically
based materials), and cameras with different angles,
aperture size, and focal lengths, the whole dataset was
rendered with Pixar’s non-commercial RenderMan
RIS renderer. We authored over 50 different scenes
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Fig. 6 Selected ground truth images from our dataset.

covering a wide range of genres and scales, including
natural and procedural objects, interiors, sci-fi,
automobiles, street scenes, cityscapes, etc. As our
resources were very limited, and this dataset was to
be used to train our own network and also KPCN
for comparison, we were cautious and attempted
to produce a dataset diverse enough for supervised
learning of neural networks with good generalization.

We rendered our ground truth images at 1024 x1024
resolution with 2048 samples per pixel (spp) to
achieve a perceptually noise-free quality, with a few
exceptions rendered at 512 and 8192 spp. The noisy
counterparts were rendered at 8-32 spp according to
the level of perceived noise which often depended on
the material response and lighting conditions rather
than a particular sampling rate. Figure 7 shows a
few noisy training samples from our dataset.

There were in total 256 multichannel high
resolution images in the final dataset. For training
purposes, we further extracted small patches from
them. We relied on the color variance channel
and blue noise sampling for patch selection so as
to collect noisy data rather than unhelpful smooth
data which might be collected by sampling uniformly.

=
(c) 32 spp

(b) 16 spp

(a) 8 spp

Fig. 7 Selected noisy images rendered at different sample rates from
our dataset.

We extracted 256 unique patches of size 64 x 64
from each image, giving a dataset of 65,536 multi-
channel image patches. For training efficiency, we
also created network model specific datasets with the
unused image channels removed or simple statistics
precomputed for overall improved I/O performance.

4.2 Model implementation and training

We implemented our 16-ResBlock (2 convolutional
layers of 128 filters of size 3x3 per block) ResNet
(see Fig. 2) using the Python API of the Cognitive
Toolkit (CNTK) [48, 49]. Training data were stored
in OpenEXR high dynamic range image files, and
we used the OpenlmagelO [50] library to read and
serve the image patches as NumPy [51] arrays to our
CNTK network. Image patches were pre-shuffled to
ensure a good mix of patches from different scenes
in each mini-batch. In addition, 660 image patches
were randomly selected, and reserved for in-training
validation use.

All weight parameters were initialized with the He
initializer [32] which is designed to be used together
with parametric ReLU activation units. As the
batch normalization [12] units have built-in bias
parameters, there was no need to include bias in
the convolutional layers. Our network was optimized
using the ADAM [52] optimizer available in CNTK
with a momentum value set at 0.9, and gradient clip
threshold set at 1.0. L1-loss was used as the loss
function for our final network (choice of loss function
is discussed in the next section). Training used a
mini-batch size of 10, and ran for 10° iterations. The
corresponding learning rate schedule was as follows:
e 0.01 for the first 1000 iterations,

e 0.001 for the second 1000 iterations,

e 10~ for the rest.

Our network has a total of 13,847,296 trainable
parameters, and the training took less than 36 hours
to complete on an nVIDIA GeForce GTX 1080 Ti
GPU (98% GPU load). Figure 8 shows the L1-loss
and errors during the training session. The training
loss converged quickly, with stable progression. The
validation error also decreased steadily without any
sign of over-fitting.

4.3 Loss functions

In many recent CNN-based denoising applications
[7, 53, 54], the L1-loss function has been found to
be a consistently good performer. It is inexpensive
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Fig. 8 Training loss (top), and training and validation errors

(bottom) for our 16-ResBlock network during a training session with
106 iterations.

to compute, and often surpasses metric-specific
loss functions such as MSE loss. We evaluated a
combination of potentially useful loss functions for our
denoising task before training the final network. We
evaluated combinations of L1 and L2 loss functions,
and also the VGG-network [38] based perceptual loss
[55]. The VGG-perceptual loss is expensive as it
requires inference through the VGG network, and
the average sum of multiple feature maps. Although
this perceptual loss function is known to improve
sharpness in some inverse problems when coupled
with MSE loss, our experiments showed that L1-
loss remains the best loss function, especially if cost
effectiveness or fast convergence is a concern.

