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Abstract Pool and billiards are amongst a family
of games played on a table with six pockets along
the rails. This paper presents an augmented reality
tool designed to assist unskilled or amateur players of
such games. The system is based on a projector and
a Kinect 2 sensor placed above the table, acquiring
and processing the game on-the-fly. By using depth
information and detecting the table’s rails (borders),
the balls’ positions, the cue direction, and the strike
of the ball, computations predict the resulting balls’
trajectories after the shot is played. These results—
trajectories, visual effects, and menus—are visually
output by the projector, making them visible on the
snooker table. The system achieves a shot prediction
accuracy of 98% when no bouncing occurs.

Keywords computer vision; augmented reality (AR);
Kinect; pool game

1 Introduction

The classical physics underpinning a game of pool
can be hard to understand by a beginner or unskilled
player, typically requiring many hours of practice to
completely understand them.

In this paper, a visual application is introduced
intended to help and assist amateur players by using
the pool table as an interface, showing on-the-fly a
prediction of what will happen when the player hits
the white ball in its current position; menus or other
visual effects can also be projected and accessed
over the table or elsewhere. The system works for
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all varieties of tables and cues, regardless of their
size, cloth or cue colour and material, or even the
game type. It is based on a Kinect 2 sensor [1] and
a projector placed above the table. The Kinect 2
sensor is responsible for capturing the game, which
is then processed by a standard computer, enabling
detection of game elements such as the table’s rails
(borders), cue direction, and balls’ positions, which
are all used to predict a trajectory. The output result
is then forwarded in real time to a projector, showing
what might be the final result of that shot on the pool
table.

The contributions of this paper are firstly,
introducing use of a depth sensor to augmented
reality (AR) for a pool or billiards game system, and
making the detection functions of the system more
reliable: novel methods are proposed to detect the
motion, the pool balls’ centres (even when several
balls are in contact), the cue position and direction,
and the strike of the ball. This basic information is
used to simulate the basic physics of the game based
on depth information. Secondly, the system itself is
an augmented reality pool application that works in
real clubs, pubs, or exhibition environments, without
the need for any changes to equipment including
balls, cues, table, lighting, etc.

Section 2 presents the state of the art,
while Section 3 explains in detail the system’s
implementation: detection of the table borders,
balls, cue and strike, the physics computation,
and how output is mapped to the projector.
Section 4 presents tests and results in an exhibition
environment. The final section presents a discussion,
conclusions, and future work.

2 State of the art

Many examples of tools exist for the games of pool,
snooker, and billiards. Many of them are focused
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on analysing video footage mostly to give a 3D
representation of the game [2–4]. Unlike those
systems, e.g., Ref. [2], the application proposed in
this paper is an AR tool that enhances on-the-fly
the perception of what the player is currently doing
by projecting a calculated trajectory onto the table.
Other research uses a robot capable of choosing
and executing shots on a real table, although these
robotic systems have been tested under laboratory
conditions [5–7].

Leckie and Greenspan [8] presented a paper about
the physics in a game of pool; also see Refs. [9, 10].
One of these authors also presented a tool similar
to the one proposed in this paper: ARPool is a
projector–camera system that provides the player
real time feedback on the surface of the table [11].
However, no publications appear to be available
regarding this tool (only a web page). The present
authors introduced in Ref. [12] an initial version of
the system (PoolLiveAid), very similar to Refs. [11,
13], using a single Full HD webcam as a sensor to
acquire what is occurring on the table. Despite
the good results provided by the system, some
limitations exist, e.g., it is very difficult to detect and
individually distinguish each ball when two or more
balls are in contact. Also when using the system in
real pool clubs, some shortcomings were observed in
ball detection due to the imposed lighting.

Other systems exist: Shih et al. [10] presented a
system to compute the best sequence of shots given
a starting cue ball position. Later, Shih [9] presented
three novel game strategies to investigate the effect of
cue shot planning on game performance. The above
installations almost all use RGB cameras, but other
sensors can be used. For instance, 3D sensors are
gaining more attention currently, due to their greater
functionality.

