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Abstract We consider a face-to-face
videoconferencing system that uses a Kinect camera at
each end of the link for 3D modeling and an ordinary
2D display for output. The Kinect camera allows
a 3D model of each participant to be transmitted;
the (assumed static) background is sent separately.
Furthermore, the Kinect tracks the receiver’s head,
allowing our system to render a view of the sender
depending on the receiver’s viewpoint. The resulting
motion parallax gives the receivers a strong impression
of 3D viewing as they move, yet the system only needs
an ordinary 2D display. This is cheaper than a full
3D system, and avoids disadvantages such as the need
to wear shutter glasses, VR headsets, or to sit in a
particular position required by an autostereo display.
Perceptual studies show that users experience a greater
sensation of depth with our system compared to a
typical 2D videoconferencing system.

Keywords naked-eye 3D; motion parallax;
videoconferencing; real-time 3D
modeling

1 Introduction

The way people communicate remotely has evolved
as technology has developed. The telegraph and later
the telephone allowed information to be transmitted
electronically instead of by a physical written letter;
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it also allowed remote communication in real time.
Modern tools such as Microsoft Skype and Apple
FaceTime further improve telepresence for remote
communication, allowing both voice and video so
that remote participants can hear and see each other.

The history of videoconferencing dates back to
the 1930s when the German Reich Postzentralamt
video telephone network connected Berlin and
several other German cities via coaxial cables.
Rosenthal’s very early work [1] already considered
the issue of transmission of eye contact during
video broadcast. Various works have also described
multiparty videoconferencing [2–6], in which it is
important to preserve gaze directional cues to see
who is speaking.

Humans have long attempted to record their
visual experience of three-dimensional space on a flat
pictorial plane, from early cave art, through centuries
of painting and drawing, to photography and high-
definition digital media. Although most pictures are
presented on a two-dimensional surface, they are full
of differing visual cues that allow us to infer depth [7].
Occlusion, lighting, object shading, stereopsis, and
parallax are all used by the visual system to perceive
depth in the real world, and many of these can be
replicated in pictures to create the illusion of spatial
depth on a flat surface [8].

Artists at Cardiff School of Art & Design have
been exploring new methods of generating depth
cues within the context of digital media, some of
which are based on discoveries made by earlier
artists about the nature of visual perception and
how to depict it [9]. By observing fundamental
features of visual experience, such as the size,
shape, and distribution of objects in the visual
field, they have established that pictures generated
by artistic methods can outperform ones generated
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by conventional geometric techniques in terms of
representational accuracy [10].

Since the development of linear perspective
in the 15th century, artists have sought ways
to create greater depth in their work [11].
Most imaging technology today uses standard
principles of linear perspective to represent space
on a flat picture surface [12]. Videoconferencing
solutions are no exception, with images of the
participants normally presented on flat monitors in
geometrical perspective. However, linear perspective
images are normally generated from a fixed,
monocular viewpoint, while natural vision is
normally experienced with two mobile eyes [13]. The
development of new sensing technologies presents
an opportunity to enhance the sense of space
in flat images by integrating more naturalistic
cues into the images. This paper concerns the
use of real-time, user-responsive motion parallax
for videoconferencing, combined with simple 3D
modeling, with the goal of improving the sense of
immersion and quality of the user experience. Other
work has also considered using motion parallax cues,
and we will discuss them further in Section 2.

An alternative way of providing 3D cues for the
user on a flat 2D display is stereopsis. However,
many stereopsis systems require users to wear shutter
glasses, which may be acceptable when watching 3D
movies, but not in videoconferencing, as participants
rely on seeing each other’s faces unobstructed for full
communication. Alternatively, autostereo displays
may be used, but these require the user to sit in a
fairly precisely controlled location. While this may
be achievable for videoconferencing, as head motion
is usually limited, such systems are still costly.

Our system is intended for two-person face-to-
face videoconferencing, so we need not consider the
gaze direction problem present in multiparticipant
systems [3, 5]. Each end of the link uses a Kinect
camera for data acquisition, an ordinary 2D display
for output, and a commodity PC. The Kinect
camera allows a 3D model of each sender’s head
and shoulders to be transmitted; the background is
sent separately. Furthermore, the Kinect tracks each
receiver’s head, allowing the system to render a view
of the sender according to the receiver’s viewpoint.

