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Abstract Temporal coherence is one of the central

challenges for rendering a stylized line. It is especially

difficult for stylized contours of coarse meshes or non-

uniformly sampled models, because those contours

are polygonal feature edges on the models with

no continuous correspondences between frames. We

describe a novel and simple technique for constructing

a 2D brush path along a 3D contour. We also introduce

a 3D parameter propagation and re-parameterization

procedure to construct stroke paths along the 2D brush

path to draw coherently stylized feature lines with a

wide range of styles. Our method runs in real-time

for coarse or non-uniformly sampled models, making it

suitable for interactive applications needing temporal

coherence.

Keywords non-photorealistic rendering (NPR); line

drawings; temporal coherence; stylized

strokes

1 Introduction

Line drawings can effectively depict complex

information for artistic illustrations, cartoons, and

sketches, as they are simple, expressive, and rich

in abstraction. In traditional line drawing, artists

use ink, pencil, or charcoal to draw feature lines

of objects, such as silhouettes depicting shape,

suggestive contours as described by Ref. [1], and

shadow boundaries. Line drawing algorithms often

replicate this artistic workflow by firstly identifying

the lines, and then rendering them with particular

marks, such as textured brushes and graceful, curved

strokes with attributes of colour, thickness, opacity,

and so on. Both steps require special consideration
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to produce both spatially and temporally coherent

animations. Spatial coherence requires the marks

to be affixed to the 3D models during motion

of the viewpoint. Temporal continuity minimizes

abrupt changes in the marks from frame to

frame. Perceptual studies [2, 3] have shown that

human observers are very sensitive to temporal

artifacts such as popping and flickering. The

visibility and attributes of the marks should vary

smoothly to ensure temporal continuity.

Many researchers have worked on extracting

various lines from static 3D models represented by

triangle meshes [4], such as occluding contours,

ridges and valleys, suggestive contours, apparent

ridges, and demarcating curves. Of particular

interest are occluding contours (silhouettes), but

coarse or non-uniformly sampled 3D models have

meshes which are especially challenging for current

methods. A dedicated method to handle them makes

sense for specific applications (e.g., video games,

devices with limited computation power). However,

the quality of stylized line drawings may suffer

from two problems. Firstly, lines generated from

meshes have tiny polygonal line fragments that

collide in image space [5], and animation of such

feature lines can cause popping and flickering effects

which are easily observed. Secondly, there is a

lack of temporal continuity as each feature line is

generated independently and thus lacks information

from neighboring frames. The challenge of rendering

a mesh with coherent stylized contours is a subject

of recent research.

Several researchers have addressed the problem

of temporal continuity for stylized line drawing

animations [5–9]. They pay particular attention

to tracing the lines in order to obtain coherent

parameterization for stylization. However, most of

these techniques need input models with sufficient

79



80 Liming Lou et al.

detail, and none of them consider meshes with under-

sampled or non-uniformly sampled faces. Feature

lines extracted from such simplified meshes have

sharp polygonal features and are more vulnerable

to flickering and popping problems. They have no

obvious or natural coherence in image space, unlike

lines extracted from fine meshes with moderate

complexity.

The main contribution of our method is to

better handle stroke parameterization and temporal

coherence especially for under-sampled geometry,

by means of stylized strokes along 2D brush

paths. Firstly, brush paths are constructed by linking

pixels of projected visible contours in a certain order,

allowing most line fragments to be avoided and

long paths to be generated—this allows the method

to work well for under-sampled or non-uniformly

sampled meshes. Secondly, by using a 3D parameter

propagation method from contours in the previous

frame to ones in the current frame, parameters can

be faithfully transferred to 2D brush paths, strokes

can be generated faithfully along brush paths, sliding

problems can be easily avoided, and stylized features

can be kept when topology changes.

Four key steps are used to generate the stylized

brush strokes in each frame: locating brush

paths and generating stroke paths in image space

(Section 4), propagating coherent parameters

(Section 5.1), readjusting brush paths into stylized

strokes according to the current parameters

(Section 5.2), and recomputing coherent parameters

for each stylized stroke (Section 5.3). Section 6

shows our results for coarse and non-uniform meshes

and makes comparisons to other methods. Finally,

Section 7 provides a summary and discusses further

research directions.