The Microsoft Kinect [1] is one of the best known
and was popularized by the video gaming industry,
but now many applications can be found using
it; see, e.g., Refs. [14–16]. By using the above
mentioned 3D sensor and the depth information it
provides, in comparison to Refs. [11, 12], the tool
proposed in this paper increases the robustness of
the application with respect to suboptimal lighting
conditions, relative to our previous tool [12].

The use of 3D sensors, instead of RGB
cameras, doubtless provides benefits in this type of

application, such as the aforementioned immunity
to changes in lighting conditions, making cue and
ball segmentation more robust than if done purely
using colour, especially for separating balls that are
in contact. By using depth information, as it will
be shown, the segmentation of the cue and balls can
be very precise. There are no main disadvantages in
the use of the Kinect in this particular application,
except if an infra-red source causes interference in
the field of view of the sensor, stopping it working
properly.

The most similar tool to the one presented in this
paper is OpenPool [17], an open source system that
uses a 3D depth sensor to detect balls’ positions,
and uses Unity software to compute animations that
are mapped onto the table using a projector. This
tool can also detect when a ball is successfully
potted using auxiliary hardware installed in the
table’s pockets. For ball detection, it uses the same
sensor technology as this paper (a Kinect 2), but
the similarity stops there. In our system, the cue
is also detected and the basic physics of the strike
of the ball are computed. The goal of OpenPool
seems (at least for now) to be an animated pool table,
using the elements (the balls) that are on the table.
Our system also allows animations, but the main
difference is in purpose, allowing the inexperienced
player to comprehend the basic physics of the game.
By moving the cue near the ball, it is possible to see
on-the-fly a projection of its expected trajectory.

3 System implementation

As already mentioned in the introduction, the system
consists of (a) a pool table, of any size, with the
usual balls and cue, (b) a Microsoft Kinect 2 [1], (c)
any ordinary laptop or desktop computer capable
of analysing inputs from the Kinect, and (d) a
projector to project the computed trajectories and
balls’ locations.

In terms of setup, the projector can be placed
above the table (Fig. 1 left, fixed in the celling) or on
a side wall, as long as it can project onto the whole
table. A single Kinect 2 (Fig. 1 left, the black sensor
on the white support) can cope with tables of size
up to 2.5 m × 1.4 m at a height of up to 1.75 m; the
dimension used for the experimental setup presented
in this paper is 2.2 m×1.1 m, with the Kinect placed
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Fig. 1 Left: prototype. Right: a region of the colour frame acquired
by the Kinect, with the 4 corners (and rails) marked.

at a height of about 1.6 m. For larger tables, two or
more Kinect sensors could be used to acquire the
entire game field, requiring an additional (trivial)
algorithm to merge the acquired frames. All the
algorithms presented in this paper could be used with
more than one Kinect sensor (in Fig. 1 left, the ends
of the support were used to test with two Kinect 1
sensors). Finally, the Kinect should be placed more
or less above the centre of the table: while other
positions could be used, if the Kinect were placed
for instance on a side wall, this would severely impair
the Kinect’s depth resolution, hampering detection
of game elements, as would the occlusion of some
elements.

The system is divided into 5 main modules (Fig. 2).
System setup computes the table boundaries and
all transformation matrices. Motion detection and
categorization detects motion on the table. If motion
and thus game play has stopped (no motion was
detected in the current frame at time t, but motion
was detected at time t − 1), then it executes the
ball detection and classification module. However,
if motion was detected in the current and previous
frames, then two situations can exist: the balls are
in movement on the table, or a sudden movement
was detected, assuming that a player is approaching
to play. In this case, using the balls already detected
in a previous iteration, shot prediction and strike
detection starts to execute. Again two situations
can occur: cue detection is needed, and physics

Fig. 2 Block diagram of the system.

simulated, or after the cue ball has been struck,
balls are still moving and need to be detected once
they stop. Finally, the visualization module ensures
all outputs, strike prediction, visual effects involving
the balls, and menus, are projected onto the table.

