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Abstract Progressive rendering, for example Monte
Carlo rendering of 360◦ content for virtual reality
headsets, is a time-consuming task. If the 3D artist
notices an error while previewing the rendering, they
must return to editing mode, make the required
changes, and restart rendering. We propose the
use of eye-tracking-based optimization to significantly
speed up previewing of the artist’s points of
interest. The speed of the preview is further improved
by sampling with a distribution that closely follows the
experimentally measured visual acuity of the human
eye, unlike the piecewise linear models used in previous
work. In a comprehensive user study, the perceived
convergence of our proposed method was 10 times faster
than that of a conventional preview, and often appeared
to be instantaneous. In addition, the participants rated
the method to have only marginally more artifacts in
areas where it had to start rendering from scratch,
compared to conventional rendering methods that had
already generated image content in those areas.

Keywords foveated rendering; progressive rendering;
Monte Carlo rendering; preview; 360◦

content

1 Introduction
Virtual reality (VR) is increasingly used for both work
and entertainment. One challenge posed by VR is the
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generation of 360◦ content, especially due to the high
resolution requirements of VR devices, and the need
for meaningful interesting content in every direction
in 3D space. Rendering high resolution images with
progressive photorealistic methods typically takes
hours to complete, while approximate preliminary
results can be produced much faster. Moreover, in
Monte Carlo rendering, halving the error in the
rendered images requires quadrupling the number
of rendered samples [1]: the payoff obtained from
additional rendering time reduces quickly.

If the artist notices during previewing that
something is wrong with the scene, they must abort
rendering, make the required changes, and restart
rendering all over again. Restarting the rendering
process from scratch is required: for example,
changing the illumination conditions potentially
affects every pixel of the image. In many cases,
the artist can create an approximation of the scene
with a faster rendering method, but it typically
lacks photorealistic effects such as reflections and
indirect lighting, which require slow, offline methods
to render. If the artist can preview the rendering
sooner, it directly improves the speed of the content
creation process.

In this paper, we propose a method for speeding
up the preview of progressively rendered images by
applying foveated rendering to reduce the quality
in the peripheral regions of vision. Quality can
be reduced because visual acuity decreases with
increasing eccentricity, as a consequence of drop in
the density of rod and cone cells in the retina off-
axis [2]. It has been estimated that more than 90%
of real-time path tracing samples can be omitted by
employing foveated rendering [3].
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We make the following novel contributions in this
article:
1. an optimized human visual acuity model, which

can be used to accurately generate path tracing
samples;

2. an evaluation of the benefits of foveated rendering
in speeding up progressive rendering previews,
validated by a user study showing that the
proposed method is 10 times faster than a
conventional previewing approach.

The results of the proposed preview framework are
shown in Fig. 1.

We extend our previous work [4] with an additional
evaluation of the questionnaire presented to the
participants of the user study, and an evaluation of
how the participants assessed artifacts in the results.

2 Related work
The idea in foveated rendering is to adapt the
rendered visual quality to the physiological abilities
of the human visual system. Foveated rendering
requires predicting or measuring the direction of the
user’s gaze. Consequently, a real-time requirement
is imposed on rendering. There is a large body
of work on real-time foveated rendering, which is
summarized by a recent comprehensive literature
review by Weier et al. [5]. Foveated rendering is
very appealing when using head-mounted displays
(HMDs), which typically have a wider field of view
(FOV) than desktop monitors, and only a single
observer per display [6]. The wider FOV means that

the user can see clearly only a proportionally smaller
area of the screen. In addition, HMDs require low
latency rendering to reduce motion sickness, which
calls for greater optimization than for a desktop
setup. Moreover, accuracy of eye tracking is better
with an HMD setup because the camera used to
measure the gaze direction is fixed to the head of the
user [7].

One method to perform foveated rendering is to
rasterize the scene at multiple resolutions [8]. The
system renders only the region centered on the
gaze direction at the highest resolution, and uses
larger pixels in the user’s peripheral vision. Another
approach is to include foveated rendering into a
deferred shading pipeline by shading only some pixels,
and by interpolating results for the remainder of the
pixels [9, 10].