2 Related work

Various research works have proposed coherent line

drawing algorithms based on extracting lines and

building correspondences between lines in multiple

frames [10].

Line extraction. Line detection algorithms can

be generally classified into image space methods and

object space methods.

Image space algorithms [11–14] use modern

graphics hardware to extract visible lines by image

processing techniques. These visible lines lack 3D

geometry information during animation and are

represented by independent and unconnected pixels.

Object space algorithms are based on 3D

geometry, so it is easy to render the strokes in various

width and painting styles. In order to obtain the

accurate line visibility, hybrid approaches such as

an ID reference buffer [15], an item buffer [16–18],

or a depth buffer [19] are used to link adjacent

paths using the connectivity of the extracted

lines. However, simple heuristics based on distances

and angles must be defined to solve ambiguities

at line intersections, which lead to popping and

overlaps in the stylized animation. Object space

hidden lines removal algorithms, as in Refs. [20–22],

avoid this problem at the price of high computational

complexity but may produce many noisy, short

segments lacking the spatial and temporal coherence

needed for stylization.

In order to deal with these problems, our

method uses a contour smoothing method [23]

which interpolates over contour triangles to generate

long, smooth, and coherent silhouette curves with

3D connectivity. Taking into account the screen

projection of those curves, we construct brush paths

to approximate the smooth shapes of 3D feature lines

which generate and receive geometric information

through the correspondence between curve points

and brush particles.

Temporal coherence. The first complete

method to render coherent stylized silhouettes by

preserving stroke parameterization of individual lines

between frames was Ref. [6]. By transmitting part of

the parameters via the image space samples in the

previous frame and generating new parameters for

the current frame, an energy function balances the

coherence weights between 2D and 3D. This method

is mainly appropriate for high complexity models;

its results are not smooth for under-sampled models,

and lead to line fragments for high complexity

models.

The approach of Ref. [7] is very appropriate when

zooming in or out by a significant factor, and for

parallel nearby lines. It works by precomputing

self-similarity and smoothly varying line maps

to paramet erize adjacent feature lines. However,

popping artifacts may happen when multiple lines

merge into a single line. The method in Ref. [8]

needs to know the viewpoint sequence in advance,

and reconstructs a parameterized space–time surface
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by sweeping lines during the animation. This allows

the determination of changes in line topology, but

at the expense of high computational cost. The

method of Ref. [9] introduces an energy minimizing

active contour method to trace on the 3D object

across frames and to detect topological events, but

it still can produce line fragments. The method

in Ref. [5] combines 2D active strokes and brush

paths to approximate the model shape and deal

with topological change events. Because the active

contours are generated by image space algorithms,

this method merges adjacent paths using many

complex heuristics. Inspired by Ref. [5], in our

method stylized strokes not only take advantage

of geometric information to avoid problems due to

topological changes, but also offer control over the

trade off between temporal coherence and spatial

coherence during stylization.

3 Overview

In order to draw coherent stylized brush strokes

from meshes, two questions must be addressed:

firstly, how to generate smooth brush strokes

from polygonal mesh surfaces; secondly, how to

propagate parameters from one frame to the next

to maintain the coherence, especially when topology

changes. Figure 1 shows the key steps of our method

applied to two consecutive frames.

Firstly, the 3D feature lines extracted from the

objects must be smoothed to reduce tessellation

artifacts. Based on the reference ID image and

the 3D contour curve lists, we can locate the

corresponding projected pixels for each curve point

and then link them into long connected brush paths

in a reasonable order using a novel linking procedure

described in Section 4.

Secondly, to avoid sliding and flickering effects

caused by 2D parameter propagation, and to

eliminate popping and discontinuous stylization

effects produced by 3D parameter propagation after

screen projection, we propagate parameters in three

steps as described in Section 5.1. Section 5.2 proposes

a resizing analysis algorithm to split long brush

strokes into small strokes which are the stylized

units. Some parameters are missing since Section 5.1

does not give a one-to-one relationship and some

parameters may not be monotonic with respect to

arc-length of their stylized strokes. In Section 5.3, we

use a least-squares method to fit parameters for each

stylized brush path to balance the goals of coherence

on the 3D shape and 2D arc-length parameterization.

