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Abstract Line drawing is a style of image abstraction
where the perceptual content of the image is conveyed
using distinct straight or curved lines. However,
extracting semantically salient lines is not trivial
and mastered only by skilled artists. While many
parametric filters have successfully extracted accurate
and coherent lines,
parameter choice and easily lead to either an excessive

or insufficient number of lines. In this work, we

their results are sensitive to

present an interactive system to generate concise line
abstractions of arbitrary images via a few user specified
strokes. Specifically, the user simply has to provide
a few intuitive strokes on the input images, including
tracing roughly along edges and scribbling on the
region of interest, through a sketching interface. The
system then automatically extracts lines that are long,
coherent and share similar textural structures to form
a corresponding highly detailed line drawing. We have
tested our system with a wide variety of images. Our
experimental results show that our system outperforms
state-of-the-art techniques in terms of quality and
efficiency.
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1 Introduction

Line drawing is a style of image abstraction in which
a distinct and concise set of line strokes is used to
depict the shapes of objects in a scene. Such concise
image abstraction plays a fundamental element in
many artistic stylizations where the artists delicately
draw long coherent lines along semantically salient
features in an image to give a first impression of
Beyond artistic drawings, good
line abstraction also provides valuable priors for
advanced image processing and scene understanding
tasks that demand precise edge detection.

their artworks.

However, generating semantically meaningful line
abstractions is not a trivial task; it is currently
approached in two very different ways. One way,
mostly appreciated by artists, is to utilize various
commercial painting tools (e.g., Paint, Photoshop)
to precisely trace the salient features by hand.
Although this offers the artists full control over the
final results, the process is tedious, time-consuming,
and probably error-prone due to fatigue. In the
other approach, a huge body of work is dedicated
to automatic line abstraction in various contexts,
ranging from gradient-based edge detection [1] to
artistic abstraction [2].
largely eliminates the manual effort required and

While such automation

achieves pixel level accuracy, the results are highly
sensitive to parameter settings, leading to either
excessive or insufficient detail. Overall, we still lack
an efficient and effective technique to extract concise
yet semantically meaningful line abstractions from
images.

In this work, we present a novel line abstraction
algorithm to extract prominent line strokes from a
highly detailed line drawing under the supervision
of a few user specified strokes. The key insight is
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to leverage both the cognitive ability of humans
and the computational power of machines to
accomplish the line abstraction task. To minimize
the fatigue, the user simply has to scribble roughly
along the long image features (e.g.,
of objects) or on a region with similar texture
patterns via a sketching interface. The system then
automatically performs the accuracy-demanding and

contours

computationally expensive tasks of extracting a
concise yet semantically meaningful line abstraction
from a highly detailed one. Specifically, the system
first classifies the wuser strokes into coherence
and structure strokes, based on which the long
coherent lines and line segments that share similar
texture patterns in the input image are extracted,
respectively. Figure 1 shows a typical example
generated by our system using only a few hand-

drawn strokes. We have tested our system on a

variety of images across different users. Experimental

results show that our system can generate superior
or comparable line abstractions given the same input
user strokes in comparison to previous state-of-the-
art methods, and provides a significant performance
boost over hand drawing when a target complexity
of abstraction is requested.

In summary, our main contributions include:

e An easy-to-use sketching system that facilitates
the creation of concise, semantic line abstractions
using very simple and intuitive user strokes.

e A novel line matching algorithm for extracting
long coherent lines and line segments with
similar image domain structure using coherence

structure strokes that are

and respectively,

automatically derived from the user strokes.

2 Related work

Parametric image filtering. Parametric image
filters such as the Canny edge detector [1] and the

difference-of-Gaussians filter [2-4] are widely used
in image abstraction for generating line drawing
images. However, the quality of output may vary
significantly when adjusting the associated control
parameters, leading to either excessive or insufficient
details. Another well-known contour detector, global
probability of boundary (gPb) [5, 6] combines both
local and global image features, and requires a
single threshold parameter to control the number of
detected edges. Nevertheless, it remains difficult to
find a universally applicable setting that produces
satisfactory for different input
Rather than struggling to optimize parameters, our
work aims to utilize these well-defined filters to

results images.

generate over-detailed line drawing images, from
which a concise set of semantic lines is then extracted
via the user specified strokes.