Current hardware supports only a fixed, predefined
resolution for rasterization. Therefore, foveated
rendering can be implemented more easily
with ray-tracing-based techniques because they
support arbitrary sampling patterns in screen
space. Consequently, foveated ray tracing has gained
academic interest in recent years [11, 12]. An intuitive
idea is to distribute samples according to the smallest
detectable spatial frequency according to a model of
human visual acuity:

m(e) =
{

1.0, 0 � e � 5.79
7.49/(0.3e + 1)2, e > 5.79

(1)

where e is the eccentricity angle, i.e., the angle
from the gaze direction [13]. This model is derived

Fig. 1 Results after two seconds of rendering with a static point of interest. Above: rendering buffer. Below: preview on screen, and close-up
of the point of interest. Note how it already starts to converge in our proposed foveated preview approach (FV) which uses eye tracking and a
human visual acuity model. On the other hand, the edges in FV are noisier than when uniformly sampling the viewport area (VP). Uniform
sampling of the whole 360◦ image (OD) is noisier than the other methods.
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from various psychophysical studies. The equation
describes just one radius of visual acuity, and the
actual 2D model is obtained by taking a solid of
revolution determined by the equation, where the
axis of revolution is at e = 0.

Due to the complexity of the visual acuity model,
linear denominator models may be used instead of the
quadratic denominator model in Eq. (1). However,
they are not as accurate in the peripheral parts of
vision [8]. A simplified version uses a linear fall-off
between the maximum and the minimum sampling
probability [9–11], or even a static probability with
respect to gaze direction [14].

When previewing progressively rendered images,
rendering of the region of interest needs to converge
as quickly as possible to allow the artist to abort the
rendering as soon as possible, when needed, and to
make the required changes sooner. One way to vary
the convergence rate is to apply a so-called guided
preview, and have more samples in an area chosen
by the artist with a pointing device [15]. Another
idea is to select an area of the image where the
sample computation is concentrated [16]. Importance
masking [17] is an advanced version of area selection.

In this paper, we utilize the idea of a guided
preview, and use one of the most intuitive kinds
of guidance: the point at which the user is
looking. This means that there is no need to
manually select the region of interest, and instead
the system automatically detects the user’s point of
interest. Moreover, we use the quadratic denominator
visual acuity model instead of coarser models.
Compared to coarser models, the more accurate
model places fewer samples in the peripheral regions
of vision, and therefore allows faster convergence in
the fovea. In addition, previous work on foveated
rendering has concentrated on real-time rendering,
while we propose its use to preview off-line rendering.

3 Proposed method
The aim of our previewing method is to render
images for VR and to give the artist an instant
preview. The method tracks the eye of the user
and generates samples according to the visual acuity
model. Doing so does not worsen the user experience
because resolution can be reduced significantly in the
peripheral parts of vision without affecting search
task performance [18]. In other words, the user can

find the area of interest in equal time compared to
when using a conventional preview. However, the area
of interest converges to the final result significantly
faster than when the image is uniformly sampled.

Sampling the world according to a visual acuity
model requires random image space positions
to be generated with probability density given
by Eq. (1). Note that the equation from Reddy [13] is
not directly usable as a probability density function
because its integral over the entire space is not equal
to one. We show later how to transform the equation
to fulfil the constraint in Eq. (6).

Progressive rendering produces the correct color
only after averaging many samples. Instead of
clamping the model to one sample per pixel, we
keep its value as cycles per degree. Using cycles per
degree makes sure that the image converges quickly
in the gaze direction. In other words, more than
one sample may be placed into a single pixel during
rendering of the frame. This in turn ensures, for
example, that better anti-aliasing occurs faster in the
area of interest. Due to the probabilistic nature of
sampling, some pixels may be completely unsampled
for the first few frames. While unsampled areas could
be reconstructed [19], because the pixels are likely to
be sampled quickly thereafter, we do not attempt to
reconstruct the missing pixels.

