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Abstract Computation of stereoscopic depth and
disparity map extraction are dynamic research topics.
A large variety of algorithms has been developed,
among which we cite feature matching, moment
extraction, and image representation using descriptors
to determine a disparity map. This paper proposes
a new method for stereo matching based on Fourier
descriptors. The robustness of these descriptors under
photometric and geometric transformations provides a
better representation of a template or a local region in
the image. In our work, we specifically use generalized
Fourier descriptors to compute a robust cost function.
Then, a box filter is applied for cost aggregation to
enforce a smoothness constraint between neighboring
pixels. Optimization and disparity calculation are
done using dynamic programming, with a cost based
on similarity between generalized Fourier descriptors
using Euclidean distance. This local cost function
is used to optimize correspondences. Our stereo
matching algorithm is evaluated using the Middlebury
stereo benchmark; our approach has been implemented
on parallel high-performance graphics hardware using
CUDA to accelerate our algorithm, giving a real-time
implementation.

Keywords generalized Fourier descriptors; stereo
matching; dynamic programming; CUDA

1 Introduction
Due to technological advances and improvements
in digital cameras, stereo vision is an important
research area. However, dense correspondences and
3D reconstitution are key problems for computer
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vision researchers. Provision of an efficient algorithm
for the reconstitution of 3D information from a stereo
image pair of the same scene taken from distinct
viewpoints is the main objective of stereo systems.
The stereo system must follow three basic steps:
calibration, correspondence, and reconstruction.

In this work, we focus on the correspondence step.
The main aims of the stereo matching algorithm
are to correctly identify corresponding pixels in the
rectified stereo images and fill the disparity map
[1, 2]. Stereo matching algorithms must overcome
various problems, the most commonly encountered
ones being noise, occlusion, and repetitive textures.
Also the researcher must respect various constraints
including epipolar geometry, ordering constraints,
and smoothness. Many stereo matching algorithms
have been developed to solve the correspondence
problem using patch-based image synthesis methods
[3, 4]. Analysing state of the art algorithms, stereo
matching methods may be divided into local and
global categories [5, 6]. The most popular local
methods are based on block matching and feature
matching [7, 8]. Generally, these methods involve
an analysis of local light intensities around each
pixel or some regions in the image. However all
pixels in the image are involved in global methods,
such as graph cut, belief propagation, and dynamic
programming [5].

In 2002, Scharstein and Szeliski [1] defined
a taxonomy to categorize dense correspondence
algorithms. It shows that most existing stereo
matching methods contain four steps:
• Cost function calculation: a matching process for

each pixel at all possible disparity levels.
• Cost aggregation: aggregating the cost over the

support region.
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• Disparity computation and optimization: selecting
the disparity value that optimizes the function and
filling the disparity map.

• Disparity refinement: post-processing to improve
the results.
Different techniques are used to realize each step.

For example, block matching and box filters provide
the most popular techniques for cost calculation and
cost aggregation respectively. Usually block matching
is done on gray images or on the intensity channel of
color images. In this work, we use a mathematical
transformation before calculating the cost function.
Here, the first step is done by calculating generalized
Fourier descriptors then finding the Euclidean distance
between descriptors. Next, we apply a boxer filter
to aggregate the cost function. The optimization
and disparity computation is done using dynamic
programming while the last step is performed using a
stereo consistency check and median filter to improve
the final disparity map.

Many stereo matching algorithms, especially the
global methods, are computationally expensive. For
this reason, many research works are interested in
runtime reduction and real-time implementation. In
this paper, we present a new approach for stereo image
matching based on generalized Fourier descriptors.
This approach is detailed in Section 3. In Section 4, we
evaluate our algorithm and we give some experimental
results. In Section 5, we present a CUDA-based
real-time implementation of our approach on a GPU.
Finally, conclusions are presented in Section 6.

