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Abstract
In this paper, we propose a novel multi-attribute group decision making (MAGDM) approach under the p, q-quasirung
orthopair fuzzy number (p, q-QOFN) environment. For this, we propose new multiplication operation and scalar power
operation for p, q-QOFNs based on Yager’s norm. Then, by using the proposed multiplication operation and scalar power
operation of p, q-QOFNs and the concept of prioritized geometric aggregation operator (AO), we propose the p, q-quasirung
orthopair fuzzy Yager prioritized weighted geometric (p, q-QOFYPWG) AO for aggregating p, q-QOFNs.We also prove the
different properties of the proposed p, q-QOFYPWGAO of p, q-QOFNs. However, based on the proposed p, q-QOFYPWG
AO, we propose a new MAGDM approach in the context of p, q-QOFNs environment. Afterwards, we utilize the proposed
MAGDM approach to solve the different MAGDM problems, and compare the preference orders (POs) obtained from the
proposed MAGDM approach to POs obtained from other existing MAGDM approaches. The proposed MAGDM approach
can overcome the shortcomings of the existingMAGDMapproaches, where they cannot distinguish the POs of the alternatives
in some cases. The proposed MAGDM approach provides a very useful approach to deal with MAGDM problems in the
p, q-QOFNs environment.

Keywords p, q-quasirung orthopair fuzzy set · Decision making; Prioritized geometric aggregation operator · MAGDM

1 Introduction

Multi-attribute group decisionmaking (MAGDM) is the cog-
nitive process of choosing a particular action from the several
available alternatives. It is essential in everyday life, business,
and governance because it enables individuals and organi-
zations to manage challenges, make decisions, and achieve
goals. Usually, effectiveMAGDMinvolves the assessment of
possible choices on the basis of some criteria, goals, and con-
straints. Hence, it is evident that efficient MAGDM is crucial
due to the necessity of successfully managing resources and
addressing changes and objectives in situations where uncer-
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tainty is involved. It originates from incomplete, vague, or
estimative information, which prevents reasonable foresight
into its effects. To deal with such uncertainties, Zadeh (1965)
introduced the theory of fuzzy sets (FSs) in 1965, where a
variable can have membership grade (MG) instead of true or
false values. Later, Atanassov (1986) defined the extension of
the FS known as intuitionistic fuzzy sets (IFSs) that include
the non-membership grade (NMG) with the MG. Follow-
ing this, Yager (2013) generalized the IFSs to Pythagorean
fuzzy sets (PFSs) to solve the uncertainties of the environ-
ment more effectively, and PFS provides more flexibility
to decision making experts (DMExs). However, in certain
instances, PFSmay not adequately capture the evaluations of
the DMExs. Therefore, Yager (2016) expanded on the ideas
of IFS and PFS by creating the q-rung orthopair fuzzy set (q-
ROFS) 〈ζT, �T〉 which satisfy the condition: 0 ≤ ζT ≤ 1,
0 ≤ �T ≤ 1, 0 ≤ ζ

q
T + �

q
T ≤ 1 and q ≥ 1, which provides

more range to express the information comparative to IFSs
and PFSs. Many researchers have widely utilized the IFSs,
PFSs and q-ROFS in various decision-making scenarios (Liu
and Chen 2017; Chen et al. 2016; Chen and Niou 2011; Hus-
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sain et al. 2023; Alcantud 2023; Salimian andMousavi 2022;
Dutta and Borah 2022; Gao et al. 2021; Zhang et al. 2020;
Çalı and Balaman 2019; Kumar and Chen 2022a; Xu and
Wang 2012; Chen et al. 2014; Zhang et al. 2015; Kumar
and Chen 2023; Garg 2021; Rahman and Ali 2020; Akram
et al. 2020; Khan et al. 2019; Liu et al. 2024; Kumar and
Chen 2022b; Zhang and Chen 2022; Garg and Chen 2020;
Garg 2020; Liu et al. 2018; Pinar and Boran 2020; Wang
et al. 2020; Zhong et al. 2019). Zhang et al. (2020) defined
the MAGDM approach based on the multiplicative prefer-
ence relations in the context of intuitionistic fuzzy numbers
(IFNs). Kumar and Chen (2022a) proposed the advanced
Heronian mean aggregation operator (AO) and MAGDM
approach based on the proposedAO in the IFNs environment.
Akram et al. (2020) proposed the MAGDM approach for the
Pythagoran fuzzy numbers (PFNs) environment by using the
ELECTRE technique. Kumar and Chen (2023) proposed the
entropy measure of PFSs and AO for aggregation PFNs for
MAGDM approach. Garg (2020) developed the AOs based
on trigonometric functions and MAGDM approach based on
the proposed AOs under the q-rung orthopair fuzzy numbers
(q-ROFNs) environment. Liu et al. (2024) developed theAOs
based on the Aczel-Alsina norm and power Heronian mean
for MAGDM in the context of q-ROFNs.