Generating random numbers analytically according
to the solid of revolution of Eq. (1) is not feasible for
the targeted real-time preview method. Therefore, we
simplify the generation by using polar coordinates:
a uniformly distributed angular coordinate φ, and
a radial coordinate r, which is the distance from
the center of the vision, i.e., eccentricity angle
e. The angle φ can be generated by one of the many
algorithms available for quickly generating uniformly
distributed random numbers. To achieve correct
distribution for r, the probability density of Eq. (1)
must be modified based on the circumference of circle
2πR (where R is the radius):

g(e) = 2πem(e) =
{

2πe, e � 5.79
14.98πe/(0.3e + 1)2, e > 5.79

(2)
A uniform distribution can be transformed to any

other distribution using the inversion method [20]:
r = f−1(u) (3)

where u is a uniformly distributed random number
in [0, 1], f is the desired cumulative distribution
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function, and r is a random number with cumulative
distribution f . The inversion method requires us to
derive the cumulative distribution function from the
probability density defined in Eq. (2) by integrating
g(e) over the interval [0, x]:

h(x) =
∫ x

0
g(e)de (4)

so

h(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πx2, x � 5.79( 1
0.3x + 1

+ ln(0.3x + 1)
)

× 166.4π − 612.3,
x > 5.79

(5)

We chose the upper limit of the function at an
eccentricity angle of 80◦ because at that point the
model begins to reach zero. In addition, such an
angle suffices to cover all typical HMD FOVs. Finally,
the integral needs to be made consistent with the
requirement that a cumulative distribution function
runs from 0 to 1:

f(x) =
h(x)

G(80)
(6)

where G(e) =
∫

g(e)de.
Equation (3) requires the inverse of f in

Eq. (6). However, it cannot be expressed in terms of
standard mathematical functions and the Lambert
W -function [21] is needed. We simplify the function
by approximating it with a fitted fourth-order
polynomial determined numerically by least squares
regression:

f−1(u) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

18.64
√

u, u � 0.0965

25.09u4 + 0.1680u3

+ 27.61u2 + 23.87u

+ 3.232,

u > 0.0965

(7)
The maximum approximation error in Eq. (7) is
1.8% and the integral of the difference is less than
0.04%, which are very small, especially in comparison
to coarser approximations in previous work. Small
error means that the model generates fewer unneeded

samples in the peripheral visual regions and more in
the center, leading to faster convergence.

In addition to utilizing the sampling pattern shown
in Eq. (7), the proposed method allows eye tracking
to be frozen. This feature is used if the user wants
to look around and still generate most new samples
around a certain point of interest.

In the proposed method the users preview the
results with a VR HMD with eye tracking capability,
but also a desktop setup could be used. We chose
an HMD because a VR headset gives better spatial
awareness and enjoyment [22] and, therefore, it is
likely for an artist to preview the scene with a device
similar to the ones used by the consumers of the
rendered content. Moreover, future versions of 3D
design tools might include user interfaces where the
design is done partially or completely in a virtual
environment using an HMD [23].

4 User study
To measure the subjective performance of our
proposed instant preview method, we conducted a
user study. It started with a questionnaire on a
five-point Likert scale concerning the participant’s
background in 3D graphics. The questions posed are
listed in Table 1.

The study used five different scenes and three
different preview methods, in random order. The test
scenes were BMW, Classroom, Conference, Sibenik,
and Sponza. A sample view of each scene can be seen
in Fig. 2. We chose the scenes to represent different
360◦ rendering scenarios.
4.1 Preview methods

Our study compared three different preview methods:
• Omnidirectional preview (OD): Samples were

distributed uniformly to every possible point in
an equirectangular image. This method represents
conventional baseline rendering without preview
optimization.

Table 1 Arithmetic mean (μ) and standard deviation (σ) of answers to the background questionnaire

Question μ σ

1. Age? 28.5 4.3
2. Gender? (5 = female, 1 = male) 2.3 1.9
3. How much previous experience do you have using applications with 3D graphics (like 3D games)? 3.5 1.3
4. How much previous experience do you have with offline 3D rendering (like Blender)? 2.2 1.2
5. How much previous experience do you have with virtual reality or augmented reality devices? 2.4 1.1
6. Have you experienced virtual reality sickness? 2.9 1.4
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Fig. 2 Sample views of test scenes used in the user study. Left to right: BMW, Classroom, Conference, Sibenik, and Sponza.

• Viewport preview (VP): Samples were distributed
uniformly in the area currently viewable with the
HMD. The idea was to simulate the rectangular
area sampling used in some rendering engines.

• Foveated preview (FV): This was the proposed
method, which distributed samples according to
the visual acuity model centered on the gaze point
of the eye-tracked user.