4 Brush path generation

4.1 Smooth contour extraction

Our method requires triangle meshes as input. In

Ref. [23], a method was proposed to smooth the

silhouettes of coarse triangle meshes. We use their

method to reconstruct curves in 3D and introduce

a simple local remeshing procedure to compute 3D

silhouette chains for non-uniform meshes based on

contour triangles.

Occluding contour (or silhouette) curves of a

mesh can be computed using the property that

the surface normal of any point on the silhouette

is perpendicular to the viewing direction. Firstly,

contour triangles are identified by checking the

visibility of all mesh vertices. If the three vertices

of a triangle do not have the same visibility for

a given viewing direction D, the triangle face is

considered to be a contour triangle which contains

contour curves. As shown in Fig. 2, �v1v2v3 is a

contour triangle, because v1 has different visibility to

v2 and v3. Let N1, N2, and N3 be estimated normal

vectors at these vertices which are known. We can

compute the normal vectors Ñ for points S(u0) and

S(v0) by Eqs. (1) and (2). Contour points S(u0) and

S(v0) can be found by solving Eq. (3), where t1 and

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1 Overview of process: (a) coarse mesh of knot, (b) brush paths in frame fi, (c) stroke paths in fi, (d) strokes in fi, (e) brush

paths in frame fi+1, (f) 3D propagation, (g) stroke paths in fi+1, and (h) strokes in fi+1.
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Fig. 2 Construction of a smooth contour curve. The orange line

S(t) is the silhouette edge, while blue lines bound new triangles

after local remeshing.

t2 are the tangent vectors of v1 and v2.

Ñ(u0) = (1− u0) ·N1 + u0 ·N2, u0 ∈ [0, 1] (1)

Ñ(u0) ·D = 0 (2)

S(u) = (2v1 − 2v2 + t1 + t2)u
3

−(3v1 − 3v2 + 2t1 + t2)u
2 + t1u+ v1 (3)

After the two silhouette points S(u0) and S(v0)

have been found together with their normal vectors

Ñ(u0) and Ñ(v0), smooth silhouette curves S(t)

can be computed using Hermite interpolation as in

Eq. (3) [23].

The silhouette curve S(t) is next adaptively

sampled into silhouette segments based on its screen

projected arc-length to ensure the silhouette curves

are smooth after sampling. We fix the maximum

projected length of each silhouette segment to 2

pixels. Finally, local remeshing is done for each

contour triangle by adding triangles passing through

the sample points located on the silhouette curves

(see Fig. 2).

Taking advantage of temporal coherence of

contours, we randomly choose a contour triangle

found in the previous frame as a starting triangle to

start a new search in the current frame. When a new

contour triangle is found, its neighboring triangles

including further contour triangles can be readily

found, leveraging spatial coherence. Each contour

triangle is connected to only two other contour

triangles on the mesh in most cases [20]. Figure

3 compares results of smoothing contours by the

method in Ref. [21].

4.2 2D brush path construction

As discussed in Section 5.1, the stylized parameters

Fig. 3 Contour smoothing: (a) coarse mesh of torus (144

triangles), (b) silhouette edges determined by Ref. [21], and (c)

smooth contour curves produced by our method.

(a) (b)

Fig. 4 Visible 3D contour curves (b) as viewed from another

angle (a).

are firstly assigned at equal spacing along the stroke

path in 2D space. During parameter propagation, we

transfer the parameters to the corresponding curve

point in 3D. We then transfer the parameters from

the 3D curve points in the previous frame to their

nearest 3D curve points in the next frame. Finally,

we transfer the parameters from the 3D curve to

their projected pixels in the current frame in 2D

space. The goal of this complex procedure is to

produce single-pixel width paths in 2D space which

is called brush paths. Every pixel on the brush path

must be matched to a curve point in 3D to support

parameter propagation. Another advantage of this

kind of brush path is that it can readily guide correct

parameter propagation at the intersection of two

brush paths.