We assume that users only make small movements
during videoconferencing, such as slight swaying of

body and shaking of head. We are only interested
in transmitting the head and shoulders, and do not
consider any hand or other body movements. We
also assume that the background is static, allowing
us to model foreground and background separately,
and to ignore any changes to the background after
the initial setup.

A key idea is that we do not aim to model the
foreground and background in 3D accurately, which
would lead to high computational costs in both time
and space, and is also unlikely to be robust. Instead
we aim to model the foreground and background
with sufficient realism to convey a more convincing
sense of depth. We do not just layer the foreground
and background like Refs. [14, 15], as such models are
too flat. Neither do we use KinectFusion [16, 17] to
do the modeling, even though at first it might seem
suitable, for two reasons. Firstly, models generated
by KinectFusion are noisy, with gaps in the surface
and edges that are not smooth (see the top row of
Fig. 1). Secondly, the resulting models are large
and would place a heavy burden on the network—
the amount of data to be transmitted should be
kept as reasonably small as possible. Instead, we
use a robust, realistic, but lightweight parameterized
model customized to each participant. Our model
typically has fewer than 1000 vertices. Compared to
Ref. [18] which transmits whole depth frames, our
model requires much less network bandwidth.

The main technical contribution of our work,
other than a demonstration of the advantages of
using motion parallax for videoconferencing, is
a practical system for doing so. It is based on
a parametric model of the head and shoulders
and allows videoconferencing based on commodity
hardware. The model can cope with the high levels

Fig. 1 Top: KinectFusion modeling result, from various viewpoints.
The model is very noisy and is unsuited to videoconferencing.
Bottom: our modeling result. Our smoother parametric model is
better suited to videoconferencing.
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of noise in Kinect data, and is lightweight yet
sufficiently realistic. Our approach allows our system
to be more robust to noise than other generic models,
while providing more realistic results than simply
layering the foreground and background.

2 Related work

2.1 Motion parallax and its application in
videoconferencing

Motion parallax is an important kinetic monocular
depth cue that provides the visual system with
information about the configuration of space and
objects in the surrounding physical environment [8].
Motion parallax works by comparing the relative
movement of objects in space; e.g., as a viewer’s head
rotates or moves through space, objects further away
move quicker in relation to objects that are closer.
This allows the viewer to form accurate judgements
about both their current position in the world, and
also the relative location of objects around them.

Lee [19] devised a system which tracked user’s head
position with a Nintendo Wii remote to determine
a suitable camera position for a 3D scene in real
time. The resulting shift of the digital space in
response to user’s head position produces a powerful
depth illusion for the viewer, which in Lee’s words
“effectively transforms your display into a portal to
a virtual environment”.

Apple’s iOS 7 and later operating systems include
a motion parallax effect that moves the icons and
tabs on the screen very slightly in response to phone
or tablet motion from the user [20]. This synthetic
motion parallax again creates an enhanced feeling of
digital space as the layers move separately.

Applying the same kind of depth separation
and 3D modeling approach to a videoconferencing
application is potentially promising. However, the
complexity of modeling objects in depth in a real-
time application, and with sufficient quality to be
visually believable (including moving facial features),
raises complex technical issues.

Harrison and Hudson [14] proposed a pseudo-3D
video-conferencing system based on a commodity
webcam. They initially capture a background image
and then extract the foreground sender in real time
during conferencing. The sender and background
are layered at different depths, and a virtual camera
is put at a 2D position corresponding to the x–y

tracked position of the receiver’s head. To overcome
imperfections in the edges of the foreground, simple
Gaussian bluring is used along the composition
boundary. The system provides some motion
parallax but is not particularly realistic as it gives
the appearance of two planes in relative motion.

Zhang et al. [15] proposed a similar system,
using a feature-based face-tracking algorithm to
robustly estimate the position and scale of the
face. A time-of-flight camera is used to improve
the segmentation of background and foreground,
and a matting strategy [21] is used to improve
the composition result. Although this provides
improved accuracy face tracking and higher quality
foreground/background composition, there is still a
lack of realism due to the planar modeling of the
foreground.