4.4 Capacity of our network

One common phenomenon related to deep neural
networks is called diminishing feature reuse [56]:
some parts of a deep network end up not learning
anything, and it can be understood due to over-
capacity. ResNet is especially prone to this issue
because the gradient information can basically flow
freely to any block during training because of the
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shortcut connections. Huang et al. [57] propose use
of a stochastic training strategy which randomly shuts
down different layers to form a virtually shallower
network during training. Zagoruyko and Komodakis
[58] propose use of a widened (more filters per layer)
version of ResNet with reduced depth. Some wide
residual networks have been reported to perform
better than deep ones for some applications [58]. As
a result, we built a shallower but wider, 8-ResBlock
version of our network (with 256 filters of size 3x3
in each convolutional layer). We trained this wide
version using the same training setup as for the
16-ResBlock, and Fig. 9 shows the corresponding
progression of training loss and errors.

This wide version has a total of 19,592,704 trainable
parameters, and the 106 iterations for training took
approximately 52 hours to complete on an nVIDIA
GeForce GTX 1080 Ti GPU. This wide ResNet
has considerably more trainable parameters but
only achieved similar training loss and error as our
proposed 16-ResBlock ResNet, while its denoising
performance was consistently inferior to the 16-

ResBlock version in our tests. This suggests that

Wide 8-ResBlock training loss
0.030

0.025 4

0.020 4

L1-loss

0.015 4

0.010 1

0.005 4
T
0 200000

T T T
400000 600000 800000

Training iteration

1000000

Wide 8-ResBlock training error

0.006
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0.004 -

0.003 4

MSE

0.002 4

QOOl‘“HNAu*”MNd
"

0.000

o

T
800000

T T
400000 600000
Training iteration

T
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Fig. 9 Training loss (top) and training error (bottom) of an
alternative wide 8-ResBlock network during a training session with
108 iterations.
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the proposed 16-ResBlock ResNet is making proper
use of its capacity, while greater depth allows more
sophisticated mapping at least empirically.

5 Results and evaluation

5.1 Outline

We now compare the results of our filter-free direct
denoising neural network with current state-of-the-art
denoisers based on joint filtering, and learning-based
approaches. We compare with the denoisers NFOR
[5] and KPCN [7] using low sample rate noisy images
rendered with scenes curated by Ref. [11]; they have
diverse lighting, materials, and level of detail.

For conciseness, we report only the SSIM [59] and
relative MSE [44] in the figures. A fuller report with
additional quality metrics is available in the ESM, and
we recommend close inspection of the full-resolution
images available in it.

The learning-based denoiser KPCN [7] requires
some additional preparation. We followed the details
in their paper and source code to re-implement and
train their network model using CNTK [49]. We

pre-processed image patches from our dataset to
produce the 27-channel data inputs required by each
diffuse and specular KPCN filter pipeline in order
to minimize data processing during training. We
trained the networks with an nVIDIA GeForce GTX
1080 Ti; the training time for each filter pipeline took
approximately 14 hours over 750k iterations each,
while the 250k iterations of joint fine-tuning took
another 10 hours. For the NFOR denoiser, we used
the publicly available implementation provided by
the Tungsten software package. We now discuss the
results.

5.2 Kitchen (close-up) scene comparison
(16 spp, dynamic range 0.0—4.0)

Figure 10 shows the denoising results for a scene
populated with objects with different glossiness.
NFOR (see Fig. 10(b)) denoises the kitchen
countertop reasonably but leaves some splotches.
There are also very subtle splotches left on the
stainless steel wall panel but the overall denoising
result is clean. KPCN (see Fig. 10(c)) removes most
noise on the countertop, but with noticeable smear
marks, and the texture of the countertop is not well

(a) Input, SSIM=0.7109,
RelMSE=161.62

(b) NFOR, SSIM=0.9645,
RelMSE=9.784

(c) KPCN, SSIM=0.9693,
RelMSE=7.067

(d) Ours, SSIM=0.9784,
RelMSE=4.184

(e) Reference (2048 spp),
dynamic range: 0.0—4.0

Fig. 10 Kitchen (close-up). Input (16 spp) and reference (2048 spp) images rendered by Tungsten. Quality metrics refer to the top row of

images. RelMSE (10~3).
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recovered. The denoising result for the stainless
steel panel is unsatisfactory, and the silhouette of
the kettle has room for improvement. Our method
(see Fig. 10(d)) denoises both countertop and stainless
steel panel with good results. The silhouette of the
kettle is very sharp and the shading on the stainless
steel panel closely matches the reference.

