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Abstract Although many photorealistic relighting
methods provide a way to change the illumination of
objects in a digital photograph, it is currently difficult
to relight digital illustrations having a cartoon shading
style. The main difference between photorealistic
and cartoon shading styles is that cartoon shading
is characterized by soft color quantization and
nonlinear color variations that cause noticeable
reconstruction errors under a physical reflectance
assumption, such as Lambertian reflection. To handle
this non-photorealistic shading property, we focus on
shading analysis of the most fundamental cartoon
shading technique. Based on the color map shading
representation, we propose a simple method to
determine the input shading as that of a smooth
shape with a nonlinear reflectance property. We have
conducted simple ground-truth evaluations to compare
our results to those obtained by other approaches.

Keywords non-photorealistic rendering; cartoon
shading; relighting; quantization

1 Introduction

Despite recent progress in 3D computer graphics
techniques, traditional cartoon shading styles remain
popular for 2D digital art. Artists can use a variety
of commercial software (e.g., Adobe R© Photoshop,
Corel R© Painter) to design their own expressive
shading styles. Although the design principle used
roughly follows a physical illumination model,
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editing is restricted to 2D drawing operations. We
are interested in exploring new interactions which
allow relighting of a painted shading style given a
single input image.

Reconstructing surface shape and reflectance from
a single image is known as the shape-from-shading
problem [1]. Based on the fundamental problem
setting, most relighting approaches assume shading
follows a Lambertian model [2–4]. Although these
approaches work well for photorealistic images, they
often fail to interpret cartoon shading styles in digital
illustrations.

The main difference between photorealistic and
cartoon shading styles is that cartoon shading is
characterized by nonlinear color variation with soft
quantization. The designed shading is typically more
quantized than the inherent surface shape and its
illumination. This assumption is common in many
3D stylized rendering techniques which use color map
representation [5–7] that simply convert smooth 3D
illumination to an artistic shading style. As shown in
Fig. 1, this simple mechanism can produce a variety
of shading styles with different quantization effects.
However, such stylization processes make it more
difficult for shading analysis to reconstruct a surface
shape and reflectance from such shading.

In this paper, we propose a simple shading

Fig. 1 Stylized shading styles obtained by color map representation.
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analysis method to recover a reasonable shading
representation from the input quantized shading.
As a first step, we focus on the most fundamental
cartoon shading [6]. Our primary assumption is
that the main nonlinear factor in the final shading
can be encoded by a color map function. With this
in mind, we aim to reconstruct a smooth surface
field and a nonlinear reflectance property from the
input shading. Using these estimated data, our
method provides a way to change the illumination
of the input image with its quantized shading style.
To evaluate our approach, we conducted a simple
pilot study using a prepared set of 3D models and
color maps with a variety of stylization inputs.
The proposed method was quantitatively compared
to related approaches, which provided several key
insights regarding relighting stylized shading.

2 Related work

Color mapping is a common approach used
to generate stylized appearances in comics or
illustrations. In stylized rendering of a 3D scene, the
color map representation is used to convert smooth
3D illumination into quantized nonlinear shading
effects [5–7]. Similar conversion techniques are used
in 2D image abstraction methods for photorealistic
images or videos [8–11]. As a starting point, our work
follows the basic assumption that stylized shading
appearance is based on a smooth surface shape.

Previous shape reconstruction methods for painted
illustrations also attempt to recover a smooth surface
shape from the limited information provided by
feature lines. Lumo [12] generates an approximate
normal field by interpolating normals on region
boundaries and interior contours. Sýkora et al. [13]
extended this approach with a simple set of user
annotations to recover full 3D shape for global
illumination rendering. CrossShade [14] enables
the user to design cross-section curves for better
control of the constructed normal field. The
CrossShade technique was extended by Iarussi et
al. [15] to construct generalized bend fields from
rough sketches in a bitmap form. However, these
approaches only focus on shape modeling from the
boundary constraints. The recently proposed inverse
toon shading [16] modeling framework also follows
the strategy of modeling normal fields by designing
isophote curves. In this work, the interpolation

scheme requires manual editing to design two sets of
isophotes with different illumination conditions for
robust interpolation. In addition, reliable isophote
values are also assumed. In contrast, our objective
is to use a single cartoon-shaded image to provide
a shading representation that contains both a shape
and a nonlinear color map reflectance.