Kim et al. [18] described TeleHuman, a cylindrical
3D display portal for life-size human telepresence.
Their system relies on 10 Kinects to capture 360◦

3D video; each frame contains an image and a depth
map. Their system supports both motion parallax
and stereoscopy. Nevertheless, as the Kinect depth
stream is noisy, the 3D images are of low quality. The
cylindrical display and the need for 10 Kinect devices
also make it unsuitable for general use in home and
office.

Our system provides a 3D model of the sender’s
head, and tracks the 3D position of the receiver’s
head, and so can generate more realistic motion
parallax than these earlier systems. At the same
time, it only needs an ordinary 2D display and a
single low-cost Kinect camera.

2.2 Modeling

2.2.1 Parameterized facial models
Many works have considered parameterized face
models; CANDIDE-type models are widely used for
modeling the human face. These are predefined
triangle meshes whose shape can be adjusted by
animation units and shape units. The animation
unit parameters represent facial expression, while
the shape units tailor the proportions of the face
to a particular individual. The initial version
of CANDIDE [22] contained 75 vertices and 100
triangles. Since the mouth and eyes are crudely
represented, this version of the model is unrealistic
and so is rarely used. Welsh [23] produced an
improved CANDIDE model with 160 vertices and
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238 triangles, covering the entire frontal head and
shoulders. However, using a fixed number of vertices
to model the shoulders does not lead to good
results. The most popular version, CANDIDE-
3 [24], provides more details for mouth, cheeks,
nose, and eyes, using 113 vertices and 168 triangles.
This version is much improved and is used in the
Microsoft Kinect SDK. The most obvious drawback
of such models is that they only represent the
frontal face so look like a mask when rendered.
In videoconferencing, this presents problems if the
sender turns their head too far to one side.
2.2.2 Generic real-time 3D modeling
Making 3D models from data is a fundamental
problem in computer graphics and computer vision,
with much research. Balancing speed and accuracy
is a key issue. Rusinkiewicz et al. [25] pioneered
the real-time modeling of objects from depth data.
Their approach uses a 60 Hz structured-light
rangefinder; the user rotates an object in front of
it to get a continuously-updated model. However
this procedure is unsuited to human body capture
since any non-rigid movement of the body leads
to inaccurate modeling results. While commercial
systems exist for dynamic face and body capture,
such as those produced by 3dMD [26], they are far
too expensive for home and office use. Based on
the much lower-priced Kinect, KinectFusion [16, 17]
provides a real-time, robust, room scale GPU-based
modeling technique, as part of the Microsoft Kinect
SDK. It uses a volume representation in which
each voxel contains color information. Models can
be updated at an interactive rate. By providing
a human body detection module in the Microsoft
Kinect SDK, KinectFusion can reconstruct the
body even in the presence of non-rigid movement.
However KinectFusion has two obvious drawbacks.
Firstly, it is memory intensive. Chen et al. [27]
showed how to use a fast and compact hierarchical
GPU data structure instead of a regular 3D voxel
grid to save an order of magnitude of memory.
Secondly, the modeling result is noisy, mainly due to
the noisy depth data provided by the Kinect itself.
This could be overcome to some extent by hardware
improvements.

In our low-cost system, we use a parameterized
approach to model the body, which is robust, fast,
and provides good quality. It can model more of the

body than CANDIDE-type approaches, but with
much lower noise than approaches that directly use
KinectFusion.

3 System overview

Our system is intended for one-to-one video-
conferencing. We assume the users are indoors and
the background is static. The hardware needed by
our system is cheap and readily available, comprising
a Kinect, a commodity PC, and a standard 2D
display for each participant. When our system
is started, it initially models the background (at
each end) while the sender stands to one side,
outside the view of the Kinect. A 2D background
image is captured, and is texture mapped to a
plane whose depth is set to the average distance
of the depth image. Our justification for using
such a simple model for the background is that the
users of a videoconferencing system spend nearly
all of their time looking at the other person, and
only peripherally observe the background. An
alternative approach to prior background capture
would be to use an image completion approach [28]
to fill background gaps resulting from foreground
movement. Apart from the extra computational
effort needed, a further disadvantage is that such
completed backgrounds always have undesirable
artifacts in practice. Since the background is static,
it only needs to be transmitted once at the start of
the session.

