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Abstract We introduce a new advection scheme for
fluid animation. Our main contribution is the use of
long-term temporal changes in pressure to extend the
commonly used semi-Lagrangian scheme further back
along the time axis. Our algorithm starts by tracing
sample points along a trajectory following the velocity
field backwards in time for many steps. During this
backtracing process, the pressure gradient along the path
is integrated to correct the velocity of the current time
step. We show that our method effectively suppresses
numerical diffusion, retains small-scale vorticity, and
provides better long-term kinetic energy preservation.

Keywords fluid simulation; advection; method of
characteristics; spatially adaptive inte-
gration; interpolation error correction

1 Introduction
An accurate velocity advection scheme is an essential
component for any visually pleasing fluid simulation.
Today, the MacCormack scheme [1] has become
the state-of-the-art Eulerian scheme in practice, due
to its ease of implementation and cost-effective
accuracy advantage over first-order semi-Lagrangian
schemes [2]. Nevertheless, challenges remain. Artificial
(numerical) diffusion still takes place at every step,
leading to a significant dissipation of vorticity and
energy over time. Naively increasing the resolution
does not help, since in general the time step size must
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also be adjusted according to some CFL (Courant-
Friedrichs-Lewy) number, and the increased resolution
leads to significantly larger computational costs. High-
order interpolation schemes (e.g., ENO or WENO)
can improve accuracy, but involve larger stencils, and
the issues above persist. Xiu and Karniadakis [3]
provide a more comprehensive discussion of accuracy
versus grid resolution in semi-Lagrangian schemes. The
characteristic map scheme [4], based on the method
of characteristics, was developed to reduce the
accumulation of dissipation. However, application of
this method to velocity advection requires non-trivial
extensions. This paper presents a feasible solution:
we leverage the time-varying pressure field data
retained from previous frames to significantly reduce
the detrimental effects of numerical dissipation. In
summary, this paper offers the following contributions:
• New equations for advection that effectively

minimize numerical dissipation by incorporating
the pressure gradient over time.

• Intuitive control of accuracy, allowing a user to
trade off quality against increased computational
and memory costs.

• A spatially adaptive scheme for long-term semi-
Lagrangian backtracing, allowing efficient pressure
gradient integration.

• A new error correction scheme to address issues
induced by interpolation between grids and tracer
particles.

• Our method is easy to implement and parallelize,
and it outperforms the MacCormack scheme in
preservation of kinetic energy and vorticity.

2 Related work
For a review of grid-based fluid simulation we refer
to Bridson’s textbook [5]. Since our contribution
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is a new Eulerian advection scheme, we focus our
discussion around such methods.

2.1 Semi-Lagrangian method

Semi-Lagrangian advection was introduced to
graphics by Stam [2], with the key advantage of being
unconditionally stable regardless of time step [5].
It works by moving a virtual particle one step
back in time through the velocity field and (tri- or
bi-)linearly interpolating a value at the resulting
position. Indeed, for CFL numbers less than one the
method is equivalent to a first-order upwind advection
scheme. As we show later, this interpolation is the
primary source of numerical diffusion.

An unconditionally stable semi-Lagrangian
MacCormack method [1] reduces error through
extra back and forth steps, and thereby achieves
second-order accuracy. While this partially mitigates
numerical diffusion, some diffusion arising from the
grid interpolation nevertheless remains.

2.2 High-order interpolation

Multilinear interpolation can be replaced by high-
order schemes. Essentially non-oscillatory (ENO) [6],
weighted ENO (WENO) [6], and the cubic-
interpolation pseudo-particle (CIP) scheme [7] are
popular approaches, and these methods have
successfully been applied in graphics [8, 9]. The
improvements they offer are due to their increased
order of accuracy, whereas our method reduces error
introduced by repeated interpolation, separately from
the particular interpolation method used. Our
results demonstrate that our method with linear
interpolation provides qualitatively superior results
to the MacCormack method with sixth-order WENO
interpolation.