5.3 Bedroom scene comparison
(16 spp, dynamic range 0.0-16.49)

Figure 11 shows denoising results with a rather
low sampling rate input. The high intensity and

directional light setup is challenging for a regular

path tracer, and the input is seemingly under-sampled.

NFOR (see Fig. 11(b)) recovers the corrupted ceiling
lamp nicely but it leaves visually distracting splotches
on most diffuse surfaces, and the black details on the
decorative plant are also softened. The splotches
could be a consequence of the relatively high local
sensitivity of a first-order method. KPCN (see
Fig. 11(c)) successfully denoises most diffuse surfaces
but it has difficulty in recovering the ceiling lamp,
with some artifacts on the silhouette. We suspect this
could be caused by the diffuse/specular decomposed
pipeline or the occasional inability of KPCN to

generalize as reported in the original paper (re-
training is required for improvement); we return
to discuss this in detail later. Our method (see
Fig. 11(d)) denoises most diffuse surfaces properly
and recovers the ceiling lamp with the best results of
any denoiser.

5.4 Car scene comparison
(32 spp, dynamic range 0.0—3.60)

Figure 12 shows denoising results for a scene with a
depth of field effect which requires high sample rate
to obtain noise-free results. NFOR (see Fig. 12(b))
denoises the out-of-focus area but the reconstruction
looks somewhat splotchy and the smoothness could
be improved. We note that although the floor should
not be difficult to denoise, NFOR leaves some visually
distracting splotches on the floor and it seems that all
image metrics fail to capture these artifacts. KPCN
(see Fig. 12(c)) performs unsatisfactorily in this test
although it was trained by the same dataset, we
suspect this could be related to the choice of providing
feature information such as depth in gradient form;
this requires the network to learn re-integrating the
gradients in order to extract the correct relative
difference of depth between distant pixels. Ours

(a) Input, SSIM=0.7838,
RelMSE=132.506

(b) NFOR, SSIM=0.9716,
RelMSE=6.562

(c) KPCN, SSIM=0.9688,
RelMSE=4.761

(d) Ours, SSIM=0.9746,
RelMSE=3.142

(e) Reference. Dynamic
range: 0.0 —16.49

Fig. 11 Bedroom scene. Input (16 spp) and reference (2048 spp) images rendered by Tungsten. Quality metrics refer to the top row images.

ReIMSE (10-3).
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(a) Input, SSIM=0.8991,
RelMSE=14.544

(b) NFOR, SSIM=0.9948,
RelMSE=0.704

(c) KPCN, SSIM=0.9907,
RelMSE=1.094

/7

‘///I/ﬂ)//. ‘

(d) Ours, SSIM=0.9950,
RelMSE=0.552

(e) Reference. Dynamic
range: 0.0 —3.60

Fig. 12 Car scene. Input (32 spp) and reference (8192 spp) images rendered by Tungsten. Quality metrics refer to the top row images.

RelMSE (10~3).

(Fig. 12(d)) shows that the network has successfully
learned from the dataset how to map from noisy
depth of field pixels to their noise-free counterparts,
and its result is rated highest quantitatively.

5.5 Hair scene comparison
(32 spp, dynamic range 0.0-1.06)

Figure 13 shows denoising results for a fairly
challenging scene. Hair and fur are challenging
objects to sample and render, as the naturally high

frequency details exhibit complicated noise patterns

when under-sampled spatially or in terms of shading.

NFOR (see Fig. 13(b)) seems to aggressively smooth
everything. KPCN (see Fig. 13(c)) attempts to
maintain fine features but the residual shading noise
gives an impression of incomplete filtering. Our
method (see Fig. 13(d)) removes the shading noise
more successfully while maintaining a reasonable
amount of fine detail, but the result is not particularly
impressive even it is judged best by the quality
metrics. We have only a few hair-related images
in our training dataset, and it seems denoising
such fine objects might require more specialized
training. Such images remain a challenge to most
denoisers.