After background capture, the user then sits in
front of the system, which builds a model of the front
of his or her head, neck, and shoulders in real time;
at this stage the user should also turn his head to
the left and right to allow modeling of the sides of
the head. Since the Kinect is located above the top
of the display, it can also capture much of the top
of the head. We assume that the bottom part of
the head (under the chin) always remains unseen,
and that users do not significantly tilt their heads up
and down. The user is given feedback in real time
to allow verification that the constructed model is
satisfactory. The model we produce is a 3D mesh
model with a corresponding image texture: the color
image provided by the Kinect is mapped via texture
coordinates to the 3D vertices of the mesh model.

After model acquisition is finished, the two users
are then connected to each other. The background
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model is transmitted first. After that, real-time
transmission of the foreground model is sent for
each frame. In particular, the location of each
mesh vertex and its texture coordinates are sent,
together with the current texture image. While the
connection is active, each receiver sees the sender
as a rendered 3D model, rendered according to the
receiver’s viewpoint. Thus, as the receiver’s head
moves, the viewpoint used for rendering changes, and
the resulting motion parallax and 3D modeling give
the receiver a sense of 3D. We illustrate our system
in Fig. 2.

Subsequent sections now give further details:
Section 4 discusses our parameterized model of the
upper part of the human body, while Section 5
explains how we construct the virtual scene. We
evaluate our system in Section 6 and conclude our
work in Section 7.

4 Real-time modeling of the upper part
of the body

For videoconferencing, we wish to model the upper
part of the body, including the head, neck, and
the shoulders. During videoconferencing, the front
of the head always faces the camera, so this is
modeled separately in greater detail. Looking down
from above, this frontal model encompasses 180◦

as seen from the front. Horizontal movement and
rotation of the head may occur. Thus, we must
also model the sides and back of the head, which we
do using separate low-detail models for the left-back
and right-back. These left and right back parts each
provide a further 90◦ to provide a 360◦ head model.
The top of different parts of the head is modeled
along with each of these three parts (we assume
vertical movement does not in practice occur).

For the front of the head, we use the CANDIDE-3
model based on parameters representing individual
shape and facial expression. A mesh model based
on a quarter ellipsoid, but which does not allow

for changes in expression, is used for each of the
left-back and right-back of the head. These are
joined with appropriate continuity to the front of the
head and each other to complete the head. Further
similar expressionless models are used for the neck
and shoulders. Each model is based on a standard
template, appropriately deformed to suit a particular
individual, with further transformations that may
represent rotation and translation. The position and
orientation of the model are continuously updated to
capture the movement of the user.

The model parameters are of two types, those
that are constant for an individual, and those
that vary from frame to frame (e.g., representing
facial expression). Thus our model building process
extracts individual body features in an initial
step before the conversation begins, to determine
the parameters describing the body shape of a
particular person. The textures of the left-back
and right-back head are also captured at this stage,
and are transmitted with the texture coordinates
of the corresponding vertices just once at the
start of the session—these are assumed to be
relatively unimportant and can be considered to
be unchanging. Then as the conversation occurs,
feature tracking is used to acquire the dynamic
parameters. The textures for the front of the
head, neck, and shoulders are also captured for
each frame to allow for changes in expression and
hence facial appearance, as well as for minor body
movements. The vertex positions of the head, neck,
and shoulders, their texture coordinates, and the
current image are transmitted for each frame.
4.1 The parameterized model

We now consider the models in more detail. The
front, left-back, and right-back of the head are
modeled separately and seamlessly joined together.
The upper end of the neck is inserted into the head
while the lower end of the neck is inserted into the
shoulders, connecting the three parts as a whole.

Kinect

Kinect

Modeling module

Tracking & rendering 
module

Network 

Modeling module

Tracking & rendering 
module

transmission

Fig. 2 System overview.
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4.1.1 The head
The head model comprises three parts: front, left-
back, and right-back. The frontal head uses the
CANDIDE-3 model [24], which can be written as

M f
h = R(σSf +A) + t (1)

where M f
h represents the 3D model of the frontal

face in terms of a 3N -dimensional vector containing
the (x, y, z) coordinates of the vertices (h denotes
head, f denotes front). Sf is a predefined standard
face model, representing standard positions on a
standard face, connected into a triangulation with
known topology. σ deforms the standard face to
match a specific face, and is derived from the shape
units describing a particular individual’s face, e.g.,
the height of the head and the width of the chin. A
encapsulates animation units (AUs), which describe
expression changes from a neutral facial expression.
Note that σ is invariant over time but A varies. R is
a rotation matrix and t is a translation to allow for
head movements.

