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Abstract Humongous amounts of data bring various
challenges to face image retrieval. This paper proposes
an efficient method to solve those problems. Firstly,
we use accurate facial landmark locations as shape
features. Secondly, we utilise shape priors to provide
discriminative texture features for convolutional neural
networks. These shape and texture features are fused
to make the learned representation more robust.
Finally, in order to increase efficiency, a coarse-to-
fine search mechanism is exploited to efficiently find
similar objects. Extensive experiments on the CASIA-
WebFace, MSRA-CFW, and LFW datasets illustrate
the superiority of our method.

Keywords face retrieval; convolutional neural
networks (CNNs); coarse-to-fine

1 Introduction

One of the first visual patterns an infant learns to
recognize is the face. The face provides a natural
means for people to recognize each other. For
this and several other reasons, face recognition and
retrieval have been problems of prime interest in
the fields of computer vision, biometrics, pattern
recognition, and machine learning for decades. The
face has been very successful used in biometrics
due to its unobtrusive nature and ease of use; it
is suited to both overt and covert applications.
Along with advances in face analysis technology,
face recognition, expression recognition, attribute
analysis, and other applications have come to
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the fore. Also, content-based image information
retrieval technology has gradually matured, and
major search engines now offer a search by image
function. Progress in face recognition and context-
based information retrieval technology have made
automatic similar face retrieval possible. Similar face
retrieval has high application value in the fields of
entertainment search, criminal surveillance, and so
on. Figure 1 illustrates large-scale face retrieval in
the field of prevention of terrorist crimes.

As a specific application of image retrieval, face
retrieval has the same research characteristics.
Unlike face recognition and face identification,
the aim of face retrieval is to search for all
the face images similar to an input image in a
given face image database, and to sort the results
by similarity. Existing face retrieval methods are
usually designed to compute geometric properties
and relationships between significant local features,
such as the eyes, nose, and mouth [1, 2]. Bach
et al. [3] manually annotated images of faces and
used artificial features extracted from the annotated

One of them?

Large-scale face dataset

Who is he?

Social 
networks

Law 
enforcement

Face retrieval 
system

Fig. 1 Example of large-scale face retrieval problem.
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regions for face matching, thus providing a semi-
automatic face retrieval system. Eickeler [4] applied
the pseudo 2D hidden Markov model method for
the first time in a face retrieval system, achieving
good results. Gudivada and Raghavan [5] borrowed
methods from face matching and proposed using
features extracted from face matching in a face
retrieval system. Wang et al. [6] proposed a multi-
task learning structure using local binary patterns
(LBP) [7] to solve face verification and retrieval
problems.

Learning face representations via deep learning has
achieved a series of breakthroughs in recent years [8–
13]. The idea of mapping a pair of face images
to a distance originated in Ref. [14]. They trained
Siamese networks as a basis for the similarity metric,
which is small for positive pairs and large for the
negative pairs. This approach requires image pairs
as input.

Very recently, Refs. [12, 15] supervised the learning
process in CNNs using challenging identification
signals (with a softmax loss function), which
brings richer identity-related information to deeply
learned features. Subsequently, a joint identification–
verification supervision signal was adopted in
Refs. [10, 13], leading to more discriminative
representation features. Reference [16] enhanced
supervision by adding a fully connected layer and loss
functions to each convolutional layer. The advantage
of triplet loss has been proved in Refs. [8, 9, 17].
With deep embedding, the distance between an
anchor and a positive instance is minimized, while
the distance between an anchor and a negative
instance is maximized until a preset margin is met.
They achieved state-of-the-art performance on the
LFW dataset.

We propose a method for fast large-scale face
retrieval using fused shape and texture features
to represent a face. Firstly, we use accurate face

alignment to gain shape information, inspired
by SDM [18]. Secondly, we adopt a modified
GoogleNet [19] to gain texture information about
the face. Thirdly, we fuse these two features to
represent the face image. Furthermore, we use a
coarse-to-fine structure that clusters the dataset into
several dense subsets to achieve fast retrieval. We
thoroughly evaluate the contributions of each part
in this paper and show that it achieves excellent
performance on experimental datasets.

2 Method

2.1 Overview

Figure 2 provides an overview of our shape and
texture cascade face retrieval approach. Firstly we
use SDM to extract face landmarks and a modified
GoogleNet to extract face texture information.
Secondly we fuse and balance the two features using
principal component analysis (PCA). Finally, we
search the face dataset using the fused features to
get the result.