After we draw 3D contour lines to construct an

ID reference image, as described by Ref. [16], we

next determine the corresponding relationship which

is one-to-many or one-to-one between the visible 3D

curve points and pixels in the ID reference image as

shown in Fig. 5. Every 3D curve point has an order

parameter O which represents the order in which it

is drawn on the 3D contour curve; and then it is

projected to one or more pixels in screen space with

coordinates (x, y) and transfer the parameter O from

3D points to 2D pixels. We denote O(x, y) as the

order parameter for each pixel. Another important

parameter is the weightW (x, y) for each pixel, which

can be computed by the order parameter of its 3× 3

neighbourhood using Eq. (4).
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W (x, y) =
∑

{
1, if |O(xi, yj)−O(x, y)| < δ

0, otherwise

(4)

In practice, we specify δ as 5. The weight

parameter is helpful to determine that even if two

pixels are quite near in 2D but actually separated in

3D, they should not be merged into a brush path

according to the following linking procedure. An

optimal choice of δ can eliminate ambiguity at

the intersections of paths and guide the linking

procedure to find the next pixel during brush path

construction.

We now discuss how to link pixels into brush

paths. The linking procedure iterates through all

pixels in the ascending order of parameter O. Once a

pixel is added to a brush path, it is set as visited. The

linking procedure has two parts: firstly finding the

starting pixel for each brush path, and secondly

searching from the starting pixel to construct the

brush path.

1) Finding the start pixel for each brush. Find

pixels with smallest O amongst all un-visited

pixels. The one with the smallest weight is set as the

starting point. Add this pixel to the brush path. For

example, pixel with O(x, y) = 20 and W (x, y)= 2 in

Fig. 5 is the starting pixel of the red path.

2) Constructing a brush path. Set the

starting pixel as current pixel and find linking

candidates. Firstly, find all unvisited neighbouring

pixels (xi, yj) of current pixel (xc, yc) in its 3 × 3

neighbourhood which satisfies Inequality (5). For

example, when the current pixel is the pixel with

O(x, y) = 27 and W (x, y) = 2 in Fig. 5, there are

Fig. 5 Close up of a reference image. The number on each pixel

is the order parameter O transferred from its corresponding 3D

point. The number as the right subscript of each pixel presents its

weight W (x, y) parameter. Our algorithm generates two brush

paths as shown in red and blue. The sequence for the red path

is 20, 21, 22, 23, 25, 26, 27, 28, 29. The sequence for the blue

path is 40, 41, 42, 43, 43, 44, 45, 46, 47.

four unvisited pixels in its neighbourhood; however,

only one candidate pixel with O(x, y) = 28 and

W (x, y) = 1 satisfies Inequality (5). So it is added

to the brush path and visited, and will be the next

current pixel.

0 � O(xi, yj)−O(xc, yc) < δ (5)

The next current pixel is the one with maximum

weight amongst all candidates. If there is more than

one, select the one with maximum O. If no candidate

is found for the current pixel, the search process

should enlarge the neighbourhood to 5 × 5, which

ensures we can find the correct direction even at

intersections.

5 Coherent stylization

Defining the parameter C as texture coordinates of

each stroke, stylization is mapped onto the stroke

path via C. To achieve temporal coherence, we

first collect pairs of corresponding pixels from the

previous frame and the current frame via the contour

triangles, using three steps, and then propagate

parameter C between them—see Section 5.1. We

then traverse the brush path to generate stroke

paths according to the parameter information—see

Section 5.2.

5.1 Parameter propagation

Every pixel on the brush path has four parameters:

the corresponding contour triangle V on the mesh,

the corresponding 3D curve point P , the stroke path

ID Is in the previous frame, and the parameter C. If

2D samples are propagated directly then “screen

door” or texture sliding problems arise because

the passed parameters may become disordered and

correspond to the wrong brushes in the propagation

process. To address this problem, we propose a

three-step parameter propagation method based on

contour triangles.