In a q-ROFS, DMExs must assign equal values of q
for both MG and NMG, a constraint that can significantly
impact the overall decision-making process. To overcome
this limitation, Seikh and Mandal (2022) introduced p, q-
quasirung orthopair fuzzy set (p, q-QOFS) and introduced
the p, q-quasirung orthopair fuzzy number (p, q-QOFN),
where a p, q-QOFS R in the universal set Y is defined as
R = {〈y, ζR(y), �R(y)〉 | y ∈ Y }, which satisfy the condi-
tion: 0 ≤ ζR(y) ≤ 1, 0 ≤ �R(y) ≤ 1, 0 ≤ ζ

p
R + �

q
R ≤ 1,

p ≥ 1 and q ≥ 1. The p, q-QOFS allows for a nuanced
representation of uncertainty, which can be finely tuned by
adjusting p and q. The p, q-QOFS becomes an IFS when
p = q = 1 and becomes a PFS when p = q = 2. Simi-
larly, when p = q, p, q-QOFS is converted into q-ROFS.
In last 3 years, researchers have used p, q-QOFSs widely to
develop the different MAGDM method (Seikh and Mandal
2022; Rahim et al. 2023b, a, 2024b, a, c; Ahmad et al. 2024).
Seikh and Mandal (2022) proposed the AOs for aggregating
the p, q-QOFNs and MAGDM approach by using the pro-
posed AOs to solve the problem of suitable site selection for
electric vehicle charging.Rahimet al. (2023b) presentedAOs
based on confidence level technique and MAGDM approach
by using the proposedAOs for the p, q-QOFNs environment.
Rahim et al. (2023a) proposed theAOs based on sine trigono-
metric function for aggregating p, q-QOFNs and MAGDM
approach based on the proposed AOs under the p, q-QOFNs
environment. Rahim et al. (2024a) proposed the cosine sim-
ilarity measure and distance measures for p, q-QOFSs and
its application in MAGDM. Rahim et al. (2024c) introduced

Dombi AOs for aggregating the p, q-QOFNs and MAGDM
method based on the proposed AOs in the context of p, q-
QOFNs. Ahmad et al. (2024) developed AOs based on the
Hamacher norm and MAGDM approach based on proposed
AOs in p, q-QOFNs environment. Rahim et al. (2024b)
proposed the MAGDM approach based on the COPRAS
technique for the p, q-QOFNs environment and its appli-
cation in green supplier selection.

In this paper, we find that Seikh and Mandal’s MAGDM
approach (Seikh andMandal 2022), Ahmad et al.’sMAGDM
approach (Ahmad et al. 2024), Garg’s MAGDM approach
(Garg 2020), and Rahim et al.’s MAGDM approach (Rahim
et al. 2023a) have the shortcomings, where they cannot dis-
tinguish the preference orders (POs) of the alternatives in
some cases. Therefore, in order to overcome the shortcom-
ings of Seikh and Mandal’s MAGDM approach (Seikh and
Mandal 2022), Ahmad et al.’s MAGDM approach (Ahmad
et al. 2024), Garg’s MAGDM approach (Garg 2020), and
Rahim et al.’s MAGDM approach (Rahim et al. 2023a), it
is necessary to propose a new MAGDM approach under the
p, q-QOFNs environment.

In this paper, we propose new operations for p, q-QOFNs
based on Yager’s norm (Yager 1994), namely, multiplica-
tion operation and scalar power operation. However, by
using the proposedmultiplication operation and scalar power
operation, we propose the p, q-quasirung orthopair fuzzy
Yager prioritized weighted geometric (p, q-QOFYPWG)
AO for aggregating the p, q-QOFNs. We also prove the
various properties of proposed p, q-QOFYPWGAOof p, q-
QOFNs. Furthermore, by utilizing the p, q-QOFYPWGAO,
we propose a novel MAGDM approach under the p, q-
QOFNs environment. Afterwards, we solve a few MAGDM
problems by using the proposed MAGDM approach and
compare the preference orders (POs) obtained from the pro-
posed MAGDM approach with POs obtained from other
existing MAGDM approaches. The proposed MAGDM
approach can overcome the shortcomings of Seikh and
Mandal’s MAGDM approach (Seikh and Mandal 2022),
Ahmad et al.’s MAGDM approach (Ahmad et al. 2024),
Garg’s MAGDM approach (Garg 2020) and Rahim et
al.’s MAGDM approach (Rahim et al. 2023a), where they
cannot distinguish the POs of the alternatives in some
cases.