An entire illumination constraint is considered
in the well-known shape-from-shading (SFS)
problem [1] for photorealistic images. Since
the problem is severely ill-posed, accurate
surface reconstruction requires skilled user
interaction [3, 4, 17]. The user must specify
shape constraints to reduce the solution space of the
SFS problem. To reduce user burden, another class
of approach suggests rough approximation from
luminance gradients [2, 18] that can be tolerated
by human perception. However, such approaches
assume a photorealistic reflectance model, which
often results in large reconstruction errors for the
nonlinear shading in digital illustrations.

Motivated by these considerations, we attempt
to leverage limited cartoon shading information
to model a smooth surface shape and nonlinear
reflectance to reproduce the original shading
appearance.

3 Problem definition

3.1 Shading model assumptions

As proposed in the technique of cartoon shading [6],
we assume a color map representation is used to
reproduce the artist’s nonlinear shading effects.
Figure 2 illustrates the basic cartoon shading
process. In this model, shading color c ∈ R3 is
computed as follows:

c = M(I) (1)
where I ∈ R is the luminance value of the

Illumination Shading result

0.0 1.0 0.0 1.0

Fig. 2 Cartoon shading process.
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illumination, and M : R 7→ R3 is a 1D color map
function which converts the luminance value to the
final shading color. For a diffuse shading material,
we set I = L ·N , where L is a light vector and
N is the surface normal vector. We are interested
in manipulating L to L′ to produce a new lighting
result, i.e., c′ = M(L′ ·N ).

However, the inverse problem is ill-posed if
only shading color c is available. The primary
consideration of this paper is that we limit the
solution space for other factors while preserving the
final shading appearance. Some basic assumptions
considered in this paper are as follows.
• Smooth shape and illumination. We assume

that the surface shape N and the illumination I

are smooth and follow a linear relationship. The
only nonlinear factor is the color map function
M , which is used to produce the stylized shading
appearance.
• Monotonic function for color map. For

the color map function M , we assume a
monotonic relation between image luminance
Ic (obtained from c) and surface illumination
I. This assumption is important to simplify our
problem definition as a variation of a photorealistic
relighting problem.

• Diffuse lighting for illumination. We analyze
all shading effects as due to diffuse lighting. We
do not explicitly model specular reflections and
shadows in our shading analysis experiments.

4 Methods

Figure 3 illustrates the main process of the proposed
shading analysis and relighting approach. Here we
provide the primary objective and summarize each
step.
• Initial normal estimation. First, an initial

normal field N 0 is required as input for the
reflectance estimation and normal refinement
steps. Since the reflectance property is not
available, we simply approximate a smooth
rounded normal field from the silhouette.
• Reflectance estimation. Given the initial

normal field N 0, we estimate a key light direction
L and a color map function M which best fit
c = M(L·N 0). This decomposition result roughly
matches the original shading c for the given N 0.
• Normal refinement. Since the estimated

decomposition does not satisfy c = M(L ·N 0), we
refine the surface normal N 0 to N to reproduce
the original shading c.

Fig. 3 Method overview. (a) Initial normal estimation to approximate a smooth rounded normal field. (b) Reflectance estimation to obtain
a light and a color map. (c) Normal refinement to modify the initial normal by fitting the shading appearance. (d) Relighting to provide
lighting interactions based on the shading analysis data.
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• Relighting. Based on the above analysis results,
the proposed method can relight the given input
illustration. We change the light vector L to L′ to
obtain the final shading color c′ = M(L′ ·N ).
In the following sections, each step of the

proposed shading analysis and relighting approaches
is described in detail.

4.1 Initial normal estimation

For the target region Ω, we can obtain a rounded
normal field N 0 from the silhouette inflation
constraints [12, 13]:{

N 0(p) = N ∂Ω(p), p ∈ ∂Ω
∆N 0(p) = 0, p ∈ Ω

(2)

where N ∂Ω = (N∂Ωx, N∂Ωy, 0) is the normal
constraint from the silhouette ∂Ω. These normals
are propagated to the interior of Ω using a diffusion
method [19]. As shown in Fig. 4, we can obtain a
smooth initial normal field N 0 as a rounded shape.