2.3 Characteristic map

Our method is similar in spirit to the work of
Tessendorf and Pelfrey [4] and that of Hachisuka [10]
in the sense that they used the method of
characteristics. These approaches follow a streamline
of a virtual particle through the velocity field in
a Lagrangian manner, much like the (single-step)
semi-Lagrangian method. To apply the characteristic
map for velocity advection, Hachisuka [10] proposed
to generalize the non-advection terms (e.g., the
pressure gradient, and external forces) as the source
of change [11] (see Eq. (3.37) for details). Our method
shares the same strategy as the work of Hachisuka [10]

but differs in that our method consistently fetches
the velocity field N steps back after reaching N time
steps, while the method of Hachisuka [10] “resets” the
total record of velocity at fixed intervals. This brings
pros and cons—resetting all previous records in this
way may speed up the average simulation time while
the effects of dissipation are still reduced by a factor
O(1/N) at the cost of (possibly) noticeable temporal
artifacts at the time of re-initialization. Our method
does not display such artifacts but the performance
drag due to backward sampling persists for the entire
simulation.

3 Advection scheme
3.1 Overview

For the sake of brevity, we initially omit external
forces (e.g., gravity), but they are re-visited in
Section 3.8. Firstly, we illustrate how to incorporate
temporal information into our advection scheme.
We begin with the momentum equation of the
incompressible Euler equations:

Du(x, t)
Dt

= −1
ρ

∇p(x, t) (1)

where D/Dt denotes the material derivative, and
p(x, t) and u(x, t) denote pressure and velocity,
respectively, at position x and time t. Let S be
the trajectory of a particle passively advected by the
time-varying velocity field from the beginning of a
simulation to a time t = T , parameterized by time.
Integrating both sides of Eq. (1) over time gives

u(x(S(T )), T )=u(x(S(0)), 0)−
∫ T

0

1
ρ

∇p(x(S(t)), t)dt

(2)
where x(S(t)) denotes a position on a trajectory S

at a time t. For brevity, in the following we use
shortened notation: uS,T for u(x(S(T )), T ) and pS,T

for p(x(S(T )), T ). We aim to solve Eq. (2) and show
that this effectively lessens the numerical dissipation.
We outline one step of our simulation in Algorithm 1.

Algorithm 1 Simulation loop

1: u�
S,T = uS,0 − ∫ T

0
1
ρ ∇pS,tdt

2: u∗
S,T = u�

S,T (x − ΔtuS,T )
3: uS,T +Δt = project(u∗

S,T )
4: Save p and uS,T +Δt

In the basic semi-Lagrangian method, significant
numerical diffusion arises because the velocity is
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resampled at every time step. We circumvent
this issue by reconstructing u�

S,T from the velocity
field at the beginning of a simulation (line 1 of
Algorithm 1). This way, our approach does not
accumulate numerical diffusion over time. We then
compute a middle velocity u∗

S,T in a similar way
to the regular semi-Lagrangian method [2]. Note
that, unlike uS,T , the reconstructed velocity u�

S,T is
not exactly divergence-free in the limit of numerical
approximation. Therefore, we choose uS,T for
backtracing positions to preserve mass conservation
in the same spirit as the fluid-implicit particle
(FLIP) method [12]. We use u�

S,T for sampling
the intermediate velocity after advection (line 2 of
Algorithm 1) because u�

S,T need not necessarily be
divergence-free. Finally, u∗

S,T is projected to be
incompressible though the regular pressure projection
routine [5] to get the new velocity for the next time
step (line 3 of Algorithm 1).

3.2 Integrating the pressure gradient

We compute the integral of the pressure gradient in
Eq. (2) by repeating the semi-Lagrangian backtrace
until we reach the beginning of a simulation. Hence,
we must record both the velocity and pressure fields
for all previous time steps. We later show that this
limitation can be partially alleviated, in exchange
for some reduction in accuracy. In our examples,
we employ second-order accurate Runge–Kutta for
backtracing, and choose single point quadrature for
line integration. For example:∫ T

T −Δt

1
ρ

∇pS,tdt ≈ Δt∇pS,T − 1
2 Δt (3)

Like before, we use the divergence-free velocity
field uS,T for backtracing positions. At the end of
backtracing we can locate S0, and substitute into
Eq. (2) to complete the calculation of u�

S,T .