Sketch-based refinement. Limpaecher et
al. [7] introduced a method to correct user input
strokes by a consensus model collected from a
crowdsourced drawing database. Su et al. [§]
presented the FEZ-Sketching system that snaps user
strokes to nearby edges using a mnovel three-level
optimization. These systems also resemble those
that snap the cursor or strokes to some specific
image features such as image snapping [9] and lazy
snapping [10]. Other interactive sketching systems
such as ShadowDraw [11], drawing assistant [12],
and iCanDraw [13] targeted providing a tutor-like
drawing system for novice users. In contrast to
previous works that intend to correct or guide
user strokes, our system aim to use user stokes
as guidance to effectively extract prominent lines
that match the user’s intentions from a detailed line
drawing image.

Stylized line drawing. RealBrush [14] used
scanned images of real natural media to synthesize
the texture appearance of user strokes. A portrait
sketching system by Berger et al. [15] is capable

(d)

Fig. 1 Given an input image (a) along with a few scribbles by the user (b), our system automatically extracts a concise line abstraction
with coherence and structure lines depicting the edges of the petals and the shapes of the pistils (c, d). Note that our system can adaptively
produce highly detailed line drawings using different image filters (see insets).

P .
@ TINGHYA @) Springer



User-guided line abstraction using coherence and structure analysis 179

of synthesizing a sketch portrait from a photograph
that mimics a particular artistic style. Both systems
are data-driven and achieve impressive results by
analyzing the relationship between input strokes and
the collected line abstraction database. Our system
can contribute to this line of work by serving as an
efficient tool for generating line abstractions with
various styles.

Our work is closely related to the work by Yang et
al. [16] who also tried to extract semantic gradient
edges based on input user strokes. Their system first
clusters edge points into edgelets and constructs a
graph that encodes the spatial relations between the
edges near the user strokes. An energy minimization
framework is then used to select the semantic
edges that conform to the shapes of the user strokes.
However, their line matching algorithm may produce
artifacts such as disconnected edges even if the input
strokes are coherent. Moreover, lacking support
for structure analysis in the texture domain, their
system requires users to provide strokes at different
scales in order to extract the corresponding gradient
edges.

3 Overview

An overview of our system is provided in
Fig. 2. Given an input image, our system starts by
the user providing rough scribbles on the regions
of interest (see Fig. 2(b)) to guide line abstraction.

In addition to the user strokes, our system also

takes as input a detailed line drawing of the input
image (see Fig. 2(c)), which provides a reference
dataset of line segments used in the subsequent
matching algorithm. Such a detailed line drawing can
be obtained by using any suitable well-known image
filter, such as the Canny edge detector [1], fDoG [2],
gPb [5, 6], etc. Then our system runs in two stages.

Stroke classification. The user has to provide
only two kinds of simple and intuitive strokes: (i)
roughly tracing long image features (e.g., outlines,
edges), and (ii) scribbling on the regions using zigzag
or circular strokes. We refer to the former type of
strokes as coherence strokes. These are simple lines
that are nearly straight, and are usually used to
depict the main shape of objects (see Fig. 2(d)). The
other stroke type, structure strokes, are mainly used
to indicate regions of interest that contain repeated
texture patterns, which are otherwise tedious to
trace by hand (see Fig. 2(e)). Since these two types of
strokes represent different intentions of the user, our
system employs a gesture recognition technique [17]
to classify the user strokes.

Line matching. We formulate line abstraction as
a line matching problem, the aim being to extract
lines from the reference dataset that match the
user specified coherence and structure strokes (if
any). Specifically, for each coherence stroke, the
system computes the best matching coherence lines
(see Fig. 2(f)) using metrics favoring candidate lines
that are smooth and in agreement with the user
stroke in terms of orientation and overall length (see

(a) Input

fi)
(c) Detailed line drawing

%
e

(h) Result

Fig. 2 Overview. Given an input image (a), the system lets the user provide a few simple, intuitive strokes (b) and generates a reference
dataset of line segments from a detailed line drawing image (c). Next, the system classifies the user strokes into coherence strokes (d) and
structure strokes (e). A novel line matching algorithm is then employed to match the line segments of (c) to the input coherence and structure
strokes. The best matching coherence lines (f) and structure lines (g) are combined to form the final line abstraction (h).
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Section 4.1). For each structure stroke, the system
first analyzes a representative feature descriptor
based on texture patches of the input image by
sampling along the stroke using a local window. Then
the corresponding structure lines are those lines of
the reference dataset that are close to the user stroke
in feature space (see Fig. 2(g) and Section 4.3). The
final result is obtained by combining these two types
of extracted lines.

