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Abstract This paper proposes a novel method for
image magnification by exploiting the property that the
intensity of an image varies along the direction of the
gradient very quickly. It aims to maintain sharp edges
and clear details. The proposed method first calculates
the gradient of the low-resolution image by fitting a
surface with quadratic polynomial precision. Then,
bicubic interpolation is used to obtain initial gradients
of the high-resolution (HR) image. The initial gradients
are readjusted to find the constrained gradients of the
HR image, according to spatial correlations between
gradients within a local window. To generate an HR
image with high precision, a linear surface weighted
by the projection length in the gradient direction is
constructed. Each pixel in the HR image is determined
by the linear surface. Experimental results demonstrate
that our method visually improves the quality of the
magnified image. It particularly avoids making jagged
edges and bluring during magnification.

Keywords high-resolution (HR); image magnification;
directional fusion; gradient direction

1 Introduction

The aim of image magnification is to estimate
the unknown pixel values of a high-resolution
(HR) version of an image from groups of pixels
in a corresponding low-resolution (LR) image [1].
As a basic operation in image processing, image
magnification has great significance for applications
in many fields, such as computer vision, computer
animation, and medical imaging [2]. With the
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rapid development of visualization and virtual
reality, image magnification has been widely applied
to diverse applications, such as high-definition
television, digital media technology, and image
processing software. However, image magnification
methods face great challenges because of the
increased demand for robust technology and
application challenges. In recent years, although
many researchers have proposed a variety of methods
for image magnification, there is not yet a unified
method suitable for all image types. Considering
the characteristics of different types of images, it is
still hard to achieve low computational time while
maintaining edges and detailed texture during the
process of magnification. Based on the analysis
above, this paper focuses on generating an HR
image maintaining the edge sharpness and structural
details of a single LR image by means of the
directional fusion of image gradients.
1.1 Traditional methods

Traditional methods, including nearest neighbor,
bilinear [3], bicubic [4, 5], and Lanczos
resampling [6], are widely applied in a variety
of commercial software and business applications
for image processing. The main advantages of
such conventional methods are that they are easy
to understand, simple to implement, and fast to
calculate. However, there are limitations for these
methods. Using a unified mathematical model causes
loss of high frequency information at edges. Thus,
conventional methods are likely to introduce jagged
edges and blur details at significant transitions in
an image, such as edges and texture details.

1.2 Advanced methods

Studies have shown that human eyes are more
sensitive to the edges of an image that transmit most
of the information of the image, so images with good
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quality edges can help to clearly describe boundaries
and the outlines of objects. Edges that contain
important information are of great significance in
image magnification. Various edge-directed methods
have been proposed in recent years, most of which
take advantage of edge information to overcome the
shortcomings of conventional methods, e.g., Refs. [7–
13].

The edge-guided interpolation method put forward
by Li and Orchard [10] is based on image covariance,
and exploits local covariance coefficients estimated
from the pixel values of the LR image to calculate
the covariance coefficients of the HR image, utilizing
the geometric duality between LR and HR images.
These covariance coefficients are used to perform
interpolation. Zhang and Wu [12] present a non-
linear interpolation method, based on inserting a
missing pixel in two mutually orthogonal directions,
and use a minimum mean square error estimation
technique to fuse them for realizing interpolation.

Zhang et al. [8] propose a method based on a
combination of quadratic polynomials to construct
a reverse fitting surface for a given image in which
the edges of the image act as a constraint, which
ensures the fitted surface has a better approximation
accuracy. Fan et al. [14] present a robust and
efficient high-resolution detail-preserving algorithm
based on a least-squares formulation. A gradient-
guided image interpolation method is presented in
Ref. [9], assuming that the variation in pixel values
is constant along the edge. The method can be
implemented simply and has good edge retention,
but it leads to a wide edge transition zone because
of the diffusion of the HR image gradients, and so
it is not suitable for magnification of images with
complicated textures and detail.

Corresponding patches between low- and high-
resolution images from a database can be used
with machine learning-based techniques or sampling
methods to achieve interpolation [15–20].

Traditional methods often introduce artifacts
such as jagged edges and blurred details during
magnification. Often, edge-based methods tend to
generate artifacts in small scale edge structures
and complicated texture details. Learning-based
techniques are complex and time-consuming, with
the outcome influenced by the training data.
Because of these issues, this paper proposes a novel

method to produce an HR image based on the
directional fusion of gradients.