The remaining part of this paper is organized as fol-
lows: Sect. 2 contains the elementary concepts relevant to
this paper. In Sect. 3, we propose the multiplication oper-
ation and scalar power operation for p, q-QOFNs using
Yager’s norm. Section 4 propose the p, q-QOFYPWG AO
based on the proposed operational laws of p, q-QOFNs. In
Sect. 5, we propose a new MAGDM approach in the p, q-
QOF environment. Finally, Sect. 6 provides conclusion of the
paper.
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2 Preliminaries

This section presents the basic information related to this
article.

Definition 1 (Yager 2016) A q-ROFS T in the universe of
discourse Y is defined as:

T = {〈y, ζT(y), �T(y)〉 | y ∈ Y }, (1)

where ζT(y) : Y → [0, 1] denotes theMGand �T(y) : Y →
[0, 1] denotes the NMG of y ∈ Y , respectively, where 0 ≤
ζT(y) ≤ 1, 0 ≤ �T(y) ≤ 1, 0 ≤ (ζT(y))q + (�T(y))q ≤ 1
and q ≥ 1. The hesitancy degree of an element y ∈ Y is

(πT(y)) = (1 − (ζT(y))q − (�T(y))q)
1
q .

Usually, the pair 〈ζT(y), �T(y)〉 in the q-ROFSs T =
{〈y, ζT(y), �T(y)〉 | y ∈ Y } called the q-ROFN.

Definition 2 (Yager 2016) Let T1 = 〈ζ1, �1〉, T2 = 〈ζ2, �2〉
and T = 〈ζ, �〉 be three q-ROFNs, κ > 0. Then

(i) T1 ⊕ T2 =
〈

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1 ζ

q
2 , �1�2

〉
;

(ii) T1 ⊗ T2 =
〈
ζ1ζ2,

q
√

�
q
1 + �

q
2 − �

q
1�

q
2

〉
;

(iii) κT = 〈 q√1 − (1 − ζ q)κ , �κ
〉
;

(iv) Tκ =
〈
ζ κ , q

√
1 − (1 − �q)κ

〉
.

Definition 3 (Seikh and Mandal 2022) A p, q-QOFS R in
finite universe of discourse Y is defined as:

R = {〈y, ζR(y), �R(y)〉 | y ∈ Y }, (2)

where ζR(y) denotes theMGand�R(y) denotes theNMGof
y ∈ Y , respectively, where 0 ≤ ζR(y) ≤ 1, 0 ≤ �R(y) ≤ 1,
0 ≤ (ζR(y))p + (�R(y))q ≤ 1, p ≥ 1 and q ≥ 1. The
hesitancy degree of an element y ∈ Y is (πR(y))l = 1 −
(ζR(y))p − (�R(y))q , where l is the least common multiple
(LCM) of p and q.

In (Seikh andMandal 2022), Seikh andMandal called the
pair 〈ζR, �R〉 in the p, q-QOFS R = {〈y, ζR(y), �R(y)〉 |
y ∈ Y } a p, q-QOFN.

Remark 1 Let us consider a case where we need to determine
the minimum values of p and q, both greater than or equal
to 1, for a given orthopair 〈ζR, �R〉, such that ζ p

R +�
q
R ≤ 1.

Iterative computing approaches can provide unique solutions
to issues that lack a closed-form solution. Theminimal values
of p and q that satisfy ζ

p
R + �

q
R ≤ 1 are referred to as the

p, q-niche of 〈ζR, �R〉. Note that if p̂, q̂ is the p, q-niche of
〈ζR, �R〉, then 〈ζR, �R〉 is valid for all p ≥ p̂ and q ≥ q̂ .

Let Z = {z1, z2, . . . , zn} be some provided data and � be
a fuzzy concept. Assume an expert presents his preference
as an orthopair 〈ζR(z j ), �R(z j )〉 for each z j ∈ Z . Now the

problem is to accurately portray the information by estimat-
ing the proper values of p and q. We may now proceed as
follows:

(i) Determine the p, q-niche for each orthopair 〈ζR(z j ),
�R(z j )〉, say p j , q j .

(ii) Determine the p∗ and q∗ niches where p∗ = max j {p j }
and q∗ = max j {q j }.

(iii) Then we may denote E as p∗, q∗-QOFS.

Definition 4 (Seikh and Mandal 2022) Let R1 = 〈ζ1, �1〉,
R2 = 〈ζ2, �2〉 and R = 〈ζ, �〉 be three p, q-QOFNs. Then,

(i) R1 ⊕ R2 =
〈

p
√

ζ
p
1 + ζ

p
2 − ζ

p
1 ζ

p
2 , �1�2

〉
.

(ii) R1 ⊕ R2 =
〈
ζ1ζ2,

q
√

�
q
1 + �

q
2 − �

q
1�

q
2

〉
.

(iii) κR = 〈 p
√
1 − (1 − ζ p)κ , �κ

〉
, where κ > 0.