4.2 Reflectance estimation

Once the initial normal field N 0 has been obtained,
our system estimates reflectance factors based on the
cartoon shading representation c = M(L ·N ).

The reflectance estimation process takes the
original color c and the initial normal N 0 as inputs
to estimate the light direction L and the color map
function M . We assume that the scene is illuminated
by a single key light direction (i.e., L is the same
for the entire image). The color map function M is
estimated for each target object.

In the early stage of our experiments, we observed
that the key light estimation step was significantly
affected by the input material style and shape. Our
simple experiment is summarized in the Appendix.
Since L is a key factor in the following estimation
steps, we assume that a reliable light direction is
provided by the user. In our evaluation, we used a
predefined ground-truth light direction Lt to observe
errors caused by the other estimation steps.

Color map estimation. Given the smooth

Fig. 4 Initial normal field obtained by silhouette inflation.

illumination result I0 = L ·N 0, we estimate a color
map function M to fit c = M(I0).

As shown in Fig. 5, isophote pixels of I0 do not
provide the same color as c. Therefore, a straight
forward minimization of

∑
Ω ‖c−M(I0)‖2 produces

a blurred color map M .
To avoid this invalid correspondence between

I0 and c, we force monotonicity by sorting the
target pixels in dark-to-bright order as shown in
Fig. 6. From the sorted pixels, we can obtain
a valid correspondence between luminance range
[Ii, Ii+1] and each shading color ci in the same
luminance order. As a result, a color map function
M is recovered as a lookup table for obtaining ci

from [Ii, Ii+1]. We also construct the corresponding
inverse map M−1, which is an additional lookup
table to retrieve the luminance range [Ii, Ii+1] from
a shading color ci.

4.3 Normal refinement

As shown in the right image of Fig. 6, the shading
result of M(L ·N 0) does not match c perfectly. Here
we consider refining normal N 0 to reproduce the

Fig. 5 Invalid correspondence between the initial illumination I0
and the input shading c.

Fig. 6 Color map estimation. Given the set of illumination L · N 0
and original color c, a color map function M is estimated by matching
the range of luminance orders.
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original color c by minimizing the following objective
function:
EN (N ) =

∑
Ω
‖c −M(L ·N )‖2 + λ

∑
Ω
‖∆N‖2 (3)

where
∑

Ω ‖c −M(L ·N )‖2 forces the shading
function to match the input shading,

∑
Ω ‖∆N‖2 is

a smoothness constraint, and λ is a regularization
factor for the smoothness constraint. Estimating N
from Eq. (3) is not straightforward due to the non-
linear function of M .

To address this issue, we provide the following
complementary objective function to Eq. (3):
E′N (N ) =

∑
Ω
‖M−1(c)−L·N‖2+λ

∑
Ω
‖∆N‖2 (4)

where M−1 : R3 7→ R is the inverse function of
M to change the appearance constraint into the
illumination constraint. Since the constraint becomes
a simple quadratic function, it can be minimized
using the Gauss–Seidel method with successive over
relaxation until convergence to a local minimum.
When the inverse function M−1 is simply defined
from the image luminance Ic, Eq. (4) is the same
as the photorealistic formulation suggested in a
previous study [4]:
E′N (N ) =

∑
Ω
‖k′dIc − L ·N‖2 + λ

∑
Ω
‖∆N‖2 (5)

where k′d = 1/kd is the reciprocal of the diffuse
reflectance constant. In our case, we can define the
inverse function M−1 from the estimated color map
function M .

Figure 7 illustrates the illumination constraints
for the normal refinement process. From the color
map estimation process described in Section 4.2, the
luminance range [Ii, Ii+1] is known for each shading
color ci. Therefore, the illumination is restricted by
the following conditions:

L ·N (p) ∈ [Ii, Ii+1], p ∈ C i (6)
where C i := {p ∈ Ω|c(p) = ci} is the quantized color
area and illumination L · N (p) is constrained to
[Ii, Ii+1].