5.6 Classroom scene comparison
(32 spp, dynamic range 0.0-36.34)

Figure 14 shows denoising results of another
challenging scene. The lighting conditions are similar
to those for the bedroom scene (see Fig. 11) but it
has an even higher dynamic range, more details in
the dark area, and glossy materials on thin objects
(the chair frame). NFOR (see Fig. 14(b)) follows its
own pattern of leaving distracting splotches on the
diffuse walls and ceilings. For this scene, it fails to
handle dark areas corrupted by outliers and leaves
unpleasant artifacts in those areas. NFOR handles
the noise on the chair frames properly but there are
still subtle splotches on them. KPCN (see Fig. 14(c))
denoises the diffuse areas properly but in the dark
areas which are corrupted high intensity outliers, it
leaves some unexpected edges. As for the ceiling lamp
case in the bedroom scene (see Fig. 11), KCPN has
difficulty in maintaining a smooth boundary between
glossy and diffuse areas, and leaves an impression of
aliasing. Our method (see Fig. 14(d)) seems to denoise
consistently well in both bright and dark areas, and
the glossy shading on the chair frames is smoother
than the reference which still exhibits residual noise.
Our denoiser works remarkably well in this scene.
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(a) Input, SSIM=0.8878, (b) NFOR, SSIM=0.9425, (c) KPCN, SSIM=0.9532, (d) Ours, SSIM=0.9561, (e) Reference. Dynamic
RelMSE=13.936 RelMSE=4.334 RelMSE=4.187 RelMSE=3.266 range: 0.0 —1.06

Fig. 13 Hair scene. Input (32 spp) and reference (2048 spp) images rendered by Tungsten. Quality metrics refer to the top row images.
RelMSE (10~3).

(a) Input, SSIM=0.9913, (b) NFOR, SSIM=0.9985, (c) KPCN, SSIM=0.9987, (d) Ours, SSIM=0.9993, (e) Reference. Dynamic
RelMSE=126.433 RelMSE=9.271 RelMSE=5.578 RelMSE=3.288 range: 0.0—36.34

Fig. 14 Classroom scene. Input (32 spp) and reference (2048 spp) images rendered by Tungsten. Quality metrics refer to the top row images.
RelMSE (1073).
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5.7 Overall evaluation

In all the tests shown, our direct denoising network
consistently outperformed the other two state-of-the-
art solutions quantitatively. Additional test results
can be found in the ESM; Tables 1 and 2 respectively
summarize the SSIM and relative MSE results for
the complete set of tests. NFOR performs better in
a few scenes when judged by the pixel-space metric
MSE, but in those cases, their results have obvious
splotches on diffuse surfaces, and such artifacts cannot
be captured by most pixel-space metrics. We have
included all results in full resolution in the ESM,
which provides for closer visual inspection.

Table 1 SSIM results

Scene name NFOR KPCN Ours
Hair 0.942510 0.953195 0.956061
Kitchen (close-up) 0.964515 0.969311 0.978701
Staircase (dof) 0.973732 0.939727 0.982566
Bedroom 0.971588 0.968812 0.974636
Classroom 0.998524 0.998746 0.999253
Car (dof) 0.994781 0.990718 0.994969
Car 0.996666 0.996063 0.997087
Veach 0.935345 0.921266 0.938137
Staircase 2 0.977141 0.976496 0.978526
Spaceship 0.998996 0.998673 0.999256
Kitchen 0.995988 0.995664 0.996677
House 0.980789 0.983675 0.987976
Bathroom 0.995053 0.992926 0.994819
Staircase 0.993212 0.997047 0.996947
Table 2 Relative MSE results (x10~3)
Scene name NFOR KPCN Ours
Hair 4.334 4.187 3.266
Kitchen (close-up) 9.784 7.067 4.184
Staircase (dof) 5.947 3.184 1.394
Bedroom 6.562 4.761 3.142
Classroom 9.271 5.578 3.288
Car (dof) 0.704 1.094 0.552
Car 1.246 1.041 0.828
Veach 17.380 19.510 12.270
Staircase 2 3.614 3.843 2.978
Spaceship 1.630 1.171 0.767
Kitchen 4.139 2.807 1.871
House 1.347 0.997 0.775
Bathroom 22.210 16.620 8.316
Staircase 4.041 1.315 1.247