2 Related work

In this study, we use a degradation model that
assumes the LR image can be directly down-sampled
from the HR image, rather than by using Gaussion
smoothing. Since the proposed method is partly
based on CSF [8] and GGI [9], this section will briefly
introduce both methods.
2.1 Quadratic surface fitting constrained

(CSF) by edges

In CSF, image data is supposed to be sampled
from an original scene that can be approximated
by piecewise polynomials [8]. The fitted surface is
constructed by a reversal process of image sampling
using the edge information as constraints. That
makes the surface a good approximation to the
original scene, with quadratic polynomial precision.
Assuming that Pi,j is an image of size N × N

generally sampled from the original scene F (x, y) on
a unit square, so

Pi,j =
∫ j+ 1

2

j− 1
2

∫ i+ 1
2

i− 1
2

w(x, y)F (x, y)dxdy (1)

where w(x, y) is a weight function set to be 1.
In the region [i− 1.5, i+ 1.5]× [j− 1.5, j+ 1.5], let

u = x − i, v = y − j. See Fig. 1. The fitted surface
fi,j(x, y) of F (x, y) is defined as
fi,j(x, y) = a1u

2 + a2uv + a3v
2 + a4u+ a5v + a6

(2)
where a1, a2, a3, a4, a5, and a6 are to be determined.
Determination of the unknown coefficients is
performed by a least-squares method constrained by
edge information [8]. Since a good quality surface
can help to produce high precision interpolation, we

Fig. 1 Constructing surface.
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will later make use of the constructed surface to
interpolate gradients.

2.2 Gradient-guided interpolation (GGI)

In order to eliminate jagged edges, a gradient-
guided interpolation method is proposed in Ref. [9],
based on the idea that the variation in pixel values
is constant along the edge direction. GGI uses
a Sobel kernel to calculate gradients of the LR
image, and adopts bicubic interpolation to determine
the gradients of the HR image, then uses gradient
diffusion. Finally, the unknown HR pixels Pi,j to be
interpolated are divided into three categories with
different LR pixels Px,y in the neighborhood Nij .

Pi,j =
∑

Px,y∈Nij

wxyPx,y (3)

Pi,j is estimated by summing the neighborhood
pixels Nij weighted by wxy, where a shorter distance
carries greater weight. Let dxy denote the distance
between Px,y and Pi,j projected along the gradient
direction of Pi,j . Then

wxy = 1
S

e
−
dxy
a (4)

where a = 0.2 controls decrease of the exponential,
and S is defined as

S =
∑

Px,y∈Nij

e
−
dxy
a (5)

Although the method of Ref. [9] provides good
quality interpolation at edges by significantly
decreasing jagged edges, it can cause loss of detail
in non-edge regions in some cases. In particular,
it is unsuitable for image areas containing complex
details and abundant texture.

3 High-resolution image based on
directional fusion of gradient

In this section, a new magnification method is put
forward based on fusion of gradient direction, which
exploits the property that the pixel values change
very quickly in the gradient direction. From the
analysis above, maintaining is sharpness of edges
and the clarity of detailed textures becomes the
key mission in image magnification, since most
information in the image is transmitted by edges and
detail textures. Our method first finds approximate
gradients of the LR image, then calculates those

of the HR image. We estimate the gray values
of the unknown pixels in the HR image, using
a linear approximation of the neighboring pixels.
For simplicity of discussion, we mainly focus on
enlargement by a factor of 2, to produce an HR image
of size 2m × 2n from an LR image of size m×n. The
general information flows in our proposed method
are shown in Fig. 2.

3.1 Calculating the gradients of the HR
image

In order to compute the LR gradients with high
accuracy, our method adopts Eq. (2) to compute the
LR gradient for each Pi,j . The gradient vector of the
LR image is defined as −→g = (gx, gy), where gx and
gy are defined as

gx = 2a1u+ a2v + a4

gy = a2u+ 2a2v + a5

}
(6)

Thus, for each Pi,j we can get the LR gradients as
gx = a4, gy = a5. The LR gradients are used to
calculate HR gradients, denoted by −→IG = (GX , GY ),
by bicubically interpolating the LR gradients.

3.2 Diffusing the gradients of the HR image

The GGI method [9] utilizes the gradient information
in order to maintain the sharpness of edges.
However, the spatial distribution of gradients is not
considered effectively during diffusion: the norm of
the gradient takes a local maximum in the gradient
direction [21]. It may cause the gradient direction
to change in an inapprorpiate way in detail-rich
portions by directly replacing the gradient at a
central pixel by the mean of some region, which may

Fig. 2 Flowchart of the method.
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result in distortion of details.
Therefore, we take account of the spatial

correlation between the gradient directions to
improve the diffusion of gradients −→IG. Diffusion
deals with gradient values in the vertical GX and
horizontal GY directions. A local window of size
5 × 5, with Pi,j as the central pixel, see Fig. 3, is
used to adjust the gradient direction. Our method
adjusts the gradient vector of the center pixel using
the average value of gradients whose direction falls
within a certain rage relative to that of the central
pixel.