We solve the problem by minimizing the following
energy:

EN (N ) = EI(N ) + λ
∑
Ω
‖∆N‖2 (7)

where EI(N ) =
∑

i

∑
Ci
Pi(L ·N ) is the luminance

range constraint with penalty functions Pi. We define
Pi for each C i as follows:

Fig. 7 Illumination constraints for normal refinement. The initial
illumination result is modified by luminance range constraints derived
from M−1.

Pi(I) =


0, Ii 6 I 6 Ii+1

‖I − Ii‖2, I < Ii

‖I − Ii+1‖2, I > Ii+1

(8)

The normal N is updated iteratively from the
estimated initial normal N 0 in Gauss–Seidel
iterations. Here we chose λ = 1.5 to obtain the
refinement result. Compared to the initial normal
N 0, the refined normal N better fits the original
color c.

4.4 Relighting

Based on the cartoon shading representation c =
M(L · N ), our system enables lighting interactions
for the input illustration. We can obtain a relighting
result c′ by changing the light vector L to L′ as
follows:

c′ = M(L′ ·N ) (9)

where the estimated factors M and N are preserved
in relighting process.

5 Evaluation of shading analysis

To evaluate our shading analysis approach, we
conducted a simple pilot study via a ground-truth
comparison. We compare our estimated results with
several existing approaches and ground-truth inputs.

5.1 Experimental design

To generate a variety of stylized appearance, we first
prepared shape and color map datasets (see Fig. 8).

Shape dataset. We prepared 20 ground-
truth 3D models having varying shape complexity
and recognizability. This dataset includes 7 simple
primitive shapes and 13 other shapes from 3D shape
repositories. Each ground-truth model is rendered
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Fig. 8 20 ground-truth 3D shapes and 24 color maps in our datasets.

from a specific view point to generate a 512 × 512
normal field.

Color map dataset. To better understand real
situations, we extracted color maps from existing
digital illustrations. We selected a small portion of
a material area with a stroke. Then the selected
pixels were simply sorted in luminance order to
obtain a color map. We tried to extract more than
100 material areas from different digital illustrations
sources. From the extracted color maps, we selected
24 distinctive color maps with different quantization
effects.

Given the ground-truth normal field N t and color
map Mt, a final input image was obtained by ct =
Mt(Lt · N t). Note that we also provide a ground-
truth light direction Lt in our evaluation process.

5.2 Comparison of reflectance models
We first compared the visual difference between
our target cartoon shading model and a common
photorealistic Lambertian model as shown in Fig. 9.
To obtain an ambient color ka and a diffuse
reflectance color kd for the Lambertian shading
representation c = ka + kdI, we minimized ‖M(I)−
(ka + kdI)‖2 with the input color map function
M . The color difference suggests that cartoon

Fig. 9 Comparison of reflectance models. Top: color map materials
selected from our dataset. Middle: Lambertian material fitted to the
corresponding color map. Bottom: color difference between the color
map materials and Lambertian materials. The materials are listed
according to the color difference.

shading includes some nonlinear parts, which cannot
be described by a simple Lambertian model. We
will discuss how this nonlinear reflectance property
affects the estimation results.

5.3 Shading analysis
Figure 10 summarizes a comparison of our estimation
results with ones from Lumo [12] and the
Lambertian assumption [4]. To simulate Lumo we
used the silhouette inflation constraints of the initial
normal estimation in Eq. (2). For the Lambertian
assumption, we used the illumination constraint in
Eq. (5) with a small value λ = 1.0 to fit the
input image luminance Ic. In all examples, we used
our color map estimation method (Section 4.2) to
reproduce the original shading appearance.

As shown in Fig. 10, Lumo cannot produce the
details of illumination due to the lack of inner
shading constraints. The Lambertian assumption
recovers the original shading appearance well;
however, the estimated normal field is over-
fitted to the quantized illumination. Although our
method distributes certain shading errors near the
boundaries of the color areas, it produces a relatively
smooth normal field and illumination that are both
similar to the ground-truth.

Figure 11 summarizes the shading analysis results
for different material settings. Although our method
cannot recover the same shape from different
quantization styles, the estimated normal field is
smoother than the input shading.

We also compute the mean squared error (MSE)
to compare estimated results quantitatively (see
Figs. 12–15). In each comparison, we used the same
shape and changed materials for computing the
shape estimation errors.