4.2 Single scene procedure

The procedure for each 3D scene can be seen in Fig. 3.
We asked the participants to play the role of a 3D
artist, and to choose an object in the 3D world. They
were told that the object represents an object that
they have just adjusted. Adjustment could have been,
for example, changing the orientation of the object or
changing its material parameters. Examples of both
can be seen in Fig. 4.

After object selection, the rendering started, and
the participants recorded rendering times. The first
event was recorded at the point where the participants
thought that they could determine if translation or
rotation of the object was successful. The second
measured time represented the event when the
participants were able to determine if the material

Fig. 3 Single scene procedure in the user study. Boxes are stages
and arrows are participant’s actions triggering transitions to other
stages. Clocks represent points where the system saved timing.

adjustment was successful. The idea was that at these
points the artist could cancel the rendering, go back to
editing mode, and make the required changes. In each
scene, the procedure described above was repeated for
each preview method. The order of preview methods
was randomized.

We told the participants that it was important
to record the timing at a similar rendering quality
in each preview method. If the participant felt that
even a single timing failed substantially, the whole
rendering method in that scene was timed again.

After time for a single method was measured,
we asked the participants to look around in the
360◦ image and to rate the prevalence of disturbing
artifacts in the other areas of the image. The value
was recorded on a five-point Likert scale, where one
meant no artifacts were present and five meant so
many were present that the scene was not discernible
at all.
4.3 Rendering

We chose unidirectional path tracing with importance
sampling as the progressive rendering method. AMD
RadeonRays [24] was used for ray traversal and the
path tracer ran on an AMD Fury X GPU. The host
code ran on an Intel Core i7-6700K CPU with 16 GB
of memory. The FOVE 0 VR headset was used as a

Fig. 4 Example of a 3D artist’s workflow. First the artist places
U-shaped cloths, which might require many previews of the positioning
with the slow progressive rendering method, especially if the objects
are transparent or reflective. Then the artist modifies the material of
the objects and previews the changes.
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viewing device in the study due to its eye tracking
capability, needed for the proposed method.

Translation of the virtual camera was disabled as
camera motion would have invalidated the progressive
rendering samples. Thus, the assumed starting point
was that the 3D artist had already chosen the camera
position by utilizing a faster rendering method.

The system generated equirectangular images
because they are common in VR applications, in
the authors’ experience. The preview method used
trilinear filtering to eliminate flickering near the
poles. With an unoptimized GPU implementation,
generating and sampling mipmaps on the target
machine took only about 1 ms of additional time
compared to bilinear filtering. This drawback was
reasonable since the target was 14 ms per preview
frame to achieve the 70 Hz refresh rate needed for
FOVE 0.

5 Results
The user study included 16 participants, of whom
11 were male and 5 were female. Their ages varied
between 22 and 37. Two of the participants knew
details of the test set-up beforehand, but their results
were so close to the average of the other results that
we concluded that this did not affect the results.

5.1 Questionnaire
Statistics for answers to the questionnaire can be
found in Table 1. The average answer to questions
regarding the participants’ background in 3D graphics
has P = 0.196 compared to the speedup of foveated
rendering. This P value means that there is no
significant correlation in the values, which was
expected since the study should test the human
visual system and not the person’s experience in
3D graphics. In addition, the P value suggests that
a user study with random users should give similar
results to a user study with actual 360◦ rendering
artists. The questions used in the calculation were
questions 3 and 4. The timing used in the calculation
was the difference between OD and FV.

5.2 User timing
The geometric means of all timing are shown in
Fig. 5 and arithmetic means for each scene over all
participants are listed in Table 2. The results show
that the proposed method required only around 10%
of the time required by the baseline method OD. The

Fig. 5 Geometric mean of time measured in seconds over all 5 test
scenes using the visible outline and visible material criteria for each
of the three preview methods (smaller time is better).

time savings directly translate to the frequency of
the artist’s feedback loop since rendering can be
aborted 10 times faster. An equivalent comparison
shows that previewing with VP is 3 times faster than
with OD. Likewise, comparison of VP to FV shows
that when rendering regular images rather than 360◦

images, foveated previewing can provide a 3× speedup
of the previewing task.