By considering the spatial correlations between
gradient directions, our method can approximate HR
gradients that not only maintain the sharpness of
edges, but also better retain the structure of textures
and details. Let k denote the number of pixels
satisfying the condition βxy < α, and α = 45◦.

G
′

Xij
=

∑
βxy<45◦

GXxy

k

G
′

Yij
=

∑
βxy<45◦

GYxy

k


(7)

After conducting the diffusion of −→IG = (GX , GY ), we
obtain the adjusted HR gradients −−→CG = (G′X , G

′

Y ),
which are used to calculate the gray values of HR
pixels.

3.3 Estimation of HR image

In this section, we give the strategy for calculating
the unknown pixels of the HR image. In Section 2.2
we noted that the GGI method [9] yields a precise
constant. In comparison with GGI, our method

Fig. 3 Diffusion of gradient. The blue dots Px,y stand for
neighboring HR pixels of Pi,j , and the blue arrow represents the
gradient direction at Px,y , while the red arrow indicates the gradient
direction at Pi,j . βxy is the angle between the gradient directions
Pi,j and Px,y . The dashed area defines the range of angles for which
the gradient direction of Px,y is positively correlated with that of
Pi,j .

provides higher precision of polynomial interpolation
by constructing a linear surface to approximate the
intensity of the HR image. It performs well in
maintaining the details of the image. Depending on
the known pixels in the neighborhood window with
the unknown pixel as the center (see Fig. 4(b)), the
unknown pixels of the HR image may be divided into
three categories:

(1) Black I(2n− 1, 2m− 1)H;
(2) Blue I(2n, 2m)H;
(3) Pink I(2n−1, 2m)H and I(2n, 2m−1)H, where

n = 1, · · · , N, m = 1, · · · ,M . Therefore, the
estimation of the unknown pixels in the HR image is
achieved in three steps.
Step 1:

In this step, we assign the values of LR pixels to
the corresponding HR pixels. For an LR image IL
of size n ×m enlarged to give an HR image of size
2n × 2m, we have I(2n − 1, 2m − 1)H = I(n,m)L,
where n = 1, · · · , N and m = 1, · · · ,M . I(n,m)L
and I(2n−1, 2m−1)H are the solid black dots shown
in Fig. 4(a) and Fig. 4(b), respectively.
Step 2:

In this step, we use four neighboring black pixels
to calculate the central pixels Pi,j (the blue dots in
Fig. 5(a)) satisfying Pi,j ∈ I(2n, 2m)H. In order to
precisely obtain Pi,j , we construct a linear surface
to approximate the image data via directional fusion
of gradients. Within the neighborhood window Nij
centered on Pi,j , our method constructs a linear
surface fH

i,j using a linear polynomial as follows:
fH
i,j(x, y) = a ∗ x+ b ∗ y + c (8)

Fig. 4 Degradation mode. (a) Pixels of LR image. (b) Pixels of HR
image. The solid black dots in (a) represent pixels of the LR image.
The dots in (b) are pixels of the HR image, where the black dots are
the known pixels of HR image I(2n − 1, 2m − 1)H that are directly
determined by the corresponding LR image pixels, blue dots stand
for the case where I(2n, 2m)H, while the pink points represent the
cases where I(2n− 1, 2m)H or I(2n, 2m− 1)H.
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Fig. 5 Three cases for constructing the linear surface fH
i,j .

(a) represents the linear surface constructed in Step 2. (b) and (c)
represent the linear surface constructed in Step 3. In the figure, black
dots give known pixels of the HR image from the corresponding LR
pixels, and the blue dots stand for unknown HR pixels calculated in
Step 2.

where a, b, and c are unknown coefficients to be
found.

We determine the unknown coefficients (i.e., a, b, c)
in Eq. (8) by a least-squares method, weighted
by the gradients and the values of pixels in the
neighborhood window.

G(a, b, c) =
∑

Px,y∈Nij

wxy ∗ (a ∗ x+ b ∗ y + c− Px,y)2

(9)
where Nij represents the neighboring pixels Px,y
of the central pixel Pi,j , satisfying (x, y) ∈
{(−1, 1), (1, 1), (−1,−1), (1,−1)}. The procedure to
calculate wxy is given in Eq. (4) (see Fig. 6(a)).