(iv) Rκ =
〈
ζ κ , q

√
1 − (1 − �q)κ

〉
, where κ > 0.

Definition 5 (Seikh and Mandal 2022) Let R = 〈ζ, �〉 be
a p, q-QOFN. The score function S(R) of R is defined as
follows:

S(R) = 1 + ζ p − �q

2
, (3)

where S(R) ∈ [0, 1], p ≥ 1 and q ≥ 1.

Definition 6 (Seikh and Mandal 2022) Let R = 〈ζ, �〉 be a
p, q-QOFN. The accuracy function A(R) ofR is defined as
follows:

A(R) = ζ p + �q , (4)

where A(R) ∈ [0, 1], p ≥ 1 and q ≥ 1.

Definition 7 (Seikh and Mandal 2022) Let R1 = 〈ζ1, �1〉
and R2 = 〈ζ2, �2〉 be two p, q-QOFN. Then,

(i) If S(R1) > S(R2) then R1 � R2.
(ii) If S(R1) < S(R2) then R1 ≺ R2.
(iii) If S(R1) = S(R2) and,

(a) If A(R1) > (AR2) then R1 � R2.
(b) If A(R1) < A(R2) then R1 ≺ R2.
(c) If A(R1) = A(R2) then R1 ∼ R2.

Definition 8 (Yager 1994) Let α and β be two real numbers
and λ > 0. The Yager’s t-norm YT N and t-conorm YTCN are
defined as follows:

YT N (α, β) = 1 − min(1, ((1 − α)λ + (1 − β)λ)
1
λ ),

YTCN (α, β) = min(1, (αλ + βλ)
1
λ ).
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Definition 9 (Yager 2008) Let H be any alternative and let
	1,	2, . . . , and 	n be attributes with the linear prior-
ity order 	1 � 	2 � . . . � 	n . If attribute 	e has a
higher priority order than attribute 	h then e < h, where
e, h = 1, 2, . . . , n and e �= h. Let 	h(H) represents the per-
formance of the alternative H with respect to the attribute	h ,
where 	h(H) ∈ [0, 1]. The prioritized geometric (PG) AO
of 	1(H),	2(H), . . . , and 	n(H) is defined as follows:

PG(	1(H),	2(H), . . . , 	n(H)) =
n∏

h=1

(	h(H))

Th∑n
i=1 Ti ,

(5)

where T1 = 1, Th =∏h−1
k=1 	k(H) and h = 2, 3, . . . , n.

3 The proposed p,q- quasirung orthopair
fuzzy operations based on Yager’s norm

In this section, we propose new multiplication operation and
scalar power operation for p, q-QOFNs based on Yager’s
t-NM YT N and t-CNM YTCN defined in Definition 8.

Definition 10 Let R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉 and R =
〈ζ, �〉 be three p, q-QOFNs. The proposed multiplication
operation and proposed scalar power operation for p, q-
QOFNsR1 = 〈ζ1, �1〉,R2 = 〈ζ2, �2〉 andR = 〈ζ, �〉 based
on the Yager’s norm are defined as follows:

(i) Multiplication operation:

R1 ⊗ R2

=
〈

p
√
1 − min(1, ((1 − ζ

p
1 )λ + (1 − ζ

p
2 )λ)

1
λ ),

q
√
min(1, (�qλ

1 + �
qλ
2 )

1
λ )

〉
, (6)

where p ≥ 1, q ≥ 1 and λ > 0.
(ii) Scalar power operation:

Rκ =
〈

p
√
1 − min(1, (κ(1 − ζ p)λ)

1
λ ),

q
√
min(1, (κ�qλ)

1
λ )

〉
, (7)

where p ≥ 1, q ≥ 1, κ > 0 and λ > 0.

Example 1 Let R1 = 〈0.7, 0.6〉 and R2 = 〈0.8, 0.4〉 be two
p, q-QOFNs. Then,

(i) By using Eq. (6), for p = 3, q = 3, and λ = 3, we obtain

R1 ⊗ R2 =
〈

p
√
1 − min(1, ((1 − ζ

p
1 )λ + (1 − ζ

p
2 )λ)

1
λ ),

q
√
min(1, (�qλ

1 + �
qλ
2 )

1
λ )

〉

=
〈

3
√
1 − min(1, ((1 − 0.73)3 + (1 − 0.83)3)

1
3 ),

3
√
min(1, (0.69 + 0.49)

1
3 )

〉

= 〈0.64, 0.60〉.

(ii) By using Eq. (7), for p = 3, q = 3, λ = 3, and κ = 2,
we obtain

R1
2 =

〈
p
√
1 − min(1, (κ(1 − ζ

p
1 )λ)

1
λ ),

q
√
min(1, (κ�

qλ
1 )

1
λ )

〉

=
〈

3
√
1 − min(1, (2(1 − 0.73)3)

1
3 ),

3
√
min(1, (2(0.6)9)

1
3 )

〉

= 〈0.56, 0.65〉.