2.2 Shape feature representation

This section describes use of SDM in the context of
face alignment. Algorithm 1 shows the main steps of
the SDM evaluation procedure. SDM is based on a
regressor that starts from a raw initial shape guess x0
and progressively refines this estimate using descent
directions Rk and bias terms bk, outputting a final
shape estimate xk. The descent directions set Rk

and bias terms bk have been learned during training.
The training procedure corresponds to minimizing:

arg min
R0,b0

∑
di

∑
xi

0

‖∆xi
∗ −R0φ

i
0 − b0‖2 (1)

where x∗ are the manually annotated face
landmarks. Minimizing this corresponds to a
linear least squares problem that can be solved in
closed-form.
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Fig. 2 Proposed large-scale face retrieval approach.
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Algorithm 1 Face alignment via supervised descent
method (SDM)
Input: Image I, descent directionsRk, bias terms bk, initial

guess x0.
1: for i = 1 : k do
2: φ = h(d(x));
3: xi = xi−1 +Ri−1φi−1 + bi−1;
4: end for
5: return final estimate xk.

2.3 Texture feature representation

This section explains how we use CNNs modified
from GoogleNet V2 [20] to extract the texture
features. Convolutional neural networks (CNNs)
have played an extremely significant role in computer
vision due to the revolutionary improvements they
provide over the state of the art in many applications.
In the field of face analysis, however, large scale
public datasets are extremely scarce. Thus, here we
use a face dataset containing 20,000 celebrities, each
with 50–1000 images, for a total of about 2,000,000
images taken from the Internet. We combine the
state of the art performance of the GoogleNet V2 and
the accurate and efficient approach of triplet loss [8]
to train our face texture extraction model using the
above dataset.

GoogleNet Inception V1 is the earliest version of
GoogleNet, appearing in 2014 [19]. Generally, the
most direct way to increase network performance
is to increase the depth and width of the network,
which means generating a massive number of
parameters. However, so many parameters will
not only cause overfitting but also increase the
computation. Reference [19] believes that the
fundamental way to solve these two drawbacks is to

convert the connections, even the convolutions, to a
sparse set of connections. For non-uniform sparse
data, the computational efficiency of computer
software and hardware is very poor, so determining
an approach that not only keeps the sparsity of the
network, but also permits the high computational
performance associated with dense matrices, is a
key issue. A large number of papers show that
the computing performance can be improved by
clustering the sparse matrix into dense submatrices.
Inspired by those methods, the Inception module was
designed to realize the above ideas.

Figure 3(a) shows the initial version of the
Inception module. The different sizes of convolutions
mean different sizes of receptive fields; filter
concatenation fuses diverse scale features. As the
network deepens, the features tend to become more
abstract, and the receptive field of each feature
involved is also increased. Thus, with an increasing
number of layers, the proportion of 3×3 and 5×5
convolutions also increases, resulting in a huge
computational load. Inspired by Ref. [21], a 1 × 1
convolutional kernel is applied to dimensionality
reduction. The dimension-reduction form of the
Inception module is shown in Fig. 3(b).

Although this network has been proposed, building
deeper networks is becoming mainstream, but the
computational efficiency reduces as the models
enlarge. Hence, Szegedy et al. [20] tried to find
a method to expand the network while avoiding
increased computational requirements. GoogleNet
V2 was proposed in 2015, which, compared with
V1, is an improvement in that it applies n×1 rather
than n×n convolutional kernels. Because of this
scheme, the convolutional neural network can keep
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Fig. 3 GoogleNet Inception V1.



362 Z. Lu, J. Yang, Q. Liu

a wide range of receptive fields and reduce the
number of parameters needed when expanding the
network, increasing the computational speed. Figure
4 illustrates the architecture of the Inception module
of GoogleNet V2. Here, n = 7 for the 17×17 grid. In
virtue of its high performance and lightweight model,
we choose it as the basic network used to extract face
texture features.

As an improvement, we adopt a triplet-based
loss to learn a face embedding when we train the
GoogleNet. The triplet-loss acts, in brief, such that
when we compare a pair of two alike faces (a, b) and
a third differing face c, the aim is to ensure that a
is more similar to b than c, unlike traditional metric
learning approaches.