4 Algorithm

Preprocessing. The system starts by preprocessing
the input detailed line drawing image to obtain a
dataset of atomic line segments for the subsequent
matching algorithm. This is done by splitting long
continuous lines into small line segments according
to both length and curvature constraints. Assuming
a line comprises a set of t consecutive pixels
{ph ce
the angle 6 between two vectors, p;, p;—3 and p;, pita.
If 6 is less than 135° or the length of the line exceeds
a threshold of 20 pixels, we subdivide the line into
two line segments. The splitting process is iterated
until no more line segments violate the length and
curvature requirements.

We define a region of interest (ROI) for each user

,Pt}, we measure the curvature of p; using

stroke to speed up the process,
candidate matching line segments to those
intersecting the ROI. The ROI is defined as
the region swept by a disk aligned with and moving
along the user stroke. We use an empirical setting
of 15 pixels as the default disk radius to generate all
results presented in the paper.

by constraining

4.1 Coherence line matching

Coherence strokes correspond to the user’s intention
to trace along the contours of an object to depict its
overall shape. Therefore, the goal in this step is to
extract line segments to form a long coherent line
that matches each user stroke in terms of length and
orientation. The details of algorithm are as below.
Graph construction. For each input coherence
stroke, the system first constructs a directed
graph G = (V, E), with vertex set V = {vy, -+, v}
containing all candidate line segments covered by the
stroke’s ROI; we add a directed edge for every pair of
The edges can be further divided
The edge is

distinct vertices.
into two types according to context.

P
iw? IN?VIEQQ v}gFIl%?s @ Spl”lnger

labeled as a real edge if its two vertices (i.e., line
segments) are originally connected in the source line
drawing image, otherwise it is labeled as a wvirtual
edge. We defer the discussion of how to determine
the direction of each edge until later. An example of
such a digraph can be seen in Fig. 3.

energy term. Assume the

coherence stroke is also split into a set of stroke

Vertex-wise
segments, denoted S = {s1,--- , s, }. For each vertex
v;, we search among the set S and assign v; to
the best matching stroke segment according to an
alignment function, formulated as

Calign (Uz) = Isneigl(cdistance ('Uia Sj)cangle ('Uia Sj)) (1)

The distance cost, Cyistance, calculates the average
distance between v; and sJ, and is defined as

me lp—ql) (2

pe S5
The orientation cost, Cangle, measures how well v; is
aligned with s;, and is defined as
Cangle (viv sj) =1+atand (3)

where 6 represents the acute angle between v; and

Cdlstance Uu Sj

s;, and o is a weight which is empirically set to 2 in
our experiments.

Edge-wise energy term. Since our purpose is
to extract a path in the graph that is coherent with
the input stroke, the edge direction should naturally
follow the drawing direction of the input stroke. The
edge direction is determined by computing the angle
between a pair of line segments (v;, v;) and their
best matching stroke segments (s;, sj). As shown in
Fig. 4(b), we calculate the angle, 6, between the two
vectors nTmS; and W , where mg and m,, are
the midpoints of s; and v;, respectively.

The edge direction is set from v; to v; if 0 is less
than 90°, otherwise it is set to the opposite direction.

(b)

Fig. 3 Graph construction. (a) A coherence stroke (green) drawn by
the user; direction shown by white arrow. (b) (Right) corresponding
digraph based on the detailed line drawing (left). Each vertex
represents a line segment. Real edges: black arrows. Virtual edges:
orange arrows. Directions of edges are consistent with the direction
of the input stroke.
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Fig. 4 Continuity measure for a pair of line segments v; and v;. (a)
Two line segments with strong continuity in terms of Cline. (b) Two
line segments with weak continuity in terms of Cyser. Edge direction
is decided by the angle between line segments and the matching stroke
segments.