2 Related work
As already indicated, the stereo matching process
is realized by following four fundamental steps. It
starts by defining a cost function and calculating
the volume cost for each pixel at all disparity levels,
then aggregating the matching cost. Next the energy
function is optimized and the disparity map filled.
Finally the obtained disparity map is postprocessed.
In the literature, there are several techniques to
achieve each step. The most common cost functions
are absolute difference and block matching. The two
functions are characterized by linear computational
complexity, simplicity of implementation, and fast
runtime. However, the limitations of these techniques
are their failure in discontinuous areas and theirs
sensitivity to the window size used. A simple

comparison of light intensities is not always enough,
hence the use of mathematical transformations such
as census or rank transforms is required. These non-
parametric transformations provide standard metrics
and are more robust to radiometric distortion and
occlusion [9]. In our work, we use a mathematical
transformation based on the Fourier transform to
extract robust descriptors. Similarity of descriptors
provides our cost function. We note that many stereo
matching methods are based on feature extraction
and point of interest detection. In this context we
can mention various descriptors such as the scale-
invariant feature transform (SIFT) [10], and speeded-
up robust features (SURF) [11]. Zernike moments
are also used for the determination of corresponding
points [12]. Generally, a mathematical transformation
is calculated and robust descriptors are extracted to
define an efficient cost function.

For cost aggregation, many techniques are employed.
The simple solution is the use of linear image filters
such as a box or Gaussian filter. Edge-preserving
filters such as the bilateral filter and guided filter can
also be good solutions, but they are computationally
expensive. In our work, we adopt a simple box filter
for cost aggregation.

In the disparity computation, we note that winner
takes-all is the most common solution. This step can
be improved using semi-global or global optimization
algorithms such as graph cuts [13], belief propagation
[14], or dynamic programming [15, 16]. Disparity
refinement is done using the same approach as in
Mattoccia et al. [17] and Kordelas et al. [18]
to detect occlusions and depth borders. In this
step, three consecutive processes are applied: invalid
disparity detection, fill-in of invalid disparity values,
and median filtering.

Many works consider acceleration of these com-
putationally intensive algorithms. Different archi-
tectures are used to achieve real-time performance.
One is based on field-programmable gate arrays
(FPGAs) [19]. A second alternative is based on
graphics hardware using the CUDA language, and is
used in many real-time algorithms such as the work
of Kowalczuk et al. [20] and Congote et al. [16].
Different real-time algorithms focus on reducing the
complexity associated with cost calculation, at the
expense of reduced accuracy. In our work we exploit
NVIDIA’s GeForce GTX960 computing capabilities
to produce an accurate disparity map.
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3 GFD for stereo matching
Figure 1 presents a block diagram of our stereo
matching algorithm. The cost function is based on
similarity of generalized Fourier descriptors, denoted
SGFD. The cost is aggregated over square windows
using a box filter. Then we use dynamic programming
for energy optimization and filling the disparity map.
At this stage, the obtained disparity map contains
some invalid or unwanted pixels, so a post-processing
step is required. A left–right consistency check
allows us to detect these invalid pixels. Then we
perform a fill-in process to replace the invalid pixels
with valid minimum values. The refinement step
includes median filtering to remove noise and enforce
smoothness between neighboring pixels.

3.1 Representation of GFD

In pattern recognition, the Fourier transform has been
used for many years to extract a set of invariants. In
2002, generic Fourier descriptors [21] were applied to
grayscale images. Color descriptors called generalized
Fourier descriptors (GFDs) were defined in 2008
which can be applied to both grayscale and color
images [22]. These descriptors are given in Eq. (1),
when (r, θ) are polar coordinates of the input point
M and f̃(r, θ) is the Fourier transform of the function
f at the point M(r, θ).

Df (r) =
∫ 2π

0
‖ f̃(r, θ)2 ‖ dθ (1)

These invariants are functions of a single variable
(radius) which makes them simple to calculate. In
an image, the integral in Eq. (1) becomes a discreet
sum that gives us a set of values forming a vector.
All descriptors must satisfy some invariance and
robustness properties. For GFDs, these properties are
well respected. The theoretical properties of GFDs
are detailed in the work of Smach et al. [22] and we
note their invariance under motion, change of scale,

and reflection. In practice, GFDs are obtained for
color images using the flowing steps:
• decompose the color image into three channels (red,

green, and blue);
• calculate the Fourier transform and its square

modulus for each channel;
• vary the radius r and compute the sum of the pixels

located along each ray.
The final descriptors concatenate the descriptors for

each channel. These descriptors give a complete and
robust description of the image which can be used
for color object recognition and image classification.
Smach et al. [22] evaluated the performance of the
GFD on several standard and personal databases.
The results obtained using GFD and support vector
machines (SVMs) for classification indicated the
robustness of these descriptors. GFDs outperform
various families of invariants, such as Zernike moments.
See Refs. [22, 23] for more details of GFDs.