Theorem 1 Let R1, R2 and R be three p, q-QOFNs. The
proposed multiplication operation and scalar power opera-
tion, defined inDefinition 10, satisfy the following properties:

(i) R1 ⊗ R2 = R2 ⊗ R1,
(ii) (R1 ⊗ R2)

κ = Rκ
1 ⊗ Rκ

2 ,
(iii) Rκ1 ⊗ Rκ2 = R(κ1+κ2),

where κ > 0, κ1 > 0 and κ2 > 0.

Proof Let R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉 and R = 〈ζ, �〉 be
three p, q-QOFNs. Then,

(i) By using Eq. (6), we have

R1 ⊗ R2 =
〈

p
√
1 − min(1, ((1 − ζ

p
1 )λ + (1 − ζ

p
2 )λ)

1
λ ),

q
√
min(1, (�qλ

1 + �
qλ
2 )

1
λ )

〉

=
〈

p
√
1 − min(1, ((1 − ζ

p
2 )λ + (1 − ζ

p
1 )λ)

1
λ ),

q
√
min(1, (�qλ

2 + �
qλ
1 )

1
λ )

〉

= R2 ⊗ R1,

where p ≥ 1, q ≥ 1 and λ > 0.
(ii) By using Eq. (6) and (7), we have
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(R1 ⊗ R2)
κ =

〈
p
√
1 − min(1, ((1 − ζ

p
1 )λ + (1 − ζ

p
2 )λ)

1
λ ),

q
√
min(1, (�qλ

1 + �
qλ
2 )

1
λ )

〉κ

=
〈

p
√
1 − min(1, (κ((1 − ζ

p
1 )λ + (1 − ζ

p
2 )λ))

1
λ ),

q
√
min(1, κ((�

qλ
1 + �

qλ
2 )

1
λ ))

〉

=
〈

p
√
1 − min(1, (κ(1 − ζ

p
1 )λ + κ(1 − ζ

p
2 )λ)

1
λ ),

q
√
min(1, (κ�

qλ
1 + κ�

qλ
2 )

1
λ )

〉

= Rκ
1 ⊗ Rκ

2 ,

where p ≥ 1, q ≥ 1, λ > 0 and κ > 0.
(iii) By using Eq. (6) and (7), we have

Rκ1 ⊗ Rκ2 =
〈

p
√
1 − min(1, (κ1(1 − ζ p)λ + κ2(1 − ζ p)λ)

1
λ ),

q
√
min(1, (κ1�qλ + κ2�qλ)

1
λ )

〉

=
〈

p
√
1 − min(1, ((κ1 + κ2)(1 − ζ p)λ)

1
λ ),

q
√
min(1, (κ1 + κ2)�qλ)

1
λ )

〉

= R(κ1+κ2),

where p ≥ 1, q ≥ 1, λ > 0, κ1 > 0 and κ2 > 0.

��

4 The proposed p,q- quasirung orthopair
fuzzy Yager prioritized weighted
geometric aggregation operator of
p,q-QOFNs

In this section, we propose the p, q-quasirung orthopair
fuzzyYager prioritizedweightedgeometric (p, q-QOFYPWG)
AO for p, q-QOFNs based on the proposed multiplication
operation, scalar power operation and the prioritized geo-
metric AO given in Definition 9.

Definition 11 Let R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉, . . ., and
Rn = 〈ζn, �n〉 be n p, q-QOFNs. The proposed p, q-
QOFYPWG AO for aggregating the p, q-QOFNs R1 =
〈ζ1, �1〉, R2 = 〈ζ2, �2〉, . . ., and Rn = 〈ζn, �n〉 is defined
as:

p, q − QOFY PWG(R1,R2, . . . ,Rn) =

⊗n
h=1R

wh Th∑n
h=1 wh Th

h , (8)

where p ≥ 1, q ≥ 1, λ > 0, wh represents the weight of
p, q-QOFN Rh , wh ≥ 0, h = 1, 2, . . . , n,

∑n
h=1 wh = 1,

T1 = 1, Th = ∏h−1
e=1 S(Re), h = 2, 3, . . . , n, and S(Re) is

the score value of the p, q-QOFN Re = 〈ζe, �e〉 calculated
by Eq. (3), S(Re) = 1+ζ

p
e −�

q
e

2 and e = 1, 2, . . . , h − 1.