The edge
determined based on the
each pair of line segments (v;,v;), defined by

Clin + Cus r
W(on,vy) = et Sy (®)
The continuity cost, Cli,e, takes into account the

geometric feature of the two line segments, and is

defined as

na Xngll +1|na X ngl| + ||Inp X ng
| I+ g X +| I s

where n4 and np are the unit tangent vectors at
points A and B, which correspond to two points
respectively on line segments v; and v;. d is the
distance vector from point A to point B, and ngy
is a normalized unit vector along d. Figure 4(a)

associated weight  W(v;,v;) is

continuity between

illustrates a case with small Clj,e. For real edges,
Chine is set to 1. Note that Eq. (5) is a slight
modification of the discontinuity term introduced in
the stage of stroke clustering in Ref. [18].

However, in two geometrically
connected line segments may actually come from
two semantically different objects. Take Fig. 3 for

some  cases,

instance: although the line on the left hand side of
the window is long continuous, it is actually made
up of edges from different objects (i.e., the shoulder
and the lantern). To handle such cases, we introduce
another continuity cost, Cyuser, using the indication
from the coherence stroke to determine whether two
line segments have strong or weak continuity. This
cost function is defined as

Clser = cos(6 —m/2) (6)
where 6 is the angle between two line segments and
their matching stroke segments. When 0 is large, it
means that the user intends weak continuity between
two line segments even though they show strong
continuity in terms of Clue. Figure 4 illustrates a
case with small Cli,e and large Clyser-

Optimization. Given the directed graph, we
apply the Floyd—Warshall algorithm [19] to compute
all pairs of shortest paths to find the most coherent
path for each pair of vertices. In order to extract the
most prominent paths, we define an energy function,
E(p), to measure the quality of each path p as

follows:
E(p) = aEalign + bElength + cEcoherence (7)

The alignment energy term, E,jign, simply averages
the alignment cost along the path p and is defined as
Ealign = Z Calign(vi)/Np (8)
Vi EP
where N, is the number of vertices on path p. The
length energy term, Eiengtn, computes the proportion
of matched user stroke segments of each path and
favors the length of extracted lines to be as close as
possible to the coherence stroke. Figngth is defined
as

Elength =1- Nmatched/Nuser (9)

where Npatchea 1S the number of matched stroke
segments and Nyge, is the number of stroke segments.
For the coherence energy term, Ecoherence, We simply
average the edge weight along the path p:

Y W(viv)/(Ny = 1)

l}i,l)jep

Econerence = (10)
where N, —1 is the number of edges on path p. The
three energy terms are combined using weighting
parameters, a, b, and c¢. The path with minimal
total energy is selected as the most prominent line
that matches the input coherence stroke. Note that
we use the empirical values of a = b = ¢ = 1 as
default values to generate all results shown in the
paper.
stroke matching.

Figure 5 shows some results of coherence

4.2 Temporospatially neighboring strokes

To distinguish coherence strokes that are close to
each other, a co-analysis of multiple strokes is
performed to match them to different nearby image
lines with respect to the underlying image edges, as
proposed in Ref. [8].
a similar function to distinguish temporospatially
neighboring coherence strokes.

The temporal neighboring relationship is
determined by the drawing order. We first take
the most recent coherence stroke as the temporal

In this paper, we implement

neighbor of the new coherence stroke. For its spatial

neighbor, we consider its parallel neighbor and

e .
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Fig. 5 Coherence line matching results. (a) Input images and user
specified coherence strokes. (b) Detailed line drawings using fDoG [2].
(c) Lines extracted by coherence line matching.

its contiguous neighbor. The parallel neighbor is
defined to be the neighboring stroke that is closest
in distance and nearly parallel to the current stroke.
They arise when the user wants to extract lines
that are close to each other but find it difficult to
precisely align them when using hand sketching.
In order to avoid extracting the same lines when
parallel neighbor strokes are given, we use an energy
function to balance the results for such neighbor
strokes:

Eparallel(pzcvp%) - E(Iﬁ:) + E(pil) + FEconflict (11)
where p’ and p! are the candidate paths derived
from the current stroke p. and the neighbor stroke
Pn, Tespectively. F(p) is the energy function defined
in Eq. (7).
to prevent the same lines from being extracted for
parallel neighbor strokes. It is given by

Econfiict = Nconﬂict/ maX(Npga Np{]) (12)

where Neonfiict 18 the number of duplicated line

Feonfiict 18 an energy term designed

segments.

The contiguous neighbor is defined to be a
neighbor stroke that should be connected with the
current stroke. They arise when the user wants to
draw a long stroke, but, for some reason, uses two
separated strokes to express this intent. In order to
extract aligned, long, and coherent image lines, we
use a similar energy function to that in Eq. (7) to
balance the results of contiguous neighbor strokes.