3.2 Local cost function

Invariance under geometric transformations, and
robustness to noise and lighting changes are important
properties of GFDs which allow us to use GFDs
for stereo matching. A full and easily accessible
description can characterize a region in the reference
image and identify it in a target image.

In stereo matching, the cost function is the main
step and it differs from one algorithm to another.
Our energy function, denoted SGFD, is defined by
similarity between GFDs: for a stereo pair we take
the left image as the reference image and characterize
some region in this image by the left color descriptors,
GFDl

c. Then, we calculate the descriptors for the
candidate region in the right image, GFDr

c. The two
descriptors can be expressed as below:

GFDl
c = [a0, . . . , aN ]

′
(2)

GFDr
c = [b0, . . . , bN ]

′
(3)

Fig. 1 Block diagram of our approach.
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where ai and bi are the components of the left
and right color descriptors and N is the radius of
the window. After computing these descriptors,
we compute their similarity SGFDc using their
Euclidean distance:

SGFDc = dist(GFDl
c, GFDr

c) =
√∑

i

(ai − bi)2

(4)
Many algorithms combine the matching costs

for colors and gradients in order to increase the
robustness against radiometric differences. Yang et
al. [24] and Hosni et al. [25] combined absolute
differences of color and gradient using a parameter
α. In a similar way, our matching cost combines
the Euclidean distance for color descriptors (SGFDc)
and the Euclidean distance for gradient descriptors
(SGFDg). The global cost function for a pixel p at
the disparity value d is denoted by SGFD(p, d):
SGFD(p, d) = αSGFDc(p, d)+(1−α)SGFDg(p, d)

(5)
The parameter α is used to balance the color and
gradient terms as in Yang et al. [24]. In the above, we
need to calculate SGFDg(p, d) based on the gradient.
This is done using the following steps:
• Calculate the gradient values in horizontal and

vertical directions for the left and right images (Il,
Ir). These values, denoted Gx,Gy, are given by
Eqs. (6) and (7).

• Calculate the gradient magnitude G for both
images, as given by Eq. (8).

• Calculate the generalized Fourier descriptors for
reference and target images.

• Compute the Euclidean distance between descriptors.
The necessary equations are given below, where

A = [1 0 − 1] and I is either the left or right image.
Here ∗ denotes the convolution operation, and AT is
the transpose of A.

Gx = A ∗ I (6)
Gy = AT ∗ I (7)

G =
√

G2
x + G2

y (8)

After calculating SGFDg(p, d), this cost function
is aggregated using a simple technique. By applying
a box filter, we aggregate the matching cost over a
square window ω. The aggregated cost for a pixel p

at disparity value d is given by
CA(p, d) = ω(p, d) ∗ SGFD(p, d) (9)

following Scharstein and Szeliski [1].

3.3 Optimization and disparity fill approach

After cost matching calculation and use of a box filter
for the aggregation step, the third step in Scharstein
and Szeliski’s taxonomy is performed. The aim of
this step is to optimize the cost and fill the disparity
map. The most popular method is the winner takes-
all (WTA) technique, which selects the minimal
aggregated corresponding value for each pixel:

d = argmind∈drCA(p, d) (10)
where dr defines the set of allowed discrete disparity
levels in an image. The use of WTA reduces com-
putational complexity but can produce unmatched
pixels and invalid disparity values at the image border
and occluded regions.

Once the global approach has been developed, a
variety of algorithms can be used to find the correctly
matching points. These algorithms make explicit
smoothness assumptions and optimize a global cost
function that combines matching cost and smoothness
cost as detailed in Ref. [1]. This global cost function
is defined by

E(d) = Edata(d) + λEsmooth(d) (11)
Dynamic programming (DP) is a popular optimiza-
tion approach. Generally, the aim of DP is to solve
a global problem by dividing it into smaller sub-
problems whose solution can easily be obtained. The
global solution is the concatenation of the solutions
of all sub-problems. This optimization approach was
introduced for stereo vision by Ohta and Kanade [26].
DP exploits ordering and the smoothness constraints
to optimize the matching cost between two scan-
lines. This technique is based on two stages: a step
for constructing the cost matrix for all pixels at all
possible disparity levels and a step in which pairs
of corresponding pixels are selected by searching for
the optimal path. Let the aggregated cost function
be denoted by CA(x, y, d) where x and y represent
the position of a pixel p. The matrix extracted from
a volume cost CA(x, y, d) for a fixed line is denoted
Mh(x, d). The dimensions of Mh are W ×Dmax where
W and Dmax represent the width of the image and
the maximal disparity. In our work, we use the DP
approach developed by Congote et al. [16]. Each
matrix Mh that represents the matching between two
scanlines is updated according to