In the first step, the parameter is propagated from

each brush pixel to the corresponding 3D curve point

in the previous frame. In the second step, for each

3D contour curve point in the previous frame, we

readily find the nearest curve point on the contour

curves in the current frame using the flooding

algorithm described below. Thus, the parameter can

be propagated from each 3D contour curve point in

the previous frame to the nearest contour curve point

in the current frame. In the third step, the parameter
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is transformed to the corresponding brush pixel from

the current curve in the current frame, as shown in

Fig. 6.

Taking a sample point p on a brush path of frame

fi as an example, with parameters (C, Is, P, V ), V

is represented as Δv1v2v3 in Fig. 7. In the flooding

algorithm, we search adjacent triangles of Δv1v2v3 in

frame fi+1 ring by ring (all triangles which share at

least one point with Δv1v2v3 are the first ring and so

on). If contour triangles exist, we check all contour

points on these triangles and compute the nearest

one P ′ to P in 3D space. The 3D Euclidean distance

is used to find the closest contour point. It is a

reasonable approximation when the contours do not

move too far on the surface between two successive

frames. For larger motions, picking the closest

point in 3D does not guarantee to find the most

appropriate correspondence (since contours travel at

different “speeds” on the surface), and is likely to

increase the distortion of the parameterization. If

none is found, we flood the current ring to find

more neighbouring triangles of Δv1v2v3 and further

tests are done to find the nearest contour point. We

do flooding twice at most in practice. As contour

triangles are spatially coherent between frames, most

searches succeed immediately in the first ring. If we

find a corresponding point P ′ to the point P , and the

projected pixels p′ of P ′ appear in the brush path of

Fig. 6 Parameter propagation between frames fi and fi+1.

Fig. 7 3D space propagation based on contour triangles.

frame fi+1, we transfer the parameter information

from sample point P , including C and Is, to P ′ on
the contour path of frame fi+1.

5.2 Stroke construction

We generate one or more stroke paths along each

brush path based on the parameter information

received from the previous frame. We use the rule

that pixels on the same 2D brush path with the same

stroke path ID from the previous frame should be

grouped as a stroke path, and parameterized as one

stroke, in a similar way to the key idea of Ref. [6].

As mentioned in Section 5.1, brush paths may

split, merge, become shorter or longer, or even

disappear or newly appear during animation. Thus

some pixels on brush paths will fail to propagate

parameters. We define various rules to divide

the brush paths into stroke paths by taking the

parameters into account. We collect the pixels whose

parameters are in the same group in the previous

frame as a stroke group. Each pixel in stroke group G

is parameterized as (li, ci), where li is the arc-length

from the first pixel in group G. Even in the same

stroke group the parameter c may be out of order:

parameter monotonicity means that c should either

increase or decrease along the 2D brush path. Also,

two nearby groups may have gaps, overlaps, or

inclusion.

To address such problems we deal with the stroke

groups for each brush path as follows.

1) Pixels on a brush path with the same stroke

path ID from the previous frame are first classified

into the same stroke group G. Then, we must make

sure that parameter t on each stroke group preserves

the same monotonic order as the previous frame. We

discard any group whose number of pixels is less than

a threshold.

2) If two nearby groups overlap, the parameters

of the overlapping pixels should be removed, to

eliminate the overlapping portions as shown in

Fig. 8(a).

3) We use a difference solution to the trimmed

one-to-one policy used in Ref. [6] to deal with any

gap between neighbouring stroke groups. We first

assume all sequential pixels in the gap belong to one

group and compute their new parameters using the

fitting method in Section 5.3. If any of the newly

computed parameters lie outside the range [0,1], then

we mix them together with the other group in the
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fitting method (see Fig. 8(c)). Each group has a

monotonicity rate in c which is defined as the length

of the monotonic range divided by the number of

pixels on the stroke path, and extended stroke paths

should obey this rate. If some pixels’ parameters still

lie outside this range, we regard them as the seeds of

new strokes, as shown in Fig. 8(b).