3.1 System setup

As mentioned, neither the Kinect nor the projector
needs to be placed in the centre of the table, so
two important preprocessing steps must compute:
(i) the perspective transform of frames acquired by
the sensor, and (ii) the perspective transformation of
images that will be displayed by the projector. Plus,
(iii) a reference depth frame (R) is determined. This
information is saved to file, and loaded every time
the system initializes; it only needs to be computed
again if the table, the Kinect sensor, or the projector
changes position.

The Kinect sensor provides at each time step an
RGB frame, I(x, y), and a depth frame, D(x, y); in
the latter each pixel (x, y) represents the distance
of sensed objects to the sensor. Smaller pixel values
correspond to points closer to the sensor. The Kinect
depth frame has 16 bit resolution, so pixel values
range from 0 to ND = 65535.

For step (i) perspective transformation, the borders
of the table’s playing area are needed. These are
computed using the RGB image I; a Canny edge
detector [18], then a Hough transformation [18]
are applied. As several lines are detected, only
(almost) horizontal and vertical lines are selected,
and their intersection points are shown to the user
(see implementation details in Ref. [12]). The user
is asked to validate these corners, adjusting them if
necessary, as small errors in corner positions lead to
larger trajectory errors.

Let Ct{1,...,4}(x, y) be the positions of the corners
of the playing area from top-left in clockwise order
(see Fig. 1 right). Given the four points determined
above and the four reference points of the mapping,
i.e., (0, 0), (M, 0), (M,N) and (0, N), with M =
2 × N and N = [dist(Ct2, Ct3) + dist(Ct1, Ct4) +
(dist(Ct1, Ct2) + dist(Ct4, Ct3))/2]/4, where dist
means Euclidean distance, then a transformation
matrix [18] MPtK can be computed. Thus, the
initial depth frame D can now be transformed to
a depth frame containing only the playing area,
D′ = MPtKD. We set M = 2 × N as a professional
pool table has a length twice its width.
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Computing (ii) the perspective transformation of
the images, is necessary only for projectors that
do not have a built-in function that lets the user
choose the four corners of the projection. In such
cases, a similar computation to (i) is necessary.
The visualization component P , can be transformed
to P ′′ = MPtPP , where MPtP is the perspective
transformation for the projector.

Also, during setup we compute (iii) the table
reference depth frame, R. Depth frames acquired by
the Kinect present small inconsistencies and noise,
which need to be removed in order to improve
detection and reliability. As during setup time, and
while no motion is occuring on the table, a small
delay of say 1 s in the computation is not important,
and an average of the most recent frames is computed
to remove noise. The filter used for time t, Dat,
averages the previous Np depth frames: Dat(x, y) =∑t
k=t−Np

Dk(x, y)/Np. The result of this process
is illustrated in Fig. 3, the 1st row, right (with
Np = 25), the middle showing an example of an
original depth frame D, extracted from the empty
table on the left. Choosing a higher Np improves
reliability but increases the delay. The reference
depth average frame is the initial Da (empty table)
found at setup, after applying the transformation
Ra′=MPtKDa (see Fig. 3, the 2nd row, left).

In the remaining text, the notations X ′ and X ′′

represent frames to which the transformations MPtK

and MPtP have been applied, repsectively. For
visualization purposes, all pixels from the figures
representing the depth frames were divided by 16,
clamping any values higher than 255, then they were
brightened by 10% and their contrast was increased
by 90%. This causes the images in Fig. 3 to show
some banding, representing very small changes in
depth that have been amplified for visualization
purposes. This banding would be concentric with the
sensor if it were centred and parallel to the table. In
this case, it had a slight pan and tilt, but this does
not affect any of our algorithms.