Mh(x, d) =CA(x, d)+
min(λ + Mh(x − 1, d − 1),
Mh(x − 1, d), λ + Mh(x, d + 1)) (12)
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We note that λ represents a penalty for change in
disparity values between neighboring pixels. After
calculating Mh, we compute the disparity value of
the corresponding line using the algorithm for the
optimal path.

3.4 Disparity refinement

By this stage, the cost function has been calculated and
aggregated. Dynamic programming is also applied to
fill disparity map. The obtained disparity map contains
unmatched pixels due to occlusion and repetitive
textures. Thus, a postprocessing step is required.
This step involves three consecutive processes: invalid
disparity detection, fill-in of invalid disparity values,
and weighted median filtering. Disparity refinement
starts by detection of invalid disparity values and
unmatched pixels in the depth map. This stage is
done using a left–right consistency checking process,
comparing the left disparity map to the right disparity
map. Inconsistent pixels between the two disparity
maps are marked as having invalid disparities. In our
work, we use the same approach defined by Mattoccia
et al. [17] and Kordelas et al. [18].

Disparity values are marked as invalid if they do
not satisfy the condition below:

|DLR(p) − DRL(p − DLR(p))| � 1 (13)

where DLR and DRL represent the left reference
disparity and right disparity map respectively.

The next step for disparity refinement is fill-in
of invalid disparity values. The disparity of each
unmatched pixel is replaced with the nearest valid
disparity. Knowing that, the used valid value is
located in the same line or in the starting line. This
process is by

d(p) =
{

d(p − i), if d(p − i) � d(p + j)
d(p + j), otherwise

(14)

where the disparity value at the location of p is defined
by d(p) and (p − i) indicates the location of the first
valid disparity on the left side while (p + j) is the
location of the first valid disparity on the right side.

We finish the refinement step with median filtering
in order to reduce noise and enforce smoothness
between neighboring pixels.

4 Experimental results and analysis
To evaluate our stereo matching approach it is
necessary to use standard databases. We confronted

our algorithm with some stereo matching problems
involving occlusion and discontinuous regions. The
average number of bad pixels in these regions
indicates the accuracy of our stereo matching method,
and is given by

bp =
∑

x

|Dx − GTx| > δ (15)

where Dx is the obtained disparity map, GTx is the
ground truth, and δ presents a disparity tolerance.

To evaluate our approach, we start by evaluating
our proposed local function: SGFD can be compared
with other local energy functions. We study the effect
of the window size and give the evaluation errors. The
test was done by changing the window size from (3×3)
to (25 × 25) and the errors were calculated in the
non-occluded regions. The images used were ArlL
and Teddy from the Middlebury dataset. Results are
shows in Fig. 2.

The first column in Fig. 2 shows the left image of
ArtL and the percentage of bad pixels in non-occluded
areas (curves (a) and (b)). The second column
presents the Teddy image and the corresponding
errors (curves (c) and (d)). The results obtained for
all cost functions were calculated without performing
any post treatment and errors were calculated
using Eq. (15) with δ = 1. We compare SGFD,
ZSAD (zero mean sum of absolute differences), and
NCC (normalized cross correlation) in curves (a)
and (c) for ArtL and Teddy images respectively.
Curves (b) and (d) compare SGFD, ENCC (enhanced
normalized cross correlation) [27], and ZNCC (zero
mean normalized cross correlation) for the two stereo
pairs. For the images used, we note that the lowest
error in non-occluded areas is obtained by SGFD
using a small window size (3 × 3) or (5 × 5). In
addition, this error always remains lower compared
than the errors given by other functions for a large
window. Thus, these curves indicate that SGFD is
more accurate than other local cost functions and
more robust to window size variation.

After evaluating the local function, we evaluated
our stereo matching algorithm on the Middlebury
dataset. This database is used as a de facto standard
for comparing stereo matching methods and ranking
them according their performance. We started by
using version 2 of this database, denoted MV2; it
contains only 4 stereo pairs (Tsukuba, Venus, teddy,
cones). Results are provided in Tables 1 and 2. We
denote the average errors in non-occluded regions
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Fig. 2 Effect of window size variation for SGFD and other cost functions.