3.3 Seeding integration tracers

In the above, we assumed we were backtracing only
a single point, but the velocity field values sampled
on the regular grid are properly interpreted as the
average of the velocity over a small cell. Therefore,
we should backtrace not a single point but rather a
small volume around the sample point. Since true
backtracing of a volumetric region would lead to
severe geometric tangling, we instead simply seed
multiple points (integration tracers) per cell, inspired
by a Gaussian quadrature rule.

We place seeds in a uniform grid pattern over each
cell, using four tracers per cell in 2D and eight in
3D. The initial velocity of each tracer particle is
interpolated from the velocity field on grid faces.
The tracer particles are then backtraced in parallel.
Finally, their averaged value is used to compute u�

S,T

per cell. This setup is straightforward to extend to
staggered configurations, as we do in our examples.

3.4 Interpolation error correction

When applied, the algorithm above introduces an
additional numerical diffusion step associated with
back and forth velocity interpolation between grids
and tracer particles. This issue can be understood as
follows: firstly, we seed tracer particles with velocities
interpolated from grids. When we interpolate velocity
from tracer particles back to grids (as we do at the end
of our advection scheme), the grid velocity is smeared,
leading to numerical diffusion as in the particle-in-cell
(PIC) method. We overcome this issue by predicting
this loss of information as Δu, and injecting it back
into u�

S,T . Our error correction scheme is summarized
in Algorithm 2.

Algorithm 2 Our interpolation error estimation
1: up ← interpolate(uS,T )
2: ug ← average(up)
3: Δu = uS,T − ug

We note that when we naively perform this error
correction, the kinetic energy can slightly increase
in some specific scenarios, e.g., in the 2D Taylor–
Green vortex test. Thus, we only correct 90% of
the estimated error in all of our examples, except for
the comparison test on various ratios of estimated
interpolation error (see Fig. 4). This strategy is
similar to the work of Zhu and Bridson [12] in the
sense that the PIC/FLIP method suggests linearly
combining FLIP and PIC where the blending factor
is heavily biased towards FLIP.

3.5 Reusing the reconstructed velocity

As the simulation proceeds, the total number
of previous velocity and pressure fields stored
continually increases. This eventually leads to a
tremendous memory footprint, and for practical
purposes it becomes infeasible to fetch a velocity
from the beginning of the simulation. To overcome
this issue, we propose an amendment to allow our
method to have a fixed computational cost regardless
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of running time. Let N be a target bound on the
number of time steps’ data to be stored. Equation (2)
can then be re-written as

uS,T =
(

uS,0−
∫ T −NΔt

0

1
ρ

∇pS,tdt

)
−

∫ T

T −NΔt

1
ρ

∇pS,tdt

(4)
Note that Eq. (4) is equivalent to

uS,T = u�
S,T −NΔt −

∫ T

T −NΔt

1
ρ

∇pS,tdt (5)

This way, we can resort to the previously
reconstructed u�

S,T −NΔt instead of tracing all the
way back to uS,0. To this end, we additionally store
u�

S,T at every time step. When computing Eq. (2),
we backtrace at most N steps and fetch u�

S,T −NΔt

instead of uS,0 at the point. When T is smaller than
NΔt, we just stop the backtracing at the beginning.

Although this reintroduces some numerical
diffusion, the amount is O(1/N) compared to the
standard semi-Lagrangian method. For completeness,
we assume that u�

S,0 = uS,0 and NΔt � T .
Algorithm 3 lays out one step of our modified
algorithm.