Theorem 2 LetR1 = 〈ζ1, �1〉,R2 = 〈ζ2, �2〉, . . ., andRn =
〈ζn, �n〉 be n p, q-QOFNs. The aggregated value of p, q-
QOFNs R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉„ . . ., and Rn =
〈ζn, �n〉 by using the proposed p, q-QOFYPWGAO is a p, q-
QOFN and given as follows:

p, q − QOFY PWG(R1,R2, . . . ,Rn)

=
〈

p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

whTh∑n
h=1 whTh

(1 − ζ
p
h )λ

) 1
λ

⎫⎬
⎭,

q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

whTh∑n
h=1 whTh

(�
q
h )

λ

) 1
λ

⎫⎬
⎭
〉

, (9)

where p ≥ 1, q ≥ 1, λ > 0, wh represents the weight of
p, q-QOFN Rh, wh ≥ 0, h = 1, 2, . . . , n,

∑n
h=1 wh = 1,

T1 = 1, Th = ∏h−1
e=1 S(Re), h = 2, 3, . . . , n, and S(Re) is

the score value of the p, q-QOFN Re = 〈ζe, �e〉 calculated
by Eq. (3), S(Re) = 1+ζ

p
e −�

q
e

2 and e = 1, 2, . . . , h − 1.

Proof Let R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉, . . ., and Rn =
〈ζn, �n〉 be p, q-QOFNs and let uh = whTh∑n

h=1 whTh
. To prove

this theorem, we use the mathematical induction approach,
as illustrated below:

(i) Take h = 2, then by using Eq. (7), we obtain

R1
u1 =

〈
p

√
1 − min

{
1,
(
u1(1 − ζ

p
1 )λ
) 1

λ

}
,

q

√
min

{
1,
(
u1(�

q
1 )

λ
) 1

λ

}〉
,

R2
u2 =

〈
p

√
1 − min

{
1,
(
u2(1 − ζ

p
2 )λ
) 1

λ

}
,

q

√
min

{
1,
(
u2(�

q
2 )

λ
) 1

λ

}〉
.

Then, by using Eq. (6), we obtain

p, q − QOFY PWG(R1,R2) = R1
u1 ⊗ R2

u2

=
〈

p

√
1 − min

{
1,
(
u1(1 − ζ

p
1 )λ+u2(1−ζ

p
2 )λ
) 1

λ

}
,
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q

√
min

{
1,
(
u1(�

q
1 )

λ + u2(�
q
2 )

λ
) 1

λ

}〉

=
〈

p

√√√√√√1 − min

⎧⎪⎨
⎪⎩1,

(
2∑

h=1

uh(1 − ζ
p
h )λ

) 1
λ

⎫⎪⎬
⎪⎭,

q

√√√√√√min

⎧⎪⎨
⎪⎩1,

(
2∑

h=1

uh(�
q
h )

λ

) 1
λ

⎫⎪⎬
⎪⎭
〉

.

Hence, the result given in Eq. (9) is valid for h = 2.
(ii) Suppose the result given in Eq. (9) is valid for h = n,

where

p, q − QOFY PWG(R1,R2, . . . ,Rn)

=
〈

p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

uh(1 − ζ
p
h )λ

) 1
λ

⎫⎬
⎭,

q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

uh(�
q
h )

λ

) 1
λ

⎫⎬
⎭
〉

.

(iii) Now, take h = n + 1, we get

p, q − QOFY PWG(R1,R2, . . .Rn+1)

= (⊗n
h=1Rh

uh
)⊗ Rn+1

un+1

=
〈

p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

uh(1 − ζ
p
h )λ

) 1
λ

⎫⎬
⎭,

q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

uh(�
q
h )

λ

) 1
λ

⎫⎬
⎭
〉

⊗
〈

p

√
1 − min

{
1,
(
un+1(1 − ζ

p
n+1)

λ
) 1

λ

}
,

q

√
min

{
1,
(
un+1(�

q
n+1)

λ
) 1

λ

}〉

=
〈

p

√√√√√√1 − min

⎧⎪⎨
⎪⎩1,

(
n+1∑
h=1

uh(1 − ζ
p
h )λ

) 1
λ

⎫⎪⎬
⎪⎭,

q

√√√√√√min

⎧⎪⎨
⎪⎩1,

(
n+1∑
h=1

uh(�
q
h )

λ

) 1
λ

⎫⎪⎬
⎪⎭
〉

.

Hence, the result given in Eq. (9) is valid for h = n + 1.
Thus, the result is true for all natural numbers.

Now, we shall prove that the result given in Eq. (9) is a
p, q-QOFN. Let

δ = p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

whTh∑n
h=1 whTh

(1 − ζ
p
h )λ

) 1
λ

⎫⎬
⎭

= p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

uh(1 − ζ
p
h )λ

) 1
λ

⎫⎬
⎭,

γ = q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

whTh∑n
h=1 whTh

(�
q
h )

λ

) 1
λ

⎫⎬
⎭

= q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

uh(�
q
h )

λ

) 1
λ

⎫⎬
⎭.

Now, we will show that

(a) 0 ≤ δ ≤ 1 and 0 ≤ γ ≤ 1,
(b) 0 ≤ δ p + γ q ≤ 1.