Table 1 Comparison of methods on MV2 using δ = 1

Method
Threshold δ = 1

Avg non-occ Avg all Avg disc Avg
Our approach 4.08 7.16 13.7 8.31
OptimizedDP [28] 4.25 9.04 13.2 8.83
AdaptAggrDP [29] 3.85 8.42 12.91 8.40
LCVB-DEM [30] 5.59 9.20 19.27 11.60
SGMDDW [31] 3.89 8.95 15.22 9.36

and the average of absolute errors by Avg non-occ
and Avg all respectively, while the average of depth
discontinuity errors are denoted Avg disc. The metric
Avg indicates the average of the bad pixel error.
These measures are used as the main metrics to
evaluate the accuracy of all stereo matching methods.

Table 2 Comparison of methods on MV2 using δ = 2

Method
Threshold δ = 2

Avg non-occ Avg all Avg disc Avg
Our approach 2.52 5.70 8.11 5.44
OptimizedDP [28] 2.83 6.87 7.37 6.62
AdaptAggrDP [29] 2.40 5.96 8.32 5.56
LCVB-DEM [30] 4.18 7.42 14.49 8.69
SGMDDW [31] 2.67 7.03 10.95 6.89

We note that the calculation of these parameters is
performed using Eq. (15). To evaluate our approach,
we determined the disparity maps for all images in
MV2. Then we calculated the four metrics using δ = 1
and δ = 2 as indicated respectively in Tables 1 and
2. These two tables show that our approach gives
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the lowest average errors for both thresholds, and
confirm that our proposed approach outperforms the
optimized dynamic programming method of Salmen
et al. [28], and the approach of Wang et al. [29] based
on joint bilateral filtering and dynamic programming.
In addition, our approach is more accurate than other
recent works given in the evaluation table for MV2
(http://vision.middlebury.edu/stereo/eval).

Furthermore, we evaluated our stereo matching
algorithm on version 3 of the Middlebury benchmark
(MV3). This dataset contains 30 stereo pairs: 15 pairs
for training and 15 pairs for testing. The images in
this database have resolution up to 750 × 500 and
a maximal disparity that can reach 200. Evaluation
results for MV3 are shown in Table 3. It presents the
percentage of bad pixels in non-occluded regions and
in all regions (nonocc, all). The errors are calculated
for the two regions using thresholds equal to 2 and 4
(Bad2, Bad4). The average absolute error is denoted
Avgerr and indicated in the last column. Table 3
summarizes the evaluation results on the training
dataset. The obtained results are detailed in Tables 4

Table 3 Comparison of methods on MV3

Method
Bad2 Bad4 Avgerr

nonocc all nonocc all nonocc all
Our approach 33.4 41.4 20.3 29.5 9.76 17.6
SPS [32] 21.1 28.4 16.0 23.1 10.4 16.6
DoGGuided [33] 37.0 44.0 22.2 30.5 12.0 22.3
BSM [34] 37.1 44.8 23.4 32.6 13.4 23.5
ICSG [35] 37.7 43.3 32.0 37.5 21.3 26.9
SGBM1 [36] 27.4 34.5 22.0 29.1 11.3 18.9

and 5, which respectively show the error for each
stereo pair on non occluded and all regions.

The evaluation on MV3 indicates that our proposed
approach outperforms other algorithms such as
DoGGuided [33] that use a guided filter based on the
response of the difference of Gaussian, binary stereo
matching (BSM) [34] and other recent approaches.
In addition our stereo matching algorithm is more
accurate than ICSG [35] and semi global matching
(SGBM1) [36]. Further details of the evaluation
on MV3 are provided by disparity maps displayed
in Fig. 3. This figure presents respectively the
left images and ground truths (GT) for the stereo
pairs used in the second and the third columns; the
disparity maps in the fourth column are calculated
using the proposed approach. Further columns
show the disparity maps obtained with other stereo
matching algorithms. Errors in both regions (all
and non-occluded) for these disparity maps are given
Tables 4 and 5.

Stereo matching methods are classified according to
different measures, essentially based on the disparity
map quality and the execution time. Global methods
are computationally expensive. Their complexity is
O(NN ) operations per scanline, for scanlines of N

pixels. The use of dynamic programming can reduce
this complexity to O(N2) but this does not offer a fast-
running implementation. A software implementation
of our method has a long runtime and does not meet
realtime needs.