Econtiguous (pévp%) = E(pé) + E<p£1) (13)
Finally, the pair of paths (p%, p’) with minimal

energy is extracted. Figure 6 shows an example

P .
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Fig. 6 Temporospatially neighboring strokes. (a) User input with
parallel neighboring strokes on the left and contiguous neighboring
strokes on the right. (b) Extracted lines without applying Eparallel
and Econtiguous- (¢) Extracted lines using Eparaltel and Econtiguous-

where temporospatially neighboring strokes are
considered or not.

4.3 Structure line matching

Matching of structure strokes requires us to collect
evidence covered by the structure stroke. A structure
cost is then used to evaluate structure similarity to
the collected evidence.
Evidence collection. For a structure stroke,
we need to extract line segments that have similar
properties in the drawing region. The structure
strokes do not need to align with the image lines, but
are used for region identification. Sufficient evidence
is collected as a basis to infer all other image line
segments that match similar structures within the
search range indicated by the user input stroke.
Firstly, intersections of the user input stroke with
the line segments from the line image are gathered.
Secondly, for each intersection, we obtain two 3 x 3
patches along the tangent line on both sides of the
intersected image line segment at the intersection
point. Lastly, the means of these two patches are
calculated. All such pairs of means are used as
the evidence for testing structure similarity of line
segments in the search range. Note that the search
range is the same as for coherence strokes, with
radius of 15 pixels. Figure 7 shows an example of
evidence collection.
Structure cost. After collecting all possible
evidence, the image lines that meet the search range
are considered to be candidate line segments for
extraction, depending on their structure similarity.
For a candidate line segment v; having N points, its
color difference De¢olor(v;, R) to the set of evidence R
is defined as
1 ) .
Dcolor(vi7 R) = N Z ggg Al§94(7n7 T) (14)
mEeui
where e,, is a collection of pairs of means, calculated
by the way as for the evidence, for every point of
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Fig. 7

Evidence collection.
stroke, black lines: candidate line segments. (b) Close-up; red dots:
intersections of user strokes and candidate line segments. (c) 10 pairs
of means, out of 67 in total, illustrate examples of evidence.

(a) Blue scribble: input structure

v;. The operator AEg, represents the CIE94 color
distance [20] measured in L*a*b* color space.

For each mean pair m, we find the most similar
evidence pair r with the smallest color difference
from the evidence set R. The average of the smallest
differences for all points of v; is regarded as the color
difference of the entire candidate line segment. The
structure cost function Cygructure(?) is then calculated
for each candidate line segment v;:

Cstructure (Vi, ) = Deolor (vi, R)W (1) (15)
where Dcgor is the color difference of a candidate
line segment to the collected evidence set, and I
is the image line which line segment v; belongs to
before line splitting. W (lj) is a weighting function
depending on the length of the specific candidate line

segment v;, and is defined by
3 1 length(lg) — length(lnin
2 2length(lmax) — length(lmin)

where [ i, and .« are respectively the shortest and

(16)

longest lengths of candidate lines before being split.
This formulation causes matching to favor image
lines that are longer in order to provide better line
coherence.

To extract appropriate line segments, the
candidate line segments are sorted by cost, ones
with lower cost being the preferred ones to be
extracted. The default proportion of extracted
candidate line segments is 70%. The user can also
define the proportion of candidate line segments
to be extracted. Figure 8 shows some structure
line matching results with different proportions
of line segments. Here, we enrich the rendering
of these line drawings with colors sampled from
original images to help clarify the changes between

the different cases.

Fig. 8 Structure line matching with different proportions of line
segments. (a) Input image and structure strokes. (b) Detailed line
drawings using fDoG [2]. (c)—(e) Line segments with costs less than
one, two, or three standard deviations respectively.

5 Results and evaluation

We have tested our system on a wide variety of
images across different users and generated 14 line
abstractions with only a small number of user
strokes. A few examples can be found in Fig. 9 and
we refer the reader to the Electronic Supplementary
Material for a full gallery.