First, we prove that 0 ≤ δ ≤ 1. Because R1 = 〈ζ1, �1〉,
R2 = 〈ζ2, �2〉, . . ., and Rn = 〈ζn, �n〉 are the p, q-
QOFNs, we get 0 ≤ ζh ≤ 1, 0 ≤ �h ≤ 1 and 0 ≤
ζ
p
h + �

q
h ≤ 1, for all h = 1, 2, . . . , n, p ≥ 1 and q ≥ 1.

Therefore, we get 0 ≤ ζh
p ≤ 1. Because λ > 0, we get

0 ≤ (1 − ζ
p
h )λ ≤ 1. Now, let uh = whTh∑n

h=1 whTh
, since

wh ≥ 0, S(Rh) ∈ [0, 1], T1 = 1 and Tk = ∏k−1
e=1 S(Re)

�⇒ Th ∈ [0, 1] and whTh ∈ [0, 1]. Therefore, we
get 0 ≤ whTh∑n

h=1 whTh
≤ 1 �⇒ 0 ≤ uh ≤ 1. Thus,

we get 0 ≤
(∑n

h=1 uh(1 − ζ
p
Rh

)λ
) 1

λ ≤ 1 and 0 ≤
1 − min

{
1,
(∑n

h=1 uh(1 − ζ
p
Rh

)λ
) 1

λ

}
≤ 1. It implies

that 0 ≤ p

√
1 − min

{
1,
(∑n

h=1 uh(1 − ζ
p
Rh

)λ
) 1

λ

}
≤ 1.

Hence 0 ≤ δ ≤ 1.

Similarly, we can show that 0 ≤ γ ≤ 1. Now, we prove
that 0 ≤ δ p + γ q ≤ 1. Since, 0 ≤ ζh ≤ 1, 0 ≤ �h ≤ 1
and 0 ≤ ζ

p
h + �

q
h ≤ 1, then we have,

�
q
h ≤ 1 − ζ

p
h .

�⇒
n∑

h=1

uh�
qλ
h ≤

n∑
h=1

uh (1 − ζ
p
h )λ

�⇒ min

⎧⎨
⎩1,

n∑
h=1

uh (�
qλ
h )

1
λ

⎫⎬
⎭ ≤ min

⎧⎪⎪⎨
⎪⎪⎩
1,

⎛
⎝ n∑
h=1

δh (1 − ζ
p
h )λ

⎞
⎠

1
λ

⎫⎪⎪⎬
⎪⎪⎭

�⇒ min

⎧⎨
⎩1,

n∑
h=1

uh (�
qλ
h )

1
λ

⎫⎬
⎭

−min

⎧⎪⎪⎨
⎪⎪⎩
1,

⎛
⎝ n∑
h=1

uh (1 − ζ
p
h )λ

⎞
⎠

1
λ

⎫⎪⎪⎬
⎪⎪⎭

≤ 0
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�⇒ 1 − min

⎧⎨
⎩1,

n∑
h=1

uh (1 − ζ
pλ
h )

1
λ

⎫⎬
⎭+ min

⎧⎪⎪⎨
⎪⎪⎩
1,

⎛
⎝ n∑
h=1

uh (�
q
h )λ

⎞
⎠

1
λ

⎫⎪⎪⎬
⎪⎪⎭

≤ 1

�⇒ δ p + γ q ≤ 1.

Because δ ≥ 0, γ ≥ 0, p ≥ 1 and q ≥ 1, we get δ p ≥ 0,
γ q ≥ 0 and δ p + γ q ≥ 0. Hence, 0 ≤ δ p + γ q ≤ 1.

��
Example 2 Let R1 = 〈0.6, 0.8〉, R2 = 〈0.4, 0.6〉 and
R3 = 〈0.5, 0.5〉 be three p, q-QOFNs with weights w1 =
0.3, w2 = 0.4 and w3 = 0.3, respectively. First, we cal-

culate the values of T1 = 1, T2 = S(R1) = 1+ζ
p
1 −�

q
1

2 =
1+0.63−0.81

2 = 0.2080 and T3 = S(R1)× S(R2) = 0.2080×
0.2320 = 0.0483. By using the proposed p, q-QOFYPWG
AO of p, q-QOFNs shown in Eq. (8), we aggregate the p, q-
QOFNs R1,R2 and R3, where p = 3, q = 1, λ = 2 and

p, q − QOFY PWG(R1,R2,R3) =
〈

p

√√√√√√√√√√√√
1 − min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
1,

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3 × 1

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(1 − 0.63)2+

0.4 × 0.2080

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(1 − 0.43)2+

0.3 × 0.0483

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(1 − 0.53)2

⎞
⎟⎟⎟⎟⎟⎟⎠

1
2
⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

q

√√√√√√√√√√√√
min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
1,

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3 × 1

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(0.81)2+

0.4 × 0.2080

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(0.61)2+

0.3 × 0.0483

0.3 × 1 + 0.4 × 0.2080 + 0.3 × 0.0483
(0.51)2

⎞
⎟⎟⎟⎟⎟⎟⎠

1
2
⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

〉

= 〈0.5631, 0.7531〉.