3.2 Motion detection and categorization

The motion detection and categorization module
determines the phase of the game and what step
of the algorithm should be exectuted next (see
Fig. 2). To detect motion the depth frame D is
used. For frames that are expected to have motion,
or with motion, the noise removal is applied in real

Fig. 3 Top row: left: empty table, middle: depth frame D, right:
after noise removal Da. The 2nd row: left: reference frame Ra′,
right: example of Mb frame. The 3rd row: left: table with balls,
right: Da′

t. The 4th row: left: Bt with blobs where possible balls
might be, right: binary image Bbt. The 5th row: left: Bct image
with contours marked in yellow and the balls’ centres in red, right:
example of a current frame containing the player’s hand and the cue
Da′

t. The 6th row: Ct and Cbt. The 7th row: left: Cet, right: a
frame with blobs due to noise removed. Bottom row: left: result
showing multiple lines found on the cue, right: a single line (in red)
resulting from cue detection.

time using a Gaussian filter, G [18], with σ = 2,
Dgt(x, y) = G(Dt(x, y)).
3.2.1 Motion detection
Motion detection can be implemented using the
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difference between two depth frames, |Dg′t−Dg′t−1|,
but using this approach, small differences between
two consecutive frames are almost undetectable and
can be confused with noise. Thus, a comparison
between the current frame and multiple other frames
is used: Mt(x, y) =

∑Np

j=0 |Dg′t(x, y) − Dg′t−j(x, y)|,
where Mt is the motion detection frame at time
t, which compares the current frame Dg′t and
the previous Np = 40 frames (around 1.5 s). A
binary image is computed indicating where motion
exists: Mbt(x, y) = 1, if Mt(x, y) > Tm, otherwise
Mbt(x, y) = 0, with Tm = 0.05%ND. Figure 3, the
2nd row, right, shows an example including a cue
and a ball being struck.
3.2.2 Motion categorization
The system uses a binary variable ω to indicate
the motion status of the system, 1 meaning motion
and 0 meaning no motion. The system starts by
default with ω = 1. The number of white pixels
detected in Mbt gives us information about whether
motion is occurring in the current frame: Cmt =∑M
x=0

∑N
y=0 Mbt(x, y). A counter, Kt, manages false

movements detected by the procedure above:
(i) If the current value of the system state is no

motion, then it is necessary to detect when motion
starts, and for this the counter Kt is incremented
if Cmt is higher than K1 = 0.05%M , otherwise
decremented (values lower than 0 are clamped to
0). If the counter Kt reaches K2 = 25 (around
1 s; 25 frames), then it is considered that motion
has started, changing the state to motion and we set
Kt = 0.

(ii) On the other hand, if the system state is
motion then the counter is incremented if Cmt is
lower than K1, otherwise decremented (again, values
lower than 0 are clamped to 0). If the counter Kt

reaches K2, then it is considered that motion has
stopped, changing the state to no motion and we set
Kt = 0. Using Kt, motion can be characterized as
follows:

(ii.1) Stopped: If motion was not detected in the
current frame, but was detected in the previous
frame, ωt−1 = 1 ∧Kt = K2, then ωt = 0 ∧Kt = 0.

(ii.2) Started: If motion was detected in the
current frame, but was not detected in the previous
frame, ωt−1 = 0 ∧Kt = K2, then ωt = 1 ∧Kt = 0.

(ii.3) Non-existent (no motion): If motion was
neither detected in the current or previous frames,

ωt−1 = 0 ∧Kt < K2, then ωt = 0.
(ii.4) In motion: If motion was detected in either

the current or previous frame, ωt−1 = 1 ∧Kt < K2,
then ωt = 1.

Having characterized the motion, it is now possible
to project different visual outputs concerning the
motion event taking place, and to detect the balls’
positions and the remaining elements of the game.