The output φ(`t) ∈ RD of the GoogleNet, pre-
trained, is l2-normalised and mapped to an L � D

dimensional space using an affine projection xt =
W ′φ(lt)/‖φ(lt)‖2, where W ′ ∈ RL×D. There are
two key differences compared to use of a linear
predictor: firstly, L 6= D is not equal to the number
of class identities, but it is the size of the descriptor
embedding; secondly, the projection W ′ is trained to
minimise the empirical triplet loss:
E(W ′)=

∑
(a,p,n)∈T

max{0, α−‖xa−xn‖2
2 + ‖xa−xp‖2

2},

xi = W ′
φ(li)
‖φ(li)‖2

(2)

where α > 0 is a fixed scalar representing a learning
margin and T is a set of training triplets. Here we do
not learn the bias, unlike in the previous function. A
triplet (a, p, n) is composed of an anchor face a, and
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Fig. 4 Inception module after factorization of n×n convolutions.

furthermore a positive p 6= a, and negative n sample
of the anchor’s identity.

We obtain our texture feature representation by
training using a face dataset that contains 2,000,000
images; the model size is 58.7 MB.

2.4 Fast face retrieval via coarse-to-fine
procedure

This section explains we achieve fast face retrieval
for large-scale databases, using two main steps.
The first fuses face shape and texture features. The
above two features are 132 and 256 dimensional
vectors respectively. We apply PCA to reduce
the combined features to a final fused feature
vector of 128 dimensions. All face data is used
in this operation. The second step clusters the
combined feature vectors for each dataset into
several dense subclusters. We determine the number
of clusters according to the number of images in
each dataset. Our experiments show that about
100,000 images per cluster give the best balance
between speed and precision of retrieval. Therefore,
we choose 5 and 2 clusters respectively for the
CASIA-WebFace [22](abbreviated as CASIA in the
following) and MRSA-CFW [23] (abbreviated as
CFW) datasets.

3 Results and discussion

3.1 Experimental data

As Table 1 shows, we have performed experiments on
three datasets. As most identities contain only one
image in LFW [24], we conduct face verification on
this dataset to demonstrate the excellent selectivity
of our face feature representation. The other two
datasets are used for face retrieval. Figure 5 shows
some examples of face images in these three face
datasets. All face images from CASIA are cropped
to a uniform size but we use the original images from
CFW. Thus, CASIA only contains face images while
CFW includes many busts and full-body pictures.

Table 1 Datasets used in experiments

Dataset Identity Image
LFW 5,749 13,233
MSRA-CFW 1,583 202,792
CASIA-WebFace 10,575 494,414
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(a) CASIA (b) MRSA-CFW (c) LFW

Fig. 5 Example of face images from the three face datasets.

3.2 Evaluation

We now explain how we carried out the experiments.
Because both CASIA and CFW were collected for
training face recognition tasks, and do not give a
standard test set for face retrieval, we therefore
manually selected a test sample for each identity in
both datasets. Extensive experiments on the LFW
dataset were used to evaluate the performance of the
features extracted by our method.

As there is no benchmark for face image retrieval
using CASIA and CFW, in the following evaluations,
we selected 10,575 representative face images using
each identity in CASIA as its test set, and used the
same method to set up a test set for CFW with
1583 representative face images. Following standard
image retrieval experimental practice, we use top-1
and top-5 retrieval precisions as our performance
metric. Top-1 and top-5 precisions are calculated
using: ∑n

i=1 C(Xi, Yi)
n

(3)

where n represents the number of representative face
images in the test set, and C(Xi, Yi) compares the
ground truth Xi and the retrieval result Yi. In top-1
retrieval mode, Yi contains just the most similar
retrieval result, and if Xi = Yi, C(Xi, Yi) = 1,
otherwise C(Xi, Yi) = 0. In top-5 retrieval mode, Yi

contains the five most similar retrieval results, and as
long as one of the five results is equal to the ground
truth, C(Xi, Yi) = 1, otherwise C(Xi, Yi) = 0.

3.2.1 Face retrieval evaluation
As Table 1 shows, CASIA contains 494,414 face
images with 10,575 identities while CFW contains
202,792 face images with 1583 identities. Here we
conduct two kinds of experiments. The first strategy
performs face retrieval by directly calculating the
Euclidean distance between the test image and
all images in the test database (the linear scan
approach). Sorting the distances gives the top-1 and
top-5 retrieval results. We also use a coarse-to-fine
strategy (the coarse-to-fine approach). Firstly, we
adopt k-means to cluster the database image features
into k dense subsets (k = 5 and k = 2 respectively
for CASIA and CFW). Secondly, we find the nearest
subset to the test image. Finally, we search this
closest subset for the final top-1 and top-5 results.