The left-back of the head is defined as
M l

h = R(ωSl) + t (2)
where Sl is a predefined left-back of the head model,
containing 3 triangle strips making an arched shape;
each strip has 9 vertices in total. We do not model
the shape of the ears as they typically occupy a
tiny area in videoconferencing, and furthermore their
geometry is complicated and hard to model robustly.
Texture mapping to a curved surface suffices for our
application. ω deforms the template to a specific
head. We illustrate the left-back of the head model
in Fig. 3(a). The right-back of the head model is
symmetrically defined as

M r
h = R(ωSr) + t (3)

To seamlessly connect the different parts of the head
model we ensure that appropriate triangles in each
part share vertices. In reality, these parts of the
head undergo only very limited deformation due
to changes in expression, and for simplicity in this

(a) (b) (c)

Fig. 3 Parameterized models: (a) left-back of the head, (b) neck,
(c) shoulders.

application we assume they are rigid.
Thus, the parameters for the head model are of

two kinds, unchanging ones specific to an individual:
{σ, ω}, and those which depend on head pose and
facial expression: {A,R, t}.
4.1.2 The neck
The neck occupies a relatively small area of the field
of view, and is not the focus of attention. Thus, it
suffices to model it using a single triangle strip:

Mn = (µSn) + t (4)
where Sn is a triangle strip forming a forward facing
semi-cylinder, and µ is a deformation to match a
particular individual. We assume that even if the
head rotates, the neck more or less remains fixed, so
we need not add a rotation term for the neck model.
Figure 3(b) illustrates a deformed neck model.

Thus, the parameters for the neck model are of
two kinds, unchanging one specific to an individual:
µ, and that which depends on neck position: t.
4.1.3 The shoulders
The shoulders (and associated part of the chest)
are more difficult to model than the head and
the neck. Unlike the head, they have no stable
feature points, making it harder to define a template
based on feature points. The shoulders occupy
a much larger part of the image than the neck,
and their shape varies significantly between different
individuals. We also note that human observers are
more sensitive to the shape of the shoulders than
to their texture or appearance. Our main goal in
modeling the shoulders is to smoothly approximate
their silhouette. We thus define them as

Ms = [α, β]Ss + ts (5)
where Ss is a standard shoulder template.

To form the shoulder template, we first define
edge vertices. These are divided into two sets,
those lying on the more or less vertical sides of the
shoulders (i.e., the arms), and those lying on the
more or less horizontal top of the shoulders. See
Fig. 4: “vertical” edge vertices are marked with
triangles and “horizontal” points are marked with
stars. The vertical edge vertices are used to separate
the shoulder model into layers; left and right vertical
vertices sharing the same y value are connected
by a curve. To define this curve, we add another
auxiliary vertex with the same y value and whose x
coordinate is the average of their x coordinates. Its
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Fig. 4 Shoulder edge point detection. The black circle is the corner
point found after several iterations. It is then snapped to the vertical
edge and vertical edge points (triangles) are detected by downwards
search. After horizontal snapping, horizontal edge points (stars) are
detected by horizontal search.

z coordinate is closer to the viewer by a distance of
1.2 times the radius of the neck. These three vertices
determine a circular arc, which is uniformly sampled
by Nv vertices (Nv = 40 in our implementation).
Horizontal vertices share the same z values as the
vertical edge vertices, and are connected to the
first layer of vertical edge vertices, as illustrated in
Fig. 3(c). α and β are deformations in vertical and
horizontal directions respectively which we explain
later. ts is the translation of the shoulders. Thus, the
parameters for the shoulder model are of two kinds,
unchanging ones specific to an individual: {α, β},
and that which depends on shoulder position: ts.
4.2 Parameter determination

We now explain how we determine the various
parameters. The overall set of parameters describing
the model is

p = {R, t, σ,A, ω, µ, α, β, ts} (6)
These parameters fall into two categories:
{σ, ω, α, β, µ} are unchanging in time and describe
the body shape of an individual, while {R, t, ts, A}
change over time, describing expression, position,
and orientation.
4.2.1 Offline parameter calculation
We initially determine each of the unchanging
parameters. σ can be calculated from the 11 shape
units as explained in Ref. [24], while ω can be
calculated from the distance between the cheek bone
and the ear; the necessary information in both cases
can be obtained using the Kinect SDK. µ can be
calculated from the width and height of the neck.