3.3 Ball detection and classification

Ball detection and classification is triggered after
motion has stopped, and uses the reference depth
average frame Ra′ determined in the setup step (see
Fig. 3, the 2nd row, left).
3.3.1 Ball detection
To detect the balls’ positions on the table we
compute Bt(x, y) = |Ra′(x, y)−Da′t(x, y)|, where Bt
is the frame containing blobs where balls might be
(see Fig. 3, the 4th row, left). A binary threshold is
applied to obtain a binary frame containing the balls
(see Fig. 3, the 4th row, right), where Bbt(x, y) = 1
if Bt(x, y) > Tb, and 0 otherwise; Tb = 13/16Bw,
where Bw is the ball height determined during
system setup from depth information. It is important
to stress that the threshold must be between T1 =
7/8Bw and T2 = 3/4Bw (see Fig. 4), so that
Tb > T2, otherwise balls that are in contact with
each other will forming a single blob, and thus be
recognised as just one ball.

The next step consists of applying the
morphological erosion operator E, with the goal of
removing any remaining noise (small blobs) that
still persist: Bet = E(Bbt). Finally, we compute
the ball centre and radius (r). A ball has a peak
in the depth frame at its centre, giving the exact
position (x, y) of the ball on the table. To find these
peaks, allowing for noise in the Kinect depth frames,
a contour finder C [19] is applied, Bct = C(Bet).

Fig. 4 Side and top view of a ball, with T 1 and T 2 reference
depths.
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For each contour a local maximum is computed in
Bt, corresponding to the coordinates of the ball’s
centre. Figure 3, the 5th row, left, shows in yellow
the contour of each ball, and in red its peak (at the
top left of the image, for clarity, a zoomed view of
one of the blobs/balls is shown).
3.3.2 White ball classification
Having detected all balls, the white ball has to be
classified, as it is the only ball the cue may hit.
The I ′ colour frame from the Kinect is converted
to HSV colour space, I ′HSV, and the pixels’ V

component values inside each ξi contour in Bct
are summed. The contour with the biggest sum is
classified as the white ball, with centre (xbc, ybc),
with respective contour index i, where W (x, y, i) =
max{i=0,...,Nb}{

∑
ξi
I ′V (x, y)}, and Nb is the number

of ball contours in Bct.
A similar process could be used to classify other

balls.

3.4 Shot prediction and strike detection

With all balls detected and the white ball found, cue
detection is the next step, followed by shot prediction
and strike detection.
3.4.1 Cue detection
Cue detection is based on 5 steps: (i) waiting for all
balls to stop moving, (ii) defining the depth reference
frame of the table, (iii) computing the difference
between the depth reference frame and the current
depth frame, (iv) finding the largest blob, if any
exists (removing all smaller ones), and (v) detecting
the centre line for the largest blob from a starting
point near the white ball.

In more detail, when motion stops and triggers
ball detection, a reference frame Qa′ is captured (see
Fig. 3, the 3rd row, right). Since the reference frame
contains the balls at the instance motion stopped,
the difference between it and any current frame (see
Fig. 3, the 5th row, right) can only be a player, a
cue, or both. Thus, cue detection can be achieved
by computing Ct(x, y) = |Qa′(x, y)−Da′t(x, y)| (see
Fig. 3, the 6th row, left), then creating a binary
frame, removing small inconsistencies due to noise:
Cbt(x, y) = 1, if Ct(x, y) > Tc; 0, otherwise, where
Tc = 0.05%ND (see Fig. 3, the 6th row, right).

Using a contour finder [19] on Cbt, the contours of
all blobs are found (γi), one being the cue (usually
with the hand and arm attached), and all others

being noise. If the cue exists in Cbt, then it has a
larger area than the other blobs found (see Fig. 3, the
7th row, left). To avoid false cue positives, first we
find the blob with the largest area, Al = max(Ai),
where Ai is the area of each blob γi in frame Cbt.
We then compute the average area of the remaining
blobs A = (

∑Nc

i=0 Ai − Al)/(Nc − 1), where Nc is
the total number of blobs. The next step consists
of removing from Cbt all blobs Ai whose area is less
than 100 × A. At this point, if a blob still exists in
frame Cct(x, y) it could be a hand, a cue, or more
probably a cue with a hand (see Fig. 3, the 7th row,
right).