Note that our method tends to produce smaller
errors for simple rounded shapes but the errors
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Fig. 10 Comparison of shading analysis results with Lumo [12] and Lambertian assumption [4]. The proposed method reproduces the original
shading appearance similar to the Lambertian assumption with a smooth normal field as in Lumo.

Fig. 11 Shading analysis results for different color map materials.

Fig. 12 Errors of estimated shape depending on input material
(simple shape Three Box).

Fig. 13 Errors of estimated shape depending on input material
(medium complexity shape Fertility).

become larger than the Lambertian assumption for
more complex shapes. For a complex shape like
the Pulley shown in Fig. 15, even the Lambertian
assumption results in large errors. Since initial

Fig. 14 Errors of estimated shape depending on input material
(medium complexity shape Venus).

Fig. 15 Errors of estimated shape depending on input material
(complex shape Pulley).

normal estimation errors become large in such cases,
our method fails to recover a valid shape when only
minimizing the appearance error. We provide further
discussions on initial normal estimation errors in
Section 7.

Though the estimated shape may not be accurate,
our method successfully reduces the influence of
the material difference in all comparisons. Thanks
to the proposed shading analysis based on the
cartoon shading model assumption, our method
regulates estimated reflectance properties for various
quantization settings.

5.4 Relighting

Figure 16 and the supplemental videos in
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Fig. 16 Comparison of our relighting results with those from Lumo [12] and using the Lambertian assumption in Ref. [4]. The shading
analysis shows the estimated shading results from the input ground-truth light direction and shading. The analysis data are used to produce
the following relighting results. Our method can produce dynamic illumination changes from the input light directions as in Lumo, which are
less noticeable in the Lambertian assumption. The details of the shapes are also preserved in our method.

the Electronic Supplementary Material (ESM)
summarize a comparison of our relighting results
with those from Lumo [12] and using the Lambertian
assumption in Ref. [4]. In all examples, we first
estimate the shading representations in the shading
analysis step. Then we use the analysis data to
produce relighting results.

As in the discussion in the previous evaluation
of the shading analysis, the proposed method and
the Lambertian assumption can preserve the original
shading appearance in the shading analysis step.
However, the Lambertian assumption tends to be
strongly affected by the initial input illumination, so
that dynamic illumination changes from the input
light directions are less noticeable in the relighting
results. On the other hand, the proposed method and
Lumo can produce dynamic illumination changes
that are similar to the ground-truth relighting
results. The proposed method cannot fully recover
the details of the ground-truth shape; however,
our shading decomposition result can provide both
dynamic illumination changes and details of the
target shape.

6 Real illustration examples

We have tested our shading analysis approach on
different shading styles using three real illustrations.

Figure 17 shows relighting results for the one of them,
the others are included in the supplemental videos in
the ESM. The material regions are relatively simple,
but each material region is painted with different
quantization effects.

To apply our shading analysis and relighting
methods, we first manually segmented material
regions for the target illustration. We also provide a
key light direction L for the target illustration, which
is needed for our reflectance estimation step.

Fig. 17 Relighting sequence using the proposed method. Non-
diffuse parts are limited to static transitions with simple residual
representation.

Fig. 18 Reflectance and shape estimation results for a real
illustration. Non-diffuse parts are encoded as residual shading.
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Figure 18 illustrates the elements of reflectance
and shape estimation results for the illustration.
Compared to the ideal cartoon shading in our
evaluations, a material region in the real examples
may include non-diffuse parts. As suggested by a
photorealistic illumination estimation method [20],
we encode such specular and shadow effects
as residual differences ∆c = c −M(L ·N ) from
our assumed shading representation c = M(L·
N ). Finally, we obtain relighting results as c =
M(L′ ·N ) + ∆c by changing the light direction L′.

As shown in Fig. 17 and the supplemental videos in
the ESM, the residual representation can recover the
appearance of the original shading. We also note that
our initial experiment produced possible shading
transitions for diffuse lighting, while specular and
shadow effects are relatively static.