To accelerate our stereo matching system we
propose an implementation based on graphics

Table 4 Performance comparison of quantitative evaluation results based on nonocc error from MV3

Method Avg Adiron ArtL Jadepl Motor MotorE Piano PianoL Pipes Playrm Playt PlaytP Recyc Shelvs Teddy Vintg
Our method 9.76 6.29 8.40 41.4 6.08 5.95 4.74 8.64 13.6 8.68 12.0 4.78 3.90 10.0 3.73 6.96
SPS [32] 10.4 3.57 5.34 22.8 3.11 3.15 9.34 22.9 6.78 12.5 9.70 7.64 6.27 22.3 1.52 52.6
DoGGuided [33] 12.0 15.2 9.57 27.1 5.64 8.31 8.09 32.4 9.67 14.0 24.5 5.32 5.56 16.2 4.15 15.0
BSM [34] 13.4 7.27 11.4 30.5 6.67 6.52 10.8 32.1 10.5 12.5 24.4 12.8 7.42 16.4 4.88 32.8
ICSG [35] 21.3 24.0 6.93 54.2 12.0 10.4 15.6 29.3 18.4 24.7 26.7 10.7 17.7 23.6 7.73 72.9
SGBM1 [36] 11.3 18.3 7.45 15.7 3.48 29.1 6.51 38.4 5.37 12.8 13.5 3.24 3.44 15.1 3.00 11.1

Table 5 Performance comparison of quantitative evaluation results based on all error from MV3

Method Avg Adiron ArtL Jadepl Motor MotorE Piano PianoL Pipes Playrm Playt PlaytP Recyc Shelvs Teddy Vintg
Our method 17.6 10.3 22.0 58.8 13.1 12.9 8.66 12.4 24.7 23.5 18.1 11.0 7.13 12.5 11.4 12.6
SPS [32] 16.6 6.51 15.2 40.0 8.35 8.45 12.0 25.0 16.1 25.2 15.7 12.4 8.81 23.7 8.01 53.7
DoGGuided [33] 22.3 20.1 28.0 56.5 13.8 16.8 13.4 37.3 23.8 30.3 30.8 13.0 9.13 19.0 13.4 23.6
BSM [34] 23.5 12.7 28.7 58.7 14.8 14.7 16.0 35.8 24.5 29.4 13.0 20.2 12.1 19.2 14.3 39.3
ICSG [35] 26.9 26.2 17.3 72.9 17.1 14.7 18.8 31.8 28.0 37.4 30.3 12.5 19.0 24.2 11.6 73.7
SGBM1 [36] 18.9 21.1 17.8 38.7 11.0 36.4 11.6 40.0 13.6 25.4 20.0 8.74 5.97 17.6 10.7 18.3
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Fig. 3 Disparity maps for the proposed algorithm and other methods on MV3.

hardware as detailed in the following section.

5 CUDA implementation
Realtime stereo matching has become a reality. Until
very recently, all realtime implementations made use
of GPUs or FPGAs. Our method is based on the
calculation of generalized Fourier descriptors. We
mentioned previously that the GFD calculation is
done for each channel separately, then the final
descriptor is calculated by concatenating the results.
We can use parallelism to compute descriptors for
the three channels simultaneously and consequently
reduce the time required to get the final descriptors.
On the other hand, dynamic programming allows us
to optimize matching between two scan-lines. A CPU
implementation performs these steps successively,
which is why we seek an appropriate environment
for simultaneous processing. We believe that GPU
implementation can provide an efficient solution.

5.1 Approach

In a few years, GPUs have become powerful tools
for massively parallel intensive computing. They are
currently used for several applications including image
processing. These applications exploit classical image
processing methods implemented on a GPU, typically
using a specific language, CUDA, defined by NVIDIA
in 2007. There are many predefined functions and
libraries for image processing using CUDA language.
As our descriptors are based on the Fourier transform,

we can exploit the CUFFT library for fast Fourier
transform calculation. Our stereo model relies on
CUDA for parallel processing, result visualization,
and reduction of data transfer costs between CPU
memory and GPU memory. This model contains 4
steps:
• Loading input images: transfering the stereo

pairs from the CPU to GPU memory (host to
device).