To detect the cue, and later its direction, a Hough
line transform [20] is computed for Cct(x, y). Now,
it is necessary to select only lines that belong to
the cue. All lines that both start and end more
than 5 times the ball diameter from the cue ball are
discarded, thus removing possible lines detected due
to the user’s arm. All remaining lines having the
same angle, ±5◦ (see Fig. 3, bottom row, left, in
green), are then used to determine an average line
(see Fig. 3, bottom row, right, red line), defined by
(xc, yc), a point on the line, and (cx, cy), the direction
vector of the line.
3.4.2 Shot prediction
With the white ball located and the cue detected,
it is possible to predict the trajectory of the cue
ball after it has been struck. To check if the cue is
being aimed at the white ball (see Fig. 5), (i) the
equation of the cue line, v(x, y) = (xc, yc)+kc(cx, cy)
is computed (see Section 3.4.1), as well as (ii) the
equation of the ball, r2 = (x−xbc)2 + (y− ybc)2 (see
Section 3.3.2), and (iii) we check if they intersect,
(xc − k × cx − xbc)2 + (yc + k × cy − ybc)2 = r2.

If kc is a real number, then the cue is aimed at the
white ball, and the physics can now be simulated.
Knowing the vector representing the direction of
the cue (v), it is necessary to compute vectors
at each table boundary in order to calculate the
respective reflected trajectory (see Fig. 5). Taking
into consideration that the centre of the ball, due
to the ball’s finite radius, does not reach the table
boundary, the table boundary vectors are computed
as follows, clockwise around the table: bi(x, y) =
(xib, yib) + kib((yib − yc), biy), with i = {1, . . . , 4},
(x1
b , y

1
b ) = (r, r), (x2

b , y
2
b ) = (M − r, r), (x3

b , y
3
b ) =

(M − r,N − r), and (x4
b , y

4
b ) = (r,N − r). The
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Fig. 5 Shot preview, trajectory computation.

directions are respectively, (b{1,3}x , b
{1,3}
y ) = (M, 0)

and (b{2,4}x , b
{2,4}
y ) = (0, N).

Finding if an intersection exists, and getting
the contact point, for every boundary i, is then
determined using (xc, yc) + kic(cx, cy) = (xib, yib) +
kib(bix, biy), i.e., kib = (cx(yib−yc)−cy((xib−xc))/(bixcx−
biycy). An intersection between the boundary and the
cue trajectory only occurs when (bixcx − biycy) 6= 0,
i.e., (cy/cx) 6= (bix/biy).

If an intersection occurs, the possible contact
points p1 to p4 (with (pix, piy) the coordinates of
contact with the table boundary) with the table
boundary are calculated using (pix, piy) = (xib, yib) +
kib(yib − yc); see Fig. 5.

Since the line of the cue can intersect more than
one boundary, the true physical intersection needs to
be found. Out of all boundary intersection points,
the nearest point of contact to the ball that also has
the same direction as the vector (cx, cy) is found.
The point where the contact occurs, (xf , yf ), is the
one satisfying (xf , yf ) = min | (pix − xbc, piy − ybc) |
∧((cx × bix) > 0) ∧ ((cy × biy) > 0).

The reflection between the boundary and the
current direction also needs to be calculated, for
prediction of the trajectory afterwards. Using the
boundary f selected by the process above, a normal
vector to that boundary is calculated, n(x, y) =
v(−bfy , bfx) as well as the vector with the opposite
direction to the current trajectory (v), l = (xc −
xbc, yc − ybc). The reflection trajectory is then

calculated to be o = 2n(l · n)− l.
This process can be repeated any number of times

and should be repeated just enough times as the
number of boundaries the ball would hit in its
trajectory. Figure 6 shows examples of 2 boundary
collisions in the 1st row and 3 collisions in the bottom
row, left.