5.1 Evaluation

In this section, we give the results of several
experiments to evaluate the performance of our
system against naive and state-of-the-art methods.
In particular, our system is compared with two state-
of-the-art methods by Yang et al. [16] and Su et al. [§]
(EZ-Sketching), which share the same goal as our
system of generating long coherent lines from user
strokes. We also implemented two naive approaches
for a baseline comparison, including: (i) extracting
lines that are near to the user strokes, within a
distance threshold of 15 pixels (NN); and (ii) using
all the lines that intersect user strokes (NI).
Performance of coherence line matching.
We evaluate the performance of our coherence line
matching algorithm against above four alternatives
in terms of visual quality and edge detection
accuracy with respect to the ground truth. To do so,
we used the same benchmark as Yang et al. [16] and
took gPb [6] edge maps as input reference line images
to our system. For a fair comparison, we imitated
10 results shown in Ref. [16] by carefully tracing
their user strokes using our coherence strokes. These
coherence strokes were also used as input to EZ-

(@ TINGHYA @ Springer
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Sketching [8] to generate the outputs for comparison.  of EZ-Sketching [8], and superior to those of Ref. [16]
Figure 10 shows a side-by-side comparison of the and both naive approaches in terms of smoothness
results. Our results are visually comparable to those and conciseness. We further used the precision P,

(a)

Fig. 9 Four results generated using our system. (a) Input image. (b) Detailed line drawings by fDoG [2]. (c) User strokes. (d) Final line
abstractions.

(8)

Fig. 10 Comparison with four other methods. (a) Input image and user strokes. (b) Ground truths corresponding to detailed line drawings
by gPb [6]. (c)—(g) Lines extracted by (c) our system, (d) Yang et al. [16], (e) EZ-Sketching [8], (f) naive near neighbor search (NN), and (g)
naive line-stroke intersection test (NI).

@ TINGHYA @) Springer
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recall R, and F-measure (the weighted harmonic
mean of P and R) to evaluate edge detection
accuracy. Table 1 shows that our algorithm achieves
comparable performance to Ref. [16] and clearly
outperforms EZ-Sketching [8] in terms of F-measure.
Note that Yang et al’s method achieves better recall
than ours as the ground truths often contain lines
that are not expected by the user. For example,
in the second row of Fig. 10(d), the noisy branches
around the man’s contour come from the shape of the
lanterns in the background, which are also included
in the ground truth (see Fig. 10(b)). On the other
hand, although EZ-Sketching snapped user strokes to
nearby edges, it tended to retain the style of the user
strokes instead of emphasizing the precision of the
refined strokes. Therefore, the precision and recall
are relatively low.

Performance of structure line matching.
Since neither Yang et al’s system nor EZ-Sketching
are designed to handle scribbles, we evaluated the
performance of the structure line matching algorithm

Table 1 Edge detection accuracy

Method F-measure Recall Precision
Ours 0.539 0.388 0.972
Yang et al. [16] 0.549 0.402 0.939
EZ-Sketching [8] 0.398 0.279 0.766
NI 0.359 0.226 0.918
NN 0.608 0.538 0.733

only in comparison with naive methods (NN and
NI). A side-by-side comparison can be found in
Fig. 11. Note that we enrich the rendering of
line drawings with colors sampled from the original
images to better show how our algorithm can
effectively capture lines with similar features, while
the naive approaches tend to generate results with
excessive (NN) or insufficient (NI) details.

User study.
of line abstractions by conducting a user study.

We evaluated the overall quality

Specifically, we prepared two sets of images, each
of which contains 10 example images with pre-
drawn user strokes. One set was used to evaluate
coherence line matching while the other was used for
structure line matching. For both sets, we generated
3 results for each example using our system and two
naive methods (NN and NI). The result generated
by EZ-Sketching [8] was also included for the set
used to evaluate coherence line matching. During
each trial, the subject was shown the original image
with user strokes and line abstractions by different
methods. The subject was then asked to grade each
result using a score of 1-5 (the higher, the better)
according to the degree of completeness, cleanness,
and expectation as comparing to the input strokes.
The average score over 11 subjects is given in Fig. 12.

For coherence line matching,
statistically significant difference between groups as
determined by one-way ANOVA (F'(3,36) = 21.646,

there was a

Fig. 11 Comparison with naive methods. (a) Input image and user strokes. (b) Detailed color line drawings by fDoG [2]. (c)—(e) Lines
extracted by (c) our system with costs less than one standard deviation, (d) naive near neighbor search (NN), and (e) naive line-stroke

intersection test (NI).