6 Discussion

6.1 Key findings

The denoising results in the last section proves the
competitiveness of our filter-free direct denoising
network as a practical solution for denoising Monte

Carlo rendering output. We have to emphasize that
the quality of most supervised learning methods relies
heavily on the quality of the training data set, and we
are pleased to see that our dataset helps to achieve
very competitive denoising results. The unique
architecture of ResNet [9] enables sophisticated
mapping possibilities through the identity mapping.
The freedom to allow reuse of upstream features
repeatedly is very similar to many multi-scale
algorithms, e.g., multigrid [60] as mentioned in the
original paper [9]. This is also the main reason why we
choose ResNet as our network solution. In addition,
the choice of using a small set of primary auxiliary
features and letting the network explore the solutions
itself without overloading seems to be a good strategy.

6.2 Limitations

A fundamental limitation of all supervised learning
methods is connected to the coverage of training set.
Our approach relies on the samples in the training
set to establish its non-linear mapping. For any cases
that have not been included in the training set, there
is a potential that our network may fail to deliver
expected results. Our training set has no samples
of fine objects such as hair on a blank background
(zeros in all inputs). We used an untrained case to
test both our network and KPCN (both trained with
our dataset). Figure 15 shows the denoising artifacts
arising in both methods. KPCN (see Fig. 15(b)) blurs
all fine hairs on an empty background, while ours (see
Fig. 15(c)) shows sparsely colored pixels. A common
solution is to retrain the networks with additional
desired training samples.

6.3 Joint filtering versus direct denoising

Carefully handcrafted joint filters, such as the state-
of-the-art denoiser NFOR [5] can handle many
denoising cases with outstanding results, but the
underlying rigid regression-based formulation cannot
adapt well to extremely noisy inputs. In order to
improve these handcrafted models, researchers need
to explore further for potential causes of noise or
hidden correlations. In contrast, a direct denoising
method based on a neural network relies on learning
from training samples to establish powerful non-linear
mappings. There is no difficulty in obtaining many
noise-free images for training in most production
studios, and a deep learning method seems to be a
more natural choice. If a direct denoising network
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(a) Input

(¢) Ours

Fig. 15 Denoising images not covered by our training set. Our
training set has no example pairs for fine objects with a background of
blank pixels (zeros in color and auxiliary features). Both KPCN and
our method show artifacts, which highlight the underlying differences
between these methods.

faces a new challenge, it can be improved quickly
by learning from additional examples in a matter
of hours. KPCN [7] can be classified as a hybrid
method, and its current formulation seems to have
inherited the disadvantages of both joint filters and
direct denoising, i.e., the solution space is limited to
noisy input colors and the dependency on training set

@ ’Euslvllzgsﬁvl-grg?s @ SPI’ inger

coverage. We observe that the choice of separating
diffuse and specular components in KPCN as in
Ref. [61] might not be a good decision. The
original idea of such decomposition is to facilitate an
analytical approach to handle specular paths under
a light transport setting. The specular-only solution
space for joint filtering can sometimes be very sparse,
making good filtering even more difficult.

6.4 Runtime performance

To process a 1024 x 1024 image, a non-optimized
implementation of our network running on an nVIDIA
GTX 1080 Ti takes approximately 18 s to perform
denoising. Our implementation of KPCN is not
optimal, and we believe a competent implementation
should take a similar or lower time to our method.
The open source implementation of NFOR spends
89 s to denoise the same image on an Intel XEON
E5-2683 V3 CPU.

7 Conclusions and future work

We have presented a filter-free direct denoising
network solution for processing noisy Monte Carlo
rendering output. Our ResNet [9] based network is
able to establish a sophisticated mapping through
supervised learning. Our network generalizes very
well and is able to deliver high-quality denoising results
from noisy images rendered by a different renderer.

Temporal stability is the first subject we want to
explore next with our method, and also the possibility
of including denoising level control, which is often
desirable in a production environment.
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