Algorithm 3 Simulation loop (modified)

1: u�
S,T = u�

S,T −NΔt − ∫ T

T −NΔt
1
ρ ∇pS,tdt

2: u∗
S,T = u�

S,T (x − ΔtuS,T )

3: uS,T +Δt = project(u∗
S,T )

4: Save p, uS,T +Δt, and u�
S,T

3.6 Spatially adaptive integration

Our multi-sampled integration scheme is essential
for accurate long-term integration of the pressure
gradient, but the effect of such accuracy may not be
noticeable where the velocity magnitude is negligibly
small. We exploit this observation and apply the
following two-level adaptive scheme: we seed a single
tracer particle per cell if the velocity magnitude of
a cell is less than 0.5, and eight tracers everywhere
else. We assign a weight of 1 to the former case, and
1/8 to the latter case, and use these weights later
in computing the average velocity on faces. This
technique allows us to significantly speed up the
integration calculation, since typically the majority
of the simulation domain contains velocity values of
small magnitude. Where smoke is present, we also
seed 8 tracers if the density exceeds a small threshold
(0.01 in our tests).

3.7 Temporal filtering

When applied as described, our method can display
temporal flickering artifacts: because we always
fetch the velocity from only the frame N steps
back, this allows partial decoupling between sets
of frames separated by N steps (e.g., for N = 4,
frame 5 interpolates its starting velocity from frame
1, whereas frame 6 starts from frame 2, allowing the
two sequences to gradually deviate over time). We
introduce a temporal filtering technique to mitigate
this issue. Instead of sampling velocity from a single
frame, we fetch the velocities from multiple sources
and blend them together. Our blending recipe is as
follows:

u•
S,T =

1
W

N∑
i=1

〈
wiu

�
S,T −NiΔt−wi

∫ T

T −NiΔt

1
ρ

∇pS,tdt
〉

(6)
where W =

∑
i wi and Ni = N − i. To accommodate

the effect of temporal filtering, we replace u�
S,T with

u•
S,T in Algorithm 3. In our examples, we pick wi =

αi−1 where α < 1 is a user-specified parameter which
we set to α = 0.9.

3.8 Static solids, liquids, and external forces

To straightforwardly extend our method to support
solid boundaries and liquids, rather than explicitly
storing pressure, we store the change in velocity
due to the pressure projection: uS,T +Δt − u∗

S,T .
Although this increases memory consumption, it
provides the benefit that we can automatically
account for the extrapolated velocity without special
care. External forces f , such as gravity, buoyancy, or
user interaction, can likewise be added to the change:
uS,T +Δt − u∗

S,T + f .

4 Results
All examples in Figs. 1–3 were run on a Linux machine
with a 10-core Intel Core i7-6950X CPU at 3.00 GHz.
We applied interpolation error correction (see Section
3.4) and spatially adaptive integration (see Section
3.6) in all cases except as noted.

Figure 1 demonstrates how simulation quality
improves as we increase N . This simulation was
run on a 1283 grid. Our modified advection scheme
using N = 16 took approximately 5.4 s per time
step, corresponding to roughly 46% of the simulation
time. The right bottom of Fig. 1 shows an example
without error correction. Without this correction, the
velocity field tends to smooth out more quickly due to
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Fig. 1 Three dimensional rising smoke. Left to right, top to bottom:
semi-Lagrangian advection, and our method (for N = 4, N = 16, and
N = 16 without interpolation error correction); N is the number of
preceding time steps used by our method.

numerical diffusion arising from interpolation between
grids and tracer particles. Note that in the video
in the Electronic Supplementary Material (ESM),
some Mach-band-like artifacts are noticeable, but

this is solely due to insufficient sample rays in our
ray marching algorithms.

Figure 2 shows a spiral maze experiment as also
performed by Mullen et al. [13]. We set up the
same experiment with semi-Lagrangian advection,
MacCormack advection with WENO interpolation,
and our method with variable N . When N reached
32, we observed that our method successfully passed
the test, in that an initial vortex propagates all the
way to the maze’s center. We provide results for other
schemes in the ESM.

The bottom of Fig. 2 visualizes the spatial
adaptivity used in our method. When applied to
Fig. 1, our spatial adaptivity speeds up the backtrace
calculation 2.8 times on average.

Finally, Fig. 4 shows kinetic energy plots with
various ratios of estimated interpolation error on a
2D Taylor–Green vortex test. When we did not apply
our correction, we observed that the kinetic energy
decreased significantly. On the other hand, when we
corrected 100% of the estimated error, we observed
that the kinetic energy increased slightly.