Fig. 6 Examples of the application working at different exhibitions
and sites. Bottom right: menu example.
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3.4.3 Strike detection
With a predicted trajectory computed, strike
detection is necessary to detect when the white ball
starts moving, in order to stop calculating (and
projecting onto the table) trajectories. The detection
of this movement uses the reference image Qa′ (see
Section 3.4.1), extracting a region of interest (RoI)
τ , centred at the current position of the white ball,
with size d× d, where d = 2r.

For every new depth frame Da′t, a new RoI (υ)
centred on the white ball and with size τ is obtained.
Subtraction is then perfromed, S(x, y) = |τ(x, y)−
υ(x, y)|, and a threshold is applied to remove any
noise, giving Sb(x, y)=1, if S(x, y)>Ts; 0, otherwise,
where Ts = 0.01%ND. Summing all pixels in the
image Sb determines if the ball has left its place:
CS =

∑d
x=0

∑d
y=0 Sb(x, y), thus if CS > πr2/3, then

it is considered that the white ball has been struck.

3.5 Visualization

Having found all game elements and categorised
the motion (see Section 3.2.2), it is now possible
to project visual information onto the table. An
image P is dynamically created with several options
depending on the game stage (see Fig. 6): (i) circles
centred on the balls, (ii) predicted trajectories, (iii)
animations, and (iv) menus. If necessary (see Section
3.1), the projector transformation is applied to P ,
returning the projected table image P ′′. Details
of the menus and effects, and the corresponding
interface are outside the scope of this paper.

4 Tests and results

Figure 6 shows some examples of the system
working in real crowded environments, at 3 different
exhibitions, each lasting 1 week. All tests were
performed and statistics gathered during these
weeks with real users, all of whom were first-time
application users and unknown to the development
team. Two hours (evenly distributed between the
exhibitions) of recordings were made, in random 10
minute slots at various time of day, on 4 different
days, for a total of 163 shots. In each case, the ground
truth was manually created. Table 1 summarises the
results. Video extracts from the exhibitions can be
seen on Ref. [21] (2014 onwards postings).

The tests were divided into 8 categories. For
table boundary detection, two different tables were

used, both different from the one used during
development (a red one), also having different
lighting conditions. Table boundaries were always
automatically detected (100%) with less than 3-pixel
errors. It is important to stress that more tests were
conducted during development, the final ones always
result in 100% success rate with less than 3-pixel
errors. The algorithm was tested 3 times, once at
each exhibition.

Motion detection: in the 163 shots made,
motion detection worked 100% of the time,
correctly triggering the ball detection algorithm. The
maximum delay obtained between the motion
actually stopping and the ball detection was around
2–3 s, for Np = 40 (most users did not notice this
delay). A further set of tests with Np = 25 was also
made (with 1 s delay), but in this case the motion
detection success rate dropped to 90%.

For ball detection, in the 163 shots made, there
were a total of 605 balls to be detected (not all
balls were placed on the table in every shot). All
balls were successfully detected but there were 17
false positives, due to failure to filter noise correctly.
The white ball was successfully detected 91% of the
time. 19 times of failure were due to a striped ball
occuring with its white part facing upwards in an
area with higher luminosity, while the others (16
times) were due to the white ball being potted. Balls
were detected with a maximum of 10 mm error
of their true positions, due to noise in the depth
frames and distortion of the projector, with the error
increasing for balls further from the centre of the
table.

Cue detection always worked in the above 163
shots, and so did stroke detection. Nevertheless, some
errors were noticed in the cue detection outside these
tests, when a player did not behave in accordance
with pool rules or other expectations, e.g., putting
two cues in the pool table area or there several people
were present with their hands moving near the table
border. During stroke detection, a small delay of
around 1 s could sometimes be noticed, mostly due
to the cue occupying the position the white ball
previously occupied.