We approximate the width of the neck as the x

distance between the left/right jawbone points of
the face provided by the Kinect SDK: such feature
points of the face provide a more stable solution
than determining the neck location from the 2D
image. The length of the neck is determined as the y
distance between the skeleton joint of the head and
the center of the shoulders, provided by the Kinect
skeleton stream. α and β can be calculated from the
vertical and horizontal edge points on the shoulders,
respectively. α comes from corresponding pairs of
vertical edge vertices, which define a deformation
for each horizontal strip. β defines how horizontal
edge vertices are translated from an initial position
to their current position.
4.2.2 Online parameter calculation
During real-time transmission, the changing
parameters must be determined. A can be calculated
using the MPEG-4 face animation parameters,
again provided by the Kinect SDK. R and t can be
straightforwardly calculated from the face tracking
output also provided by the Kinect SDK. To
determine ts, we average all x centers of vertical
edge vertex pairs, and the y centers of all horizontal
edge vertex pairs. Finding these edge vertices
depends on fast and robust edge point extraction.
Our approach is based on edge point detection and
edge point filtering, which are further explained.
4.2.3 Edge point detection
First, we must search for the shoulder edge points.
The Kinect provides three different data streams:
a color stream, a depth stream, and a skeleton
stream. The skeleton stream provides robust tracking
information for twenty joints of the user’s body.
We use the left and right shoulder joints as initial
shoulder corner points at which we switch from
horizontal to vertical edge points.

Since the Kinect depth stream is noisy, we do not
perform the search on the depth image. Instead, we
make use of player ID information also contained in
the depth stream. Each pixel is allocated a positive
number indicating the player ID if this pixel belongs
to a person, or 0 if this pixel is outside any person.
As the player ID image is less noisy than the depth
image (see Fig. 5), we use the player ID information
to determine which pixels belong to the sender.

Starting from the initial corner points, we first
search for more accurate shoulder corner points,
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Fig. 5 Raw depth data and player ID data.

located on the person’s outline, and then find vertical
and horizontal edge points. An iterative approach
is used to find the accurate corner points. Starting
from the initial left corner point, we find the first
pixel going vertically upwards that is outside the
person; we also perform a similar horizontal search
from right to left. The midpoint of the 2 pixels found
gives a more accurate corner point. This process is
repeated until the distance between the two points
is under than 2 pixels.

Using this accurate corner point we follow the
edge downwards to find successive vertical edge
points until reaching the bottom of the frame. For
horizontal edge points, we search from the corner
rightwards until reaching the neck. We consider the
neck to start when the edge slope exceeds 45◦. Edge
points are sampled 5 pixels apart.
4.2.4 Edge point filtering
We next stabilize this edge point data. We have
two sets of vertical and horizontal edge points (one
on either side of the body). As these have been
determined from player ID data that still has a
somewhat noisy boundary, we need to smooth them
both within each individual frame, and in between
frames. Within each frame, each row and column of
points is filtered using a Gaussian filter with radius 4
pixels. To help alleviate jitter in the player ID image,
we calculate the average position for each row and
column of points, and if the change between frame
i + 1 and frame i is more than 5 times the change
between frames i and i−1, we regard the frame i+1
as having significant jitter, and keep the positions of
the points unchanged from frame i. Within a frame,
if the change in any one row (or column) is more
than twice as big as that of its neighbours, we again
assume this is due to jitter and keep the positions of
these two rows the same as in the previous frame.

4.3 Model part connection

The parameter values and standard models provide

a description for each part. We next need to consider
how to connect them into a whole.

It is common to add geometric constrains
when assembling parts to make a model [29–
32]. These approaches usually optimize an energy
function which satisfies connectivity constraints,
while ensuring the positions of the vertices after
optimization have texture coordinates as close
as possible to the correct ones. Concentricity,
coplanarity, parallelism, etc. are commonly used
constraints, and are useful for such things as
mechanical parts, but are not particularly useful
for organic objects such as the human body.
This has many non-rigidly deformable parts whose
connections can be hard to precisely define.