Our retrieval results are shown in Table 2. For
the CASIA dataset we find that our features give
excellent performance, achieving 96.62% and 99.34%
precisions in top-1 and top-5 modes respectively
using linear scan to find the top-k face images.
However, the linear scan method is time consuming.
The average search time per probe face is nearly 3 s,
which is unacceptable. Therefore, we use a coarse-
to-fine structure to speed up the retrieval. It takes
about 0.3 s to produce retrieval results per probe
image. The retrieval speed increased by 8–9 times,
at a cost of precision decrease by approximately 2%.

We also achieve outstanding performance on
CFW, the retrieval precisions in top-1 and top-5
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Table 2 Face retrieval results for CASIA and CFW; retrieval time is the average search time per probe face

CASIA CFW
Retrieval method Linear scan Coarse-to-fine Linear scan Coarse-to-fine
Retrieval mode Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Retrieval time 2.87 s 2.78 s 0.33 s 0.35 s 0.49 s 0.52 s 0.50 s 0.52 s
Precision 96.62% 99.34% 94.02% 97.20% 98.61% 99.30% 97.56% 98.61%

modes using linear scan being 98.61% and 99.30%
respectively. As the dataset is much smaller than
CASIA, the retrieval time is only about 0.5 s.
When we applied the coarse-to-fine procedure to
the retrieval, the results were quite different from
those expected. In top-1 mode, the time cost of
each retrieval did not reduce, but increased. This
experiment illustrates that if the dataset is not large,
the coarse-to-fine operation does not reduce the
retrieval time, but increases the complexity of the
search.

In order to prove that the fusing features gives
better retrieval results, we performed comparative
experiments on both CASIA and CFW with fused
features, and only texture feature. Table 3 shows
the retrieval results, which confirm our expectations.
For CASIA, using only texture features, top-1 and
top-5 retrieval accuracies decreased by 8% and 5%.

The reduction for CFW is more severe, top-1 and
top-5 retrieval accuracies being reduced by 17%
and 11% respectively. The differences between the
two databases led to these quite different accuracy
reductions: all face images of CASIA are cropped
to uniform size but CFW still contains the original
images. As expected, the facial shape information
indeed contributes to the good performance.

We demonstrate some results using real examples.
Figures 6 and 7 show top-10 results for CASIA and
CFW retrieved by the coarse-to-fine method. All
retrieval experiments were carried out on a desktop
computer with an Intel i7-2600 CPU and 24 GB
RAM.
3.2.2 Face verification evaluation
We conducted a face verification evaluation using
the LFW dataset, which is the standard test set for
face verification in an unconstrained environment.

Table 3 Face retrieval results for different kinds of features

CASIA CFW
Feature Shape + texture Texture only Shape + texture Texture only
Retrieval mode Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Precision 96.62% 99.34% 88.33% 94.34% 98.61% 99.30% 81.46% 87.91%

Probe Top- 10 retrieval results on CASIA

Fig. 6 Top-10 retrieval results for five probes using CASIA.
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Probe Top- 10 retrieval results on CFW

Fig. 7 Top-10 retrieval results for five probes using CFW.

We report mean face verification accuracy and
the receiver operating characteristic (ROC) curve
on the 6000 given face pairs in LFW. We
rely on a huge outside dataset for training our
face representation model, like all recent high-
performance face representation methods [12, 15, 25–
34]. We compared our method with these methods
which all used unrestricted, labeled outside data for
training. Furthermore, we used SVM to learn a
threshold to verify whether two faces have the same
identity or not. In this way, we achieved 97.68%
face verification accuracy. We also only used texture
features to conduct a face verification evaluation,
and achieved 96.70% face verification accuracy, once
again proving the advantages of our fused features.
The comparison of accuracy and ROC curves to
previous state-of-the-art methods using LFW are
shown in Table 4 and Fig. 8, respectively. We achieve
outstanding results that demonstrate the excellence
of our face representation model.

4 Conclusions

We have designed a face image retrieval method
with a novel fused face shape and texture feature
representation that exploits specific facial attributes
to achieve both scalability and outstanding retrieval
performance, as shown by experiments with CASIA
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Fig. 8 ROC comparison with previous best methods using LFW.

and CFW datasets. Extensive experiments on the
LFW dataset demonstrate the excellence of our face
representation model. In our retrieval experiments,
the scale of the test database is still small. In future
we plan to set up a larger face retrieval test set with
millions of face images and perform experiments on
it. We will improve our method and apply it in a
system for similar face retrieval.
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