Figure 3 plots the observed kinetic energy on a 2D
Taylor–Green vortex test. As expected, our method
retains kinetic energy for a longer duration than other
schemes.

Fig. 2 Top: a crawling vorticity experiment using our method (N = 32). Vorticity is initiated on the left wall and is allowed to crawl along
the spiral walls, ultimately reaching the center of the maze (far right). Bottom: our adaptivity approach is visualized for a velocity field traced
32 steps back. We seed 4 tracer particles per cell in cells highlighted with red, and use only a single tracer particle everywhere else. The overlaid
velocities in red indicate the velocity field 32 steps back.
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Fig. 3 Kinetic energy in the 2D Taylor–Green vortex test.

Fig. 4 Kinetic energy in the 2D Taylor–Green vortex test for various
ratios of estimated interpolation error.

5 Discussion
5.1 Observations

In practice, the choice of an effective value for N

depends critically on the accuracy of the integration
scheme used. We observed that in two dimensions,
our four-point sampling technique typically allowed
us to step backwards at most 32 time steps without
apparent artifacts. Stepping back further than this
induced numerical instabilities, such as velocity
fluctuations: when N exceeds some tolerable number,
our 8- or 4-point integration scheme may not be able
to accurately calculate the gradient integral due to
significant deformation of grid cells.

In our preliminary tests we tried to adaptively
change the maximum backtrace count over space

depending on the flow complexity. However, we
often fell into the situation that either kinetic energy
quickly decreased or numerical diffusion excessively
took place, and found it difficult to control the
number.

We also applied our method to liquids, but found
that the visual improvement was subtle. We suspect
that this is because interior vorticity does not play a
dominant role in many liquid scenes, as also suggested
by Zhang et al. [14].

We explored use of two different interpolation
schemes in our method: tri- or bi-linear interpolation,
and sixth-order WENO interpolation. Although
WENO interpolation showed slightly superior
accuracy, we felt that the increased runtime was not
worth the cost. In the 3D rising smoke example (see
Fig. 1), the same setup with WENO interpolation
took about 19 times longer on average.

Note that although our method devises an
advection operator to better retain kinetic energy over
a long duration, it does not offer exact preservation.
If this was desired, one might prefer to use a strictly
energy-preserving integrator [13].

We observed that our interpolation error correction
can increase the kinetic energy in some scenarios.
Although we were unable to identify the source of
the energy increase, it only takes place for a short
duration and it eventually decreases in dynamically
changing scenarios.

Our correction scheme may introduce an additional
step, but we note that its cost is negligible when
compared to that of our whole backtracing phase.

5.2 Limitations

The primary drawback of our method is the
added computational cost and memory requirements
compared to basic semi-Lagrangian advection. These
are approximately N times larger, because we must
repeat a semi-Lagrangian-style backtracing step N

times. Fortunately, our method is fully parallelizable
and portable to modern GPUs, which suggests a
strong potential for acceleration. Also, the pressure
solution step can often dominate the simulation cost
(e.g., taking 90% for smoke [15]) by a factor O(N2

g ) if
a preconditioned conjugate gradient method is used,
for Ng grid cells. Since the semi-Lagrangian method
has O(Ng) and our method has O(NNg), our method
scales better than the pressure solution if N < Ng.



Spatially adaptive long-term semi-Lagrangian method for accurate velocity advection 229

6 Conclusions and future work
This paper has introduced a reduced-dissipation
velocity advection scheme for fluid animation. The
key attribute of our method is to integrate the time-
varying pressure gradient along the trajectory to avoid
dissipation from resampling the velocity at every
time step. Our approach is easy to implement and
successfully suppresses numerical diffusion, allowing
us to better preserve small-scale turbulence and
kinetic energy over the alternative MacCormack
advection scheme. In future, we would like to extend
our method to minimize the drift of plasticity for
Eulerian solid simulation (e.g., for the material point
method), and thus better preserve elasticity.
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