Instead, we opt for a simpler approach, and add
softer geometric constraints. We only adjust the z
values of the head and shoulders, and z and y values
for the neck. Three principles are used to provide a
simple modeling approach:
• Boundary vertices of the shoulders all share the

same z value, and are located on the same plane
as the edges of the semi-cylindrical neck.
• The (vertical) axis of the neck semi-cylinder has

the same z value as the midpoint of the left and
right jawbones.
• Since the neck is thinner than the head and

shoulders, and behind them, it can be made a little
longer (at both ends) than it is in reality, as a way
of ensuring connectivity.
To meet these requirements, we determine the z

depth of the head first, based on the depth values.
Then we adjust the depths of the neck and shoulders,
according to the first two principles above. Next, we
connect the top two vertices on the back of the neck
to two key points on the head located under the ears.
No special steps are needed to join the neck and the
shoulders due to the extra length of the neck; the
shoulders cover its end. This simple approach avoids
solving any optimization problem and is very fast.

5 Scene rendering

We now consider how the scene is rendered on the
receiver’s side.

At setup time, the background texture image,
the background model and its texture, and texture
images of the left-back and right-back head are



3D modeling and motion parallax for improved videoconferencing 139

transmitted to the receiver just once.
During videoconferencing, the color image of each

frame is sent as a texture image together with the
foreground model as triangle meshes and vertex
texture coordinates. The resolution of the color
image is 640×480, with 8 bits per channel. The
frame rate of our system is 30 fps. The color
information is sent using a video codec, while
typically the foreground model has fewer than 1000
vertices, which requires little extra bandwidth over
that needed by the color stream.

On the receiver’s side, the head of the receiver
is tracked during model building and the received
scene models are rendered taking into account the
position and orientation of the tracked head. Our
goal is to give the receiver a realistic impression
of parallax. Our basis for rendering is that the
receiver’s attention is assumed to be fixed on the
sender’s face, at the midpoint of sender’s eyes. Thus,
we render the scene so that the sender appears at a
fixed location on the screen. Most of the parallax is
seen in the relative motion of the background; slight
changes to the sender’s appearance are also seen as
the receiver moves the head relative to the position
of the sender’s head—as the receiver moves more to
one side, more that side of the sender’s head will be
seen. Detailed rendering parameters are determined
according to the position of the receiver’s head,
using a predetermined scene layout which simulates
real face-to-face communication. We now give the
details.

5.1 Scene layout

We must consider two problems when arranging
the scene to be rendered. The first is that
positions of models transmitted to the receiver’s
side are determined by the relative positions of
the sender’s Kinect and the sender. Suppose the
distance between the Kinect and the foreground and
background on the sender’s side are Df and Db
respectively. Since the simulated distance between
the receiver and the sender is arbitrary, we simply
assume that the receiver sits at the position of the
Kinect on the sender’s side. Suppose the rendering
distance between the receiver and the sender is
df, and that between the receiver and the sender’s
background is db, we thus have:

df = Df, db = Db (7)
However, the receiver may move backwards and

forwards to a limited extent. Moving backwards
would cause the receiver to see unmodeled parts of
the sender’s scene, losing realism. To prevent this
problem arising, we slightly reduce the angle of view
relative to the sender’s side. If the angle of view at
the sender’s side is ψs and is ψr at the receiver’s side,
we set ψr to

ψr = ρψs (8)

In our implementation we set ψs to 45◦ and ρ to 0.9.

5.2 Camera position

We assume that the receiver’s gaze is fixed at the
midpoint of the sender’s eyes. If the receiver always
accordingly rotated his head in compensation while
moving it, it would be straightforward to perform
rendering based on this new viewing position and
direction, using the head tracking information. In
practice, however, the receiver may often just rotate
his eyes as he moves his head, and such eye movement
cannot be readily determined. Thus, rather than
using the measured rotation of the head as a basis
for rendering, for simplicity we model the situation
as if his eyes were fixed in his head to look forwards,
and work out how much he would have to rotate his
head to keep looking at the same point.