In the following, we present some characteristics of the
proposed p, q-QOFYPWG AO of p, q-QOFNs.

Property 1 (Idempotency) Let R1 = 〈ζ1, �1〉, R2 =
〈ζ2, �2〉, . . ., and Rn = 〈ζn, �n〉 be n p, q-QOFNs with
weights w1, w2,. . . and wn, respectively, where wh ≥ 0,∑n

h=1 wh = 1 and h = 1, 2, . . . , n. If R1 = R2 = . . . =
Rn = R, then

p, q − QOFY PWG(R1,R2, . . . ,Rn) = R.

Proof Since theweights of the p, q-QOFNsR1,R2, . . . ,Rn

are w1, w2, . . . , wn , respectively, where wh ≥ 0 and∑n
h=1 wh = 1, if R1 = R2, . . . ,= Rn = R, then by using

Eq.(8), we get

p, q − QOFY PWG(R1,R2, . . . ,Rn)

= ⊗n
h=1R

whTh∑n
h=1 whTh

h

= ⊗n
h=1R

whTh∑n
h=1 whTh

= R

∑n
h=1 whTh∑n
h=1 whTh

= R.

��
Property 2 (Boundedness) Let R1,R2, . . . , and Rn be
p, q-QOFNs, R− = min{R1,R2, . . . ,Rn} and R+ =
max{R1,R2, . . . ,Rn}. Then,

R− ≤ p, q − QOFY PWG(R1,R2, . . . ,Rn) ≤ R+.

Proof Since R− = min{R1,R2, . . . ,Rn} and R+ =
max{R1,R2, . . . ,Rn}, therefore by using Eq. (8), we obtain

p, q − QOFY PWG(R1,R2, . . . ,Rn)

= ⊗n
h=1R

whTh∑n
h=1 whTh

h

≤ ⊗n
h=1R

+
wh Th∑n

h=1 wh Th

= R+
∑n

h=1 whTh∑n
h=1 whTh

= R+.

Similarly,
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p, q − QOFY PWG(R1,R2, . . . ,Rn)

= ⊗n
h=1R

whTh∑n
h=1 whTh

h

≥ ⊗n
h=1R

−
wh Th∑n

h=1 wh Th

= R−
∑n

h=1 wh Th∑n
h=1 wh Th

= R−.

Thus, we getR− ≤ p, q−QOFY PWG(R1,R2, . . . ,Rn)

≤ R+. ��

Property 3 (Monotonicity) Let R1,R2, . . . ,Rn and Ṙ1,

Ṙ2, . . . , Ṙn be two families of p, q-QOFNs. If Rh ≤ Ṙh,
where h = 1, 2, . . . , n, then

p, q − QOFY PWG(R1,R2, . . . ,Rn)

≤ p, q − QOFY PWG(Ṙ1, Ṙ2, . . . , Ṙn).

Proof By using Eq. (8), we obtain

p, q − QOFY PWG(R1,R2, . . . ,Rn) =

⊗n
h=1R

wh Th∑n
h=1 wh Th

h ,

p, q − QOFY PWG(Ṙ1, Ṙ2, . . . , Ṙn) =
⊗n

h=1Ṙh

wh Th∑n
h=1 wh Th .

Since Rh ≤ Ṙh , ∀h = 1, 2, . . . , n, we obtain ⊗n
h=1

R

whTh∑n
h=1 whTh

h ≤ ⊗n
h=1Ṙh

wh Th∑n
h=1 wh Th . Thus, we get p, q −

QOFY PWG(R1,R2, . . . ,Rn) ≤ p, q − QOFY PWG
(Ṙ1, Ṙ2, . . . , Ṙn). ��

5 The proposedMAGDM approach based on
the proposed p,q-QOFYPWGAO of
p,q-QOFNs

In this section, we propose a novel MAGDM approach
based on the proposed p, q-QOFYPWG AO under the
p, q-QOFNs environment. Let H1, H2, . . . , and Hm are m
alternatives and let 	1,	2, . . . , and 	n are n attributes. Let
�1, �2, . . . , �y be the decision making experts (DMExs)
with respectiveweights1,2, . . . ,y , respectively,where
 j ≥ 0, j = 1, 2, . . . , y and

∑y
j=1  j = 1. Each DMEx

� j assesses the attribute 	h of the alternative He by utiliz-

ing p, q-QOFN R̃
j
eh = 〈ζ̃ j

eh, �̃