4) We again differ from Ref. [6] in how to deal with

a stroke group belonging to multiple brush paths,

which means a topology change has happened. We

gather these pixels as a special group from all brush

paths, as input to the fitting method, so as to

keep the stylization coherent. After computing the

parameters for this special group, we regard them as

a stroke path.

Because both brush path and stroke group

information are considered, coherence is kept when

topology changes as shown in Fig. 9.

5.3 Stroke parameterization

The parameter c within a same stroke group

is monotonic. We now describe the scheme for

parameterizing a stroke path for sample pixels

Fig. 8 Stroke path construction.

Fig. 9 Coherent strokes when topology changes.

described by (l, c), where l is the arc-length from

the pixel to the start point of the stroke path. In

order to balance the competing goals of coherence

on the 3D shape and uniform 2D arc-length

parameterization, we use least-squares fitting to

recompute the parameter of each stroke path. This

globally ensures monotonicity of the stroke path and

locally minimizes deviation from the faithful voting

points which are the pixels in each stroke group. The

parameters are generated in a coherent way. Given

vote samples (li, ci)(i = 0, · · · ,m) on a stroke group,

we use the least-squares function Clc(l) to fit the

votes to minimize ‖δ‖22 where

‖δ‖22 =
m∑

i=0

[Clc(li)− ci]
2 (6)

and

Clc(l) ∈ g(x), g(x) = a3x
3 + a2x

2 + a1x+ a0 (7)

Figure 10 illustrates our linear fitting method

in comparison to other approaches. The phase

fitting method uses uniform 2D arc-length

parameterization, which is good for panning or

zooming, but produces sliding along the contours

(Fig. 10(a)). The interpolation method promotes

coherence on the 3D shape by simply interpolating

the samples, but this effect is not desirable for styles

such as dots that need consistent spacing between

elements (Fig. 10(b)). The optimized method in

Ref. [6] balances 3D shape and uniform 2D arc-

length parameterization, but lacks smoothness, so

the generated strokes may be not spatially smooth

or stable over time (Fig. 10(c)). Our method uses

Fig. 10 Four schemes for assigning the parameterization C(l)

(red lines) to a stroke path given vote samples (li, ci)(blue

points).
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least-squares fit parameters, which generates C1

coherent fitting curves, producing strokes which

change continuously (Fig. 10(d)).

6 Results

In this section, we present results of testing our

method for a variety of 3D models with stylized

contours. We compare our method with the methods

of Refs. [5] and [6] in terms of rendering quality

and efficiency. We test all methods on a PC

with a 3.4 GHz CPU, 8 GB of memory, and a

Nvidia GeForce GTX 550 Ti graphics card. The

implementation runs on a single CPU without

exploiting multi-threading. The window size is set to

512 × 512. The rendered objects cover about 40%–

60% of the window.

Figures 9 and 11–14 show examples generated

by our method. The resulting stylized contours are

smooth and temporally coherent across a wide range

of styles and camera motions, even when topology

changes occur. Because contour smoothing is used,

Fig. 11 Stylized results for the fish (5000 triangles).

Fig. 12 Stylized results for the horse (6046 triangles).

Fig. 13 Stylized results for the dino (2000 triangles).

Fig. 14 Stylized results for the camel (1000 triangles).

our method is suitable for coarse meshes such as the

dino and the camel illustrated in Figs. 13 and 14.

Figurer 15 compares stylized results with naive

arc-length textures for our method and the

method of Ref. [6]. Our method can prevent

sliding of the sharp spine above the head from

left to right. However, since the fitted cubic

parameterization deviates from uniform 2D arc-

length, it also leads to some stretching artifacts. The

same problem happens to the method of Ref. [6] if

we adjust the optimization weights to avoid sliding

of the spikes.

Figure 16 compares our method with the method

in Ref. [6] when a fine mesh is used. Many

short strokes appear in the result of Ref. [6],

as short 3D contour paths are not connected for

stylization. Our method can efficiently solve the

problem by generating 2D contour paths. However,

a limitation of our linking procedure is that the

interval range and the gap threshold value in

Section 4 are global. On one hand, this prevents

merging contours that are far apart in 3D but well

aligned in 2D, but on the other hand, it does not

work well for complex bumpy shapes, such as the

area near the bunny’s ear where artifacts can be seen

in the supplemental video.