Thus, we separate the movement of the receiver’s
head into two parts: translation, and consequent
head rotation. The tracked midpoint of the receiver’s
eyes provides changes in position. For each frame,
the change in position relative to the previous frame,
is used to update the camera position. Camera
rotation based on modeled head rotation is assumed
to occur in two orthogonal directions, through small
angles θ about the y axis and ϕ about the x axis.
If the distance between the camera and the sender
along the z axis is Ds, and the offsets relative to the
original locations in x and y directions are Dx and
Dy respectively, the changes in rotation angles are
simply given by

θ = Dx/Ds, ϕ = arctanDy/Ds ≈ Dy/Ds (9)
The camera position and orientation are accordingly
updated in each frame.

6 Experiments and evaluation

Our system has been implemented in C# using the
Microsoft Kinect SDK v1.8, on a PC with an Intel
Core i7 3770 3.40 GHz CPU, an Nvidia GTX780
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GPU, and a first generation Kinect. We illustrate
the results of our system in Fig. 6.

We have performed an initial user study; a much
fuller and more carefully designed perceptual study
is also planned. We invited 10 participants to take
part in the user study; they were Ph.D. students
in computer graphics and computer vision, whose
background might perhaps make them more critical
than the general public. Each participant took part
in videoconferencing using our system, and using
Microsoft Skype as a typical 2D videoconferencing
system as a basis for comparison.

We were interested in particular in how much
our system gave an enhanced impression of depth
during videoconferencing. We thus specifically
asked them to evaluate their experience of depth
when using our system compared to the typical 2D
videoconferencing system. Five subjective scores
could be chosen, ranging from −2 to +2, where −2
meant our system gave much less sensation of depth,
−1 meant somewhat less sensation of depth, 0 meant
both systems gave more or less equal sensations
of depth, +1 meant our system gave somewhat
more sensation of depth, and +2 meant much more
sensation of depth. Furthermore, to achieve further
insight, we asked participants to give a short written
comment justifying their evaluation.

Eight out of the ten participants gave our system
a score of 2, while two of them gave a score
of 1. These initial results clearly show that our
approach leads to a greater sensation of depth during

Scene 1, frame 1 Scene 1, frame 100

Scene 2, frame 1 Scene 2, frame 100

Fig. 6 Four frames were selected from 2 scenes. In scene 1, the
receiver tilted his head to the left in frame 1 while in frame 100 he
tilted his head to the right. The viewpoints for rendering the sender’s
scene were changed with respect to the head’s position. In scene 2,
the receiver sat straightly in frame 1 while in frame 100 he leaned
forward.

videoconferencing. Of the two participants who gave
a score of 1, one of them justified his score on the
basis that the background seemed like a flat plane,
when the subject could see it was actually composed
of two orthogonal walls. The other participant
who gave a lower score said the edge of the head
did not seem sufficiently smooth, and the lack of
realism caused him to keep looking at the edge,
distracting him. Since we made the assumption
that the receiver would fixate at the midpoint of
the sender’s eyes, staring at the edge of the sender
violates the assumption, perhaps leading to the less-
than-perfect satisfaction with the depth realism.

These comments will be used to inform future
improvements of our system, along with those for
the eight participants who gave the highest score.
Their most frequent comments can be summarized
as “I observed the motion parallax between the
foreground and background” and “the perspective
of the scene is very consistent with my viewpoint”.

7 Conclusions

In this paper, we proposed a videoconferencing
system based on 3D modeling and motion parallax
to give an improved sensation of depth. We use a
parameterized model of the sender, and position a
synthetic camera based on tracking the receiver’s
head position. Initial experimental results show
that users feel that our system gives a greater
sensation of depth perception than a typical 2D
videoconferencing system. Further, fuller perceptual
testing is planned for the future.

Our system has some limitations. Our system
does not support hand gestures or large movements,
e.g., standing up or large shoulder rotations, as these
are harder to track and would need more complete
models. Our system assumes there is only one person
in the field of view—the Kinect depth stream is
noisier when there are multiple persons, and this
makes it hard to give a visual-pleasing modeling
result.

We hope to improve our system in the future by
using a more detailed model of the sender based on
more vertices; newer Kinect-like devices will also
help to make improved models. We will also make
more complex models of the background; this can
be done readily, even if a little slow, as part of the
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offline modeling before videoconferencing begins.
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