• Thread allocation: fixing the number of threads
for the calculation grid so that each thread can
perform processing on a pixel template.

• Parallel processing with CUDA: executing
kernel stereo functions N times using the N threads
created in the previous step.

• Presentation of results: transfering results from
the GPU to CPU memory (device to host).

We start by fixing the number of threads and blocks
and loading left and right images into device memory.
All processes of our stereo matching algorithm are
performed with specific functions, or kernels, that
are executed in parallel by multiple threads. For our
method, the organization of the kernel functions is
presented in Fig. 1. The first step in our algorithm
is the calculation of the cost volume V (x, y, d) where
x, y indicate the position of the pixel p and d is the
disparity value. This volume is obtained for all pixels
and for all possible disparity values. It is obtained by
matching pixel p to p̄ at position (x+d, y) using SGFD
defined by Eq. (5). Therefore, the aim of the first
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kernel function is to calculate V (x, y, d) based on our
local cost function. The SGFD is built from Fourier
transforms and calculated using CUFFT. This library
implements several FFT algorithms for varying types
of input and output including C2C (complex input to
complex output), R2C (real input to complex output),
and C2R (complex input to real output). CUFFT
offers highly optimized algorithms to calculate the
FFT for different dimensions: 1D, 2D, and 3D. In
our approach, we use FFT 2D to compute the FFT
of a square window, following Haythem et al. [37].

After the descriptors are obtained to characterize
this region, the Euclidean distance is employed
to determine the matching cost as indicated in
Algorithm 1. We start by loading the input images,
fix the window size, and extract the templates from
the original images (Il, Ir) and gradients (Gl, Gr).
Next, we calculate the generalized Fourier descriptors
(GFD) for all templates. We obtain four descriptors:
GFDl

c for the left window, denoted Tmp left, GFDr
c

for the right window, denoted Tmp right, and
GFDl

g, GFDr
g for gradient left and right windows

denoted respectively by Tmp grad l, and Tmp grad r.
The Euclidean distance is computed between the
descriptors and the final cost function is determined.
The aggregated cost volume CA(p, d) in Eq. (9) is
easy to calculate using a box filter to average the
cost. The next kernel function is dedicated for
optimization and calculation of the disparity. The
goal of this kernel is defined in Eq. (12). In our
work, we follow Congote et al. [16], where the

Algorithm 1 Cost function at disparity value d

Input: left image Il, right image Ir, gradient image left
Gl, gradient image right Gr, parameter α.
Output: cost function SGF Dc(x, y, d).
for every pixel p(x, y) do

for p ← y − w/2 to y + w/2 do
for q ← x − w/2 to x + w/2 do

Tmp left [p.ω + q] ← Il [y.width + x] ;
Tmp right [p.ω + q] ← Ir [y.width + x + d] ;
Tmp grad l [p.ω + q] ← Gl [y.width + x];
Tmp gradt r [p.ω + q] ← Gr [y.width + x + d];

end for
end for
SGF Dc ←dist(GF D(T mp left), GF D(T mp right)) ;
SGF Dg ←dist(GF D(T mp grad l), GF D(T mp grad r));
SGF D(p, d)←αSGF Dc(p, d) + (1 − α)SGF Dg(p, d);

end for

dynamic programming kernel is well described.
Before transferring the results to host memory, a
last kernel performs postprocessing. The goal of this
function is to improve the disparity map by detection
of invalid disparity values, to fill them in, and apply a
median filter. We start by simple comparison between
left disparity and right disparity to identify the
unwanted pixels according the condition in Eq. (13).
We then replace invalid pixels with valid values from
the left or right side as indicated in Eq. (14). Finally
a simple median filter is used to reduce the noise and
impose smoothing between neighboring pixels.

5.2 Implementation results

The computational complexity of our stereo method
and its execution time distribution are now discussed.
In practice, the graphics card available was an
NVIDIA GeForce GTX960 with Maxwell architecture.
It has 1024 CUDA cores running at 1.2 GHz. It is
connected to an Intel Core i7-3770M based CPU
with a clock speed of 3.4 GHz. We tested our
stereo matching implementation on images with
resolution 320 × 240 pixels and 32 disparity levels.
Our implementation gives us an execution time of 26.2
ms, with the steps of cost calculation and aggregation
taking 76% of the overall runtime. Optimization
and disparity filling processes take 18% of the total
processing time and the refinement kernel takes 6%
of the total runtime.