Minimizing Eq. (9) requires
∂G

∂a
= 0 (10)

∂G

∂b
= 0 (11)

∂G

∂c
= 0 (12)

Substituting the variables (a, b, c) into Eq. (8) gives
the approximate pixel value, i.e., Pi,j = c .

Fig. 6 Weighting. (a) represents the case of what is solved in Step 2.
(b) and (c) are the two situations to be determined in Step 3 using
the results of Step 2. The black dots are known pixels of the HR
image, and the blue dots are the unknown HR pixels. Px,y stands
for the neighboring pixels of Pi,j . is the gradient direction at the
center pixel Pi,j .

−−→
CG

Step 3:
In this step, we use the results of Step 1 and

Step 2 to estimate the remianing unknown HR
pixels (the pink dots in Fig. 4(b), i.e., Pi,j ∈
{I(2n− 1, 2m)H, I(2n, 2m− 1)H} ). The gray value
of the central pixel Pi,j is calculated using the
same procedure as in Step 2. We use Eq. (8)
to construct a linear surface (see Figs. 5(b) and
5(c)). The surface is constrained by Eq. (9)
in order to get an approximate surface, where
(x, y) ∈ {(−1, 0), (0, 1), (1, 0), (0,−1)}. The weight
wxy is calculated from Eq. (4) (see Figs. 6(b) and
6(c)).

Finally, the pixels located on the image boundary
are calculated by averaging the existing neighboring
pixels, instead of by constructing a surface.

4 Results and discussion

In order to verify the effectiveness of the proposed
method, we have carried out many experiments
with different kinds of images, including natural
images, medical images, and synthetic images. The
results of our experiments demonstrate that the
proposed method can obtain better quality image
magnification, especially at edges and in detail-
rich areas. To demonstrate the advantages of
our proposed method, we compare magnification
results with several methods, including bicubic
interpolation (Bicubic) [4], cubic surface fitting with
edges as constraints (CSF ) [8], the new edge-
directed interpolation method (NEDI) [10], and
gradient-guided interpolation (GGI) [9]. We now
analyze the experimental results in detail.

In the experiment, we carried out tests with
different types of images by magnifying LR images
of size 256 × 256 to get HR images of size 512 ×
512. Figures 7 and 8 show the magnified images
with labeling of local windows containing edges and
details extracted from the HR image. Comparing
the corresponding regions of the boat image in
Fig. 7, we can see that our method is more capable
of dealing with edge portions of an image, while
other methods introduce jagged edges or blurring
artifacts near edges. It is also clear from Fig. 8 that
Bicubic [4] and CSF [8] methods tend to introduce
bluring artifacts: see the moustache of the baboon.
NEDI [10] produces zigzags that are particularly
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Fig. 7 Results of magnifying the boat image: (a) ground truth; (b) Bicubic; (c) CSF; (d) NEDI; (e) GGI; (f) ours.

Fig. 8 Results of magnifying the baboon image: (a) ground truth; (b) Bicubic; (c) CSF; (d) NEDI; (e) GGI; (f) ours.
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evident, while GGI [9] causes loss of detail in the
area of the moustache. Our method leads to better
visual quality than other methods.

We also conducted experiments with MRI images
of a brain which were segmented into four classes by
the MICO (multiplicative intrinsic component
optimization) segmentation algorithm [22].
Although the results of MICO algorithm provide
high accuracy segmentation, there are still rough
edges due to limitations of the segmentation method.
Figures 9(a)–9(f) show Bicubic, CSF, NEDI, GGI,
and our results from top to bottom. The results
of magnification shown in Fig. 9 illustrate that
our method can deal well with a segmented image
with severe zigzags, effectively retaining sharp edges
while avoiding jagged artifacts during magnification.

For synthetic images, Fig. 10, Fig. 11, and Fig. 12
show the map of gray values at edge portions after
applying several methods mentioned above. It is
clear that our method is able to maintain the
sharpest edges with less blur: other methods produce
fuzzy data around the edges which results in blurring
artifacts.