@ 'EN$VIE§SI($Y}II’I}%§ @ Springer
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u Coherence stroke  m Structure stroke

4
35
3
25
2
15
1
05
0
Ours EZ NN NI

Fig. 12 Average scores of different methods in the user study (the
higher, the better).

p < 0.001). An LSD post-hoc test revealed that
the score for NN (1.26 £ 0.2, p < 0.001) and NI
(2.04+0.26, p < 0.001) was statistically significantly
lower than that for our method (4.05 £ 0.28). There
was no statistically significant difference between our
method and EZ-Sketching [8] (p = 0.152). According
to the participant feedback, some of them cared
more about smoothness and completeness of the
coherence lines rather than their precision. Since EZ-
Sketching [8] refined the user strokes to snap them
to nearby edges, while our method extracted lines
from images which were originally composed of many
incoherent line segments, EZ-Sketching [8] tended to
get higher scores for some participants.

For structure there was a
statistically significant difference between groups
as determined by one-way ANOVA (F(2,27) =
56.429, p < 0.001). An LSD post-hoc test revealed
that the score of NN (2.48£0.62, p < 0.001) and NI
(2.68+0.53, p < 0.001) was statistically significantly
lower than that for our method (4.53 £ 0.14). There
was no statistically significant difference between NN
and NI (p = 0.355).

System usability. We conducted a small user
study with 3 subjects to test the usability of our
system against EZ-Sketching [8]. During each trial,
the subject was asked to generate a line drawing with

line matching,

a comparable level of details to a given reference
image using our system and EZ-Sketching [8], and
we recorded how long the subjects took to finish the
line drawings. The timing statistics can be found
in Table 2, and examples are shown in Fig. 13. The
results indicate that users take more time when using
EZ-Sketching [8] to generate a line drawing with a
target level of detail.

Speed. Once the user draws a stroke, our system

@ TINGHYA @) Springer

Table 2 Time taken to generate line drawings

Our method EZ-Sketching
Subject #1 144s 192s
Subject #2 79s 158
Subject #3 39s 100s
Average time 87s 1508

—

Fig. 13
line drawings. (b) Line drawing generated by our system. (c) Line
drawing generated by EZ-Sketching [8].

Results generated by different systems. (a) Reference

can extract the corresponding line segments at an
interactive rate. For all the images we tested, our
system took on average less than one second to
perform coherence line matching or structure line
The timing complexity of both line
matching algorithms is proportional to the number of
candidate line segments involved in the computation.

matching.

5.2 Limitations

The quality of the extracted lines is currently limited
by the input detailed line drawings. First, our
system can not extract lines that are not present
in the dataset. For instance, the duckling shown in
Fig. 14(a) presents a jagged outline, as a result of
which most image filtering algorithms fail to generate
long coherent lines (see Fig. 14(b)). In such cases,
our system can not extract long coherent lines using
coherence strokes (see Fig. 14(c)). On the other
hand, the quality of the extracted structure lines
depends on the degree of color diversity in the input
image. Since structure line matching depends on
color differences of line segments, the system may fail
to extract meaningful structure lines if the reference
image lacks color diversity with the stroke’s ROI (see
Figs. 14(d)-14(f)).
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Fig. 14 Limitations. (a, d) Input images with coherence strokes and
structure strokes respectively. (b, e) Detailed line drawings of (a, d)
respectively. (c, f) Line abstractions produced by our system. Note
that (c) fails to extract coherence lines due to the noisy line segments
along the duck’s boundary in (b). Due to the small color difference
between sepals and flower stem in (d), our system extracts lines from
both sepals and stem even though the user is only interested in the
sepal region.

6 Conclusions

In this work, we have presented a novel interactive
system for generating a concise, semantic line
abstraction guided by a few user strokes. The
user strokes are classified into coherence strokes and
structure strokes to facilitate extracting effective line
drawings from arbitrary images.
stroke, we build a graph and apply an energy

function to extract lines that are coherent and

For a coherence

aligned with user strokes. For a structure stroke, we
calculate the color difference between the candidate
lines and the evidence, and allow lines with similar
structures to be extracted. Our system is efficient
and can respond in real time. Its effectivity has been
verified by comparing it with other line extraction
approaches. The results show that our approach is
superior to other systems in terms of quality and
efficiency.
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