7 Discussion and future work

In this paper, we have demonstrated a new shading
analysis framework for cartoon-shaded objects.
The visual appearance of the relighting results is
improved by the proposed shading analysis. We
incorporate color map shading representation in our
shading analysis approach, which enables shading
decomposition into a smooth normal field and a
nonlinear color map reflectance. We have introduced
a new way to provide lighting interaction with digital
illustrations; however, there are several things left to
accomplish.

Firstly, our method requires a reliable light
direction which is provided by the user. Since
the light estimation method in the Appendix is
significantly affected by the input shading, more
friendly and robust cartoon shading estimation
approaches are needed. We consider that a
perceptually motivated approach [21] might be
suitable.

Secondly, the method minimizes the appearance
error, because a shading image is the only input.
This results in an under-constrained problem to
estimate both shape and reflectance. Actually, our
method achieves almost the same appearance as the
input. As shown in Fig. 19, the proposed method
cannot recover the input shape even if the material
has Lambertian reflectance with full illumination
constraints. Although the recovered shape satisfies
appearance similarity with the color map that is

Fig. 19 Shape analysis results for Lambertian reflectance. Blob
(top): small errors in shape and shading. Pulley (middle): large
errors in shape. Lucy (bottom): large errors in shading.

estimated in advance, we need a better solution
space to obtain a plausible shape. Since a desirable
shape is typically different for different users, we plan
to integrate user constraints [3, 4, 14] for normal
refinement. More robust iterated refinement cycles of
shape and reflectance estimations are to be desired.

Another limitation is that our initial normal field
approximation assumes the shape to be convex. This
causes errors noticeable in complex shapes such as
the Pulley, as shown in Fig. 19. Currently, we also
plan to incorporate interior contours for concave
constraints as suggested by Lumo [12]. Even though
we require a robust edge detection process to define
suitable normal constraints for various illustration
styles, this is a promising direction for future work
that may yield a more pleasing initial normal field.

Although large collections of 2D digital
illustrations are available online, we cannot
directly apply our method since we require manual
segmentation. A crucial area of future research
is to automate albedo estimation, as suggested
by intrinsic images [22, 23]. While our initial
experiments with manual segmentation produced
possible shading transitions via the diffuse shading
assumption, our method cannot fully encode
additional specular and shadow effects. Therefore,
incorporating such specular and shadow models
is an important future work for more practical
situations. Such shading effects are often designed
using non-photorealistic principles; however, we
hope that our approach will provide a promising
direction for new 2.5D image representations of
digital illustrations.

Appendix Light estimation

In the early stage of our experiments, we tried to
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estimate the key light direction L from the input
shading c and the estimated initial normal N 0.

As suggested by Ref. [4], we approximate the
problem using Lambertian reflectance Ic = kdL ·N 0,
where the diffuse term L ·N 0 is simply scaled by the
diffuse constant kd. For the input illumination Ic,
we compute the luminance value from the original
color c as the L component in Lab color space.
We estimate the light vector L by minimizing the
following energy:

EL(L′) =
∑
Ω
‖Ic − L′ ·N 0‖2 (10)

where L′ is given by L′ = kdL. We finally obtain
the unit light vector L = L′/‖L′‖ by normalizing
L′. The diffuse reflectance constant kd is optionally
computed from kd = ‖L′‖.

Figure 20 summarizes our experiment for light
estimation. In this experiment, we give a single
ground-truth light direction Lt (top left) to generate
the input cartoon-shaded image ct and then estimate
a key light direction L by solving Eq. (10).

It can be observed that the estimated results look
consistent with near-Lambertian materials (the left 3
maps) but inconsistent with more stylized materials
(the right 3 maps). Another important factor is the
shape complexity. The estimated light direction is

Fig. 20 Light estimation error. Top left: input ground-truth light
direction Lt. Top row: input color map materials shaded from the
Lt. The left 3 maps have small average errors; the right 3 maps
have large average errors. Left column: input 3D models. The top
3 models have small average errors; the bottom 3 models have large
average errors.

relatively consistent with rounded smooth shapes.
However, the light estimation error becomes quite
large when the input model contains many crease
edges, especially around the silhouette.

The result suggests that we require additional
constraints to improve light estimation. In this
paper, we simply provide a ground-truth light
direction for evaluation, or a user-given reliable light
direction for relighting real illustration examples.
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