5.3 Artifacts

Results of the assessment of artifacts can be seen
in Fig. 6. The original idea of this measurement
was to assess the reduction in quality for methods
other than OD in directions away from the point
of interest. These areas are not rendered at all in
VP and FV because the user was looking at the
point of interest throughout the test. We found
out that this measurement was hard to record
because every participant had a completely different
idea about what should be considered a disturbing
artifact. However, from the results we can see that the
fast convergence of FV is perceived to have almost the
same quality as OD. In contrast, VP clearly has the
most artifacts. Note that if the slightly lower quality
of other areas in FV is a problem in a progressive
rendering system, then the system could be modified
to use a hybrid of FV and OD.

5.4 Subjective observations

In an open discussion after the test, many participants
reported that FV was so fast that it was hard to
record the first timing at the right time. They also
stated that it felt that the FV method converged
instantly. On the other hand, several participants
stated that the perceived slowness of OD might
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Table 2 Arithmetic mean (μ) and standard deviations (σ) of the measured time for each scene in the user study. The results of the FV
(proposed) and VP methods are compared to OD; pp stands for percent point. Large values of σ in OD are caused by the participants selecting
different kinds of objects

Timing type Outline visible Material visible
Preview method OD VP FV OD VP FV
Value type μ (s) σ (s) μ (%) σ (pp) μ (%) σ (pp) μ (s) σ (s) μ (%) σ (pp) μ (%) σ (pp)
BMW 6.1 7.6 41.8 9.8 20.8 1.9 29.9 16.9 33.6 15.1 11.8 5.3
Classroom 15.6 7.7 27.1 3.1 11.6 2.1 67.9 79.2 30.8 35.7 7.9 4.6
Conference 41.9 59.7 29.7 8.6 7.6 2.3 137.2 197.4 33.9 46.0 8.2 8.6
Sibenik 24.7 20.8 29.5 9.2 11.4 3.9 76.7 55.2 34.3 29.0 10.9 10.1
Sponza 16.1 13.8 25.9 4.9 9.1 2.1 60.4 46.8 30.1 18.9 7.5 4.0

Fig. 6 Arithmetic means and the standard deviations of the amount
of artifacts the participants saw when looking around. These numbers
were measured after the users were satisfied with the rendering of
their point of interest.

have caused them to get bored, inducing them to
mark timing at a lower quality than with the other
methods. These participants simply did not have
enough patience to wait for the image to converge to
the same level as with the other measurements. Hence,
the results are skewed in favor of OD. Most of the
participants also stated that they did not realize that
eye tracking was used, and instead thought that the
actual rendering was somehow faster. Not noticing
the eye tracking indicates that the visual acuity model
is a good way to distribute the samples.

5.5 Performance

All three methods showed similar computational
performance. On the target machine, according to
AMD CodeXL, it takes around 0.17 ms to launch
65,536 primary rays with all preview methods. This
includes generating random pixel coordinates for the
rays and calculating the ray origin and direction based
on the random pixel coordinate. In the case of our
proposed FV method, modifying the random number
distribution with the inversion method requires some
extra work (Eq. (7)). However, our measurements
showed that the extra work done in FV to generate
non-uniform random numbers is entirely hidden by

the latencies of memory accesses and the kernel
launch.

The ray tracing performance is dependent on the
user’s gaze or head direction with the FV and VP
methods, respectively. In contrast, OD has the same
ray tracing performance independent of where the
user is looking at. While OD yields a larger number
of samples per second than the other methods, this
result can be misleading because many of the rays
are sent to directions that are easier to ray trace, e.g.,
directly to a skybox.

5.6 Latency

Because the users preview the content with an HMD
device, the latency should be kept low enough to
not hinder the rendering experience. None of the
participants of the user study mentioned any issues
with latency. Only a few reported some minor VR
motion sickness, but they had also had similar
symptoms in other VR experiments. Moreover, for
most participants, the latency was low enough for
them not to realize that the system reacted to their
gaze direction.