Figure 17 compares our method with the method

in Ref. [6] using a coarse mesh. The latter method

leads to broken lines, as the silhouette segments used

which are corresponded to mesh triangles and always

pass through mesh faces, can disappear or appear

(a) Results of Ref. [6]

(b) Results of our method

Fig. 15 Stylized results for the cactus.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 16 Results for the Stanford bunny (10000 triangles): (a) fine mesh, (b)–(d) results of our method, and (e)–(g) results of the

method in Ref. [6].

(a) (b) (c) (d) (e) (f) (g)

Fig. 17 Results for the knot (480 triangles): (a) coarse mesh, (b)–(d) results of our method, and (e)–(g) results of the method in

Ref. [6].

suddenly, leading to visual artifacts. In contrast, our

method generates a more faithful smooth contour

that is visually coherent with a moving viewpoint

or a moving object.

Figure 18 compares stylized results for our method

and the method in Ref. [5]. Note a, b, and c,

three strokes near the T junction in frame fi−1. As

the model rotates, the 3D position of point c is

gradually covered by b and position b becomes

closer and closer to position a. Thus, stylization

of stroke c ceases to contribute, and it is better

to merge strokes a and b in the same brush

path to depict the model shape. It is easy to see

that, although Bénard’s method keeps the stroke

segment consistent as far as possible, sometimes this

strategy incorrectly connects contours, especially

when occlusion relations change. This is due to only

considering local 2D proximity and alignment in 2D

(a) fi−1 frame (b) fi frame (c) fi+1 frame

Fig. 18 Results for the knot (15000 triangles). Top: results

from the method in Ref. [5]. Bottom: results from our method.

space for feature line vectorization. In our method,

brush paths are connected by combining 3D and

2D information, which can efficiently avoid these

problems while retaining real-time performance.

Table 1 compares the frame rates when applying

our method and the method in Ref. [6]. After we

fix the lengths of strokes rendered for each model

in the first frame, the read-back of the ID image

and constructing the 2D brush path by pixels are

the performance bottlenecks that reduce the frame

rate. Because our method generates 2D brush paths,

our method needs to read the ID image once, and 100

frames are used due to 2D brush path connections,

so the frame rate of our method is lower than that

achieved in Ref. [6]. This could be improved by using

GPUs in future. Also, the results of Ref. [6] exhibit

long gaps or broken lines which our method improves

on. It is easy to see from Table 1 that for models

with similar numbers of faces, more stroke paths lead

to slower performance. As the same stroke length is

used throughout in Table 1, the number of stroke

paths is correlated with the complexity of the lines

and the number of pixels in the windows.

7 Conclusions

We present a way to render coherent stylized

contours of 3D meshes and demonstrate its

effectiveness for a variety of models. Our method

generates smooth and coherent contours by a

contour interpolation method based on 3D contour

triangles. We use a 3D point propagation method

based on contour triangles to propagate parameters
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Table 1 Performance comparisons of our method and Kalnin’s method.

Model Face number Stroke paths Fps, Kalnin’s method Fps, our method

Knot 480 8 228.8 110.1

Camel 1000 15 210.1 91.2

Dino 2000 14 189.3 90.6

Fish 5000 13 204.1 70.2

Horse 6406 9 187.5 65.3

Bunny 10000 16 176.3 58.7

Knot 15000 8 160.7 53.3

Hippo 43288 10 — 31.8

from one frame to the next. The propagation is

more accurate for coarse meshes and avoids sliding

problems. New stroke paths are constructed by

considering 2D brush paths and stroke groups. Our

method can balance coherence between the 3D shape

and uniform 2D arc-length parameterization by a

least-squares fitting method to refit parameters on

each stroke path. Our method can generate coherent

stylized line drawings with temporal coherence for

meshes, including coarse meshes and non-uniformly

sampled meshes, automatically at interactive rates.
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