In order to compare our stereo matching method
with other real-time algorithms, we used the same
stereo pairs with a resolution of 320 × 240 pixels and
32 disparity levels. We evaluated the performance
of the algorithms based on three important metrics:
the number of millions of disparity computations
performed per second (MDE/s), the number of the
frames per second (FPS), and the average percentage
of bad pixel errors across all test images. Results
using accuracy and runtime metrics are indicated
in Table 6, which provides a comparison between
our proposed algorithm and other real-time stereo
matching methods. Our implementation achieves 38
frames per second, and is more accurate and faster
than DCBGrid [38], and RealTimeGPU [39] based on
adaptive cost aggregation and dynamic programming.
ReliabilityDP [40], using reliability based dynamic
programming, produces less accurate results and is
slower than our proposed algorithm. Moreover, our
approach gives us almost the same accuracy as that
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Table 6 Comparison of accuracy and speed for real-time methods

Method MDE/s FPS Avg % bad pixels

Our approach 93.3 38 8.31

DCBGrid [38] 25.1 10 10.9

RealTimeGPU [39] 52.8 21 9.82

ESAW [41] 194.8 79 8.20

ReliabilityDP [40] 20.0 8 10.70

obtained using ESAW [41], although this last method
is faster.

Evaluation of our approach on the Middlebury MV3
database requires the calculation of disparity maps
for all stereo pairs. We present some results in Fig. 4.
The first line indicates the left images of each stereo
pair and the second line shows the ground truths for
each stereo pair. The last line presents the disparity
maps obtained using our approach.

The test on MV3 allows us to place our algorithm
in an evaluation table (http://vision.middlebury.
edu/stereo/eval3/). From it, we extract the most
important factors: average absolute errors in non-
occluded regions (Avg nonocc), average absolute
errors in all regions (Avg all), total time (time),
time normalized by number of pixels (s/megapixels,
denoted time/MP, and time normalized by number of
disparity hypotheses (s/(gigapixels∗ndisp)) denoted
time/GD. In Table 7, we compare our approach with
other stereo matching algorithms in terms of accuracy
and runtime metrics.

Table 7 Accuracy and speed for MV3

Method Avg nonocc Avg all Time (s) Time/MP Time/GD
Our approach 9.76 17.6 0.27 0.86 10.7
SPS [32] 10.4 16.6 22.1 4.33 14.2
DoGGuided [33] 12.0 22.3 439 1371 9999
BSM [34] 13.4 23.5 196 623 8063
ICSG [35] 21.3 26.9 160 31.9 105
SGBM1 [36] 11.3 18.3 14.3 2.79 8.64

The results in Table 7 show that our approach gives
average absolute errors in non-occluded regions equal
to 9.76% and average absolute errors in all regions
equal to 17.6%. The total execution time of our
proposed algorithm is 0.27 s. These results indicate
that our approach is more accurate and faster than
DoGGuided [33], BSM [34], ICSG [35], and SGBM1
[36]. SPS [32] produces more accurate results over
all regions (16.6%) but its results are less accurate
in non-occluded regions (10.4%). Also, this method
is slower than our stereo matching algorithm, with a
global execution time of 22.1 s.

6 Conclusions
This paper presents a new cost function for stereo
matching based on generalized Fourier descriptors.
The cost function for the proposed stereo matching
algorithm is Euclidean distance between Fourier
descriptors applied to color and gradient images.
Cost aggregation, disparity calculation, and result

Fig. 4 Some disparity maps obtained for MV3.
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refinement are performed respectively using a box
filter, dynamic programming, and postprocessing. To
evaluate our algorithm, we used the Middlebury stereo
benchmark. The experimental results indicate that
our proposed method outperforms many stereo
matching algorithms including ones based on joint
bilateral filtering and dynamic programming, semi
global matching and optimized dynamic programm-
ing. Also, our proposed approach is more accurate
than recent works involving binary stereo matching
and stereo matching based on sampled photo-
consistency computation.

Furthermore, we have presented an implementation
of our approach on graphics hardware using CUDA.
This implementation exploits the CUFFT library
to compute the cost function and CUDA parallel
computing architecture to implement the dynamic
programming. Results show that this implementation
can reach real-time performance, confirming that it
outperforms many real-time algorithms in terms of
accuracy and runtime metrics.
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