The components adding up to the total rendering
latency are shown in Fig. 7. The HMD device has a
screen refresh rate of 70 Hz, which means that we
need to have a new preview frame ready every 14.3
ms. Otherwise the HMD displays the same frame for
28.6 ms, thus causing a frame drop. To avoid reducing
the quality of experience, our code is designed so that
it always meets the 14 ms target. All work other than
progressive rendering itself takes around 4 ms in our
code. This work includes, for example, updating the
UI, checking inputs, generating the mipmap, sampling
it, and sending the image to the screen buffer with
DirectX. In the 10 ms time left from the 14 ms target
after all other work, the progressive renderer is able to
path trace a batch of approximately 100,000 samples.
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Fig. 7 Breakdown of the system latency in milliseconds. Best-case latency is approximately 38 ms. Worst-case latency is hard to determine,
since we do not know all the internals of the HMD used. Moreover, green timing is the only one we can affect without changing the HMD.

The actual end-to-end latency of foveated rendering,
from eye movement to pixels being illuminated in the
HMD display, is hard to determine because we do
not know all the internals of the FOVE 0 driver and
hardware. To the best of our knowledge, the exposure
time of the eye-tracking camera is 8 ms, transferring
the data to the driver takes 2 ms, and processing the
data takes approximately 4 ms [25]. However, the
eye-tracking device used in FOVE 0 has a refresh
rate of 120 Hz [26], meaning that the exposure and
processing of different frames occur in parallel. At
the beginning of every frame our code queries the
driver for the latest eye position, which means that
if the frames of the display and eye tracking are not
synchronized by the driver, in the worst case the eye
position data used is that from an image processing
phase that ended 8 ms ago.

It should also be noted that the image captured by
the eye-tracking camera may show motion blur due
to the movement of the eye. To simplify analysis, we
assumed the eye to be moving at a constant speed,
and also assumed that the eye position estimate
produced by the image processing phase corresponds
to the eye’s position at the midpoint of the exposure
interval. Consequently, we started our latency timing
4 ms after the start of the exposure.

After processing ends, our code swaps the image
to the displays. We have not measured how long
it takes for the FOVE 0 display to illuminate the
pixels after the buffer swap. Since we meet the 14 ms
timing requirement it is likely that the frame is moved
almost immediately to the screen. FOVE 0 moves the
frame via HDMI 1.4 [26], and with typical transfer
speeds it should take 14 ms to move the frame to the
display.

6 Conclusions
In this paper we have proposed a foveation-based
preview system for progressive rendering. The system
tracks the user’s gaze and distributes samples
according to a visual acuity model. Generating the
sample locations with the proposed method did

not show a measurable overhead in computational
performance.

We measured the benefits of the system in a
user study with 16 participants, who were asked
to indicate how fast the different preview methods
reached specified levels of quality. The targets used
in the study were (i) when the users could detect
if a change in the transformation of an object was
successful, and (ii) when they could detect if a change
in material parameters was successful.

The results showed that the rendered image
converges at the user’s point of interest 10 times
faster than with conventional uniform sampling over
the whole 360◦ image area. In practice this means
that the 3D artist can abort rendering 10 times earlier,
shortening the artist’s feedback loop time and thereby
improving working efficiency significantly.

Most of the user study participants did not
realize that eye tracking was used, and instead
thought that the rendering process itself was faster,
which was the desired end result. In addition,
participants rated the proposed system to have
only slightly more artifacts than in areas where
conventional rendering has already rendered image
content progressively for several seconds and the
proposed method needs to start from scratch. This
is likely due to the speed of the proposed method,
which is supported by the fact that many participants
stated that the proposed method appears to converge
instantly. The perception of foveated rendering did
not have significant correlation with the participant’s
background in 3D graphics.
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M.; Jääskeläinen, P.; Takala, J. Sparse sampling
for real-time ray tracing. In: Proceedings of the
13th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and
Applications, Vol. 1, 295–302, 2018.

[20] Devroye, L. Non-Uniform Random Variate Generation.
Springer-Verlag, 1986.

[21] Weisstein, E. Lambert W-function. Available at http://
mathworld.wolfram.com/LambertW-Function.html.

[22] MacQuarrie, A.; Steed, A. Cinematic virtual reality:
Evaluating the effect of display type on the viewing
experience for panoramic video. In: Proceedings of the
IEEE Virtual Reality, 45–54, 2017.



276 M. K. Koskela, K. V. Immonen, T. T. Viitanen, et al.

[23] Stark, R.; Israel, J. H.; Wöhler, T. Towards hybrid
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