In order to evaluate the quality of the
magnification results, we use the three objective
methods based on comparisons with explicit
numerical criteria [23] , including peak signal to
noise ratio (PSNR), structural similarity (SSIM),
and percentage edge error (PEE). PSNR measures
the disparity between the magnified image and the
ground truth image, and is defined as

PSNR = 10× log10
2552

MSE (13)

where the mean square error (MSE) between two
images is

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0
‖I(i,j) − S(i,j)‖ (14)

SSIM measures the similarity of the structural
information between the magnified image and the
ground truth image [24]. It is related to quality
perceived by the human visual system (HVS), and
is given by

SSIMS,I=
(2µSµI + C1)(2σSσI + C2)(σSI + C3)

(µ2
S + µ2

I + C1)(σ2
S + σ2

I + C2)(σSσI + C3)
(15)

where µS and µI denote the mean value of the ground
truth image and the magnified image respectively,
σS and σI represent variances of the corresponding
images, and σSI denotes the covariance of the two
images.

For the images shown in Fig. 13, values of PSNR
and SSIM are listed in Table 1 and Table 2,
respectively. It is clear that our proposed method
performs well in most cases, giving the highest values
for PSNR and SSIM.

In addition, the percentage edge error (PEE) [25]
was also used to measure perceptual errors. PEE
is very suitable for measuring dissatisfaction of
image magnification, where the major artifact is
blurring. PEE measures the closeness of details
in the interpolated image to the ground truth
image. Generally in image interpolation, a positive
value of PEE means that the magnified image is
over smoothed, with likely loss of details. Thus,
a method with smaller PEE performs better at
avoiding blurring artifacts. PEE is defined by

PEE = ESS − ESI

ESS
(16)

where ESS denotes the edge strength of the ground
truth image and ESI is that of the magnified image.
ES is defined as

ES =
M∑
i=1

N∑
j=1

EI(i,j) (17)

where EI(i,j) denotes the edge intensity value of the
image.

The PEE values for each interpolation method are
shown in Table 3. It is clear that the PEE value for
the proposed method is very low compared with the
values for other techniques, so structural edges are
better preserved and less blurring is produced in our
method.

The analysis of the experimental results above
shows that the proposed method achieves a good
balance between edge-preservation and blurring,
performing especially well on synthetic images and
segmented medical images. The major drawback
of this method lies in the limitation of using the
gradients only in horizontal and vertical directions,
making it hard to get accurate gradient values for
images with very low contrast. Our future work
will consider how to calculate gradients in more
directions, and use a surface of high accuracy to
approximate the image data. We hope to develop
a method for magnification that can maintain
edges and detailed texture perfectly with low
computational time.

5 Conclusions

This paper presents a novel method of producing an



38 L. Wu, Y. Liu, Brekhna, et al.

Fig. 9 Enlarged image of a brain. (A) and (B) are segmented brain images produced by MICO. Images (a), (b), and (c) are results of
enlarging a specified area of (A). Images (d), (e), and (f) are the results of enlarging a specified area of (B).

HR image by making use of gradient information. It
maintains sharpness of edges and clear details in an
image. Our proposed method first obtains LR image
gradient values by fitting a surface with quadratic

polynomial precision, then the method adopts a
bicubic method to get initial values of the HR image
gradients. It then adjusts the gradients according
to the spatial correlation in the gradient direction
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Fig. 10 Magnification of vertical edges: (a) original image and gray value; (b) ours; (c) Bicubic; (d) CSF; (e) NEDI; (f) GGI.

to constrain the gradients of the HR image. Finally
it estimates the missing pixels using a linear surface
weighted by neighboring LR pixels. Experimental
results demonstrate that our proposed method can
achieve good quality image enlargement, avoiding
jagged artifacts that arise by direct interpolation; it
preserves sharp edges by gradient fusion.
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Table 1 Values of PSNR

Image Bicubic CSF NEDI GGI Ours
Cameraman 30.37 30.09 33.94 34.27 35.45
Baboon 20.91 20.88 22.79 22.31 22.62
Boat 25.61 25.53 28.79 28.54 28.84
Goldhill 25.96 25.89 28.33 28.13 28.42
Lake 24.18 24.10 27.41 26.77 27.72
Peppers 27.35 27.27 30.44 30.49 30.66
Couple 23.99 23.91 26.82 26.65 26.89
Lena 26.90 26.80 29.37 30.11 30.38
Crowd 24.89 24.83 27.86 27.75 28.25
Medical 24.51 24.72 26.05 25.99 26.39

Table 2 Values of SSIM

Image Bicubic CSF NEDI GGI Ours
Cameraman 0.943 0.941 0.891 0.944 0.965
Baboon 0.511 0.515 0.662 0.627 0.649
Boat 0.769 0.770 0.853 0.847 0.854
Goldhill 0.654 0.655 0.773 0.775 0.782
Lake 0.708 0.708 0.800 0.803 0.808
Peppers 0.754 0.754 0.819 0.809 0.821
Couple 0.664 0.666 0.785 0.775 0.786
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