Finally, shot prediction was the most difficult test
to quantify. Since the goal of the application is to
assist inexperienced players, and since they may not
know how to hold the cue and take a shot, hitting
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Table 1 Test results

Algorithm Sub-test Number of repetitions Succeeded repetitions Success rate (%)
Table boundary detection NA 3 3 100.0∗

Motion detection NA 163 163 100.0∗

Ball detection NA 605 588 97.2
White ball classification NA 389 354 91.0
Cue detection NA 163 163 100.0∗

Strike detection NA 163 163 100.0∗

Shot prediction
No bouncing 82 80 97.6

1 bounce 49 39 79.6
2 bounces 32 17 53.1

∗Although achieving 100% success rate, these tests suffered imprecisions, as explained in the text.

the white ball on the side and giving it spin was
not counted in these statistics. Ball motions that
did not bounce were successfully predicted in 98% of
cases, while balls that bounced once were successfully
predicted 80% of the time and balls that bounced
twice were successfully predicted 53% of the time.
More bounces were not included in this test, due to
their poor results (a bounce being each contact the
white ball makes with a table boundary).

5 Conclusions

We have presented an application that aids a
beginner to play pool, based on a Microsoft Kinect
2 sensor, allowing the detection of table boundaries,
the balls, and the cue with high accuracy. All the
algorithms have been demonstrated to be very robust
against changes in lighting conditions and noise. A
projector, placed above the table, shows in real time
the computed trajectory in order to give a player a
perception of what will happen on that particular
turn.

The system works in real time, and all testing
was done in real environments, showing very good
results. A comparison with previous systems is
difficult, as to the best of our knowledge there is
no suitable test data or ranking method. However,
our system works in real time and in real conditions,
whereas systems like Refs. [2, 4, 22] work with
video (or video streams) taken from pool or snooker
championships, with very stable and controlled
conditions (lighting, player positions, etc.), or expect
a controlled environment because of the use of
robots [5–7].

The most similar works are Refs. [9–13]. There is
no technical publication available to make any type

of comparison to Ref. [11]. In comparison to Ref. [12]
(our previous work), the system has improved in
terms of reliability by about 10%–20%, depending
on the test considered, while improving reliability
by 1%–5% over using two Kinect 1 sensors (in
unpublished work). Considering Ref. [12] in more
depth, in terms of lighting, the Kinect enables precise
detection of game elements even when lighting
conditions change drastically, which was detrimental
to the results when using a webcam. Secondly, since
the colour segmentation used in Ref. [12] is now
replaced by balls and cue detection, balls or cues
that have very similar colour to the cloth on the
table are now more easily detected, leading to a 30%
improvement. Finally, Shih et al. [9, 10] presented
very interesting work in terms of physics of the
game (better simulation than that presented here),
but they used a very small table under controlled
conditions. They used an RGB camera to extract the
balls and cue, which when applied in real situations,
e.g., under different lighting in pubs and exhibitions,
with different table cloths, etc., is unlikely to be as
reliable as our present approach (see our previous
work [12], and the discussion above). In terms of
augmented reality, they only showed their output on
a computer screen.

In summary, the most important contribution of
our paper is the complete system, that by using the
Kinect sensor, has turned out to be very reliable and
can work in any environment using any table cloth,
balls, or cues. In the near future, work will focus on
increasing the number of menu options, improving
the augmented reality menu, and implementing an
automatic scoring system allowing us to collect more
statistics. An important focus will be the prediction
of the movement of the coloured balls after they
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are hit by the white ball. Also, the physics can be
improved if the stroke force is estimated, as well as
determining the exact position at which the cue hits
the white ball. This last point will be for sure a very
challenging goal.

Finally, after this, tests with established
professional players should be performed in order to
validate the implemented physics, by tracking the
struck ball and comparing with the previous system
prediction. Improving the physics and validating
it with the aid of professional players will enable
us to implement a set of tests to show whether the
application can also teach beginners how to play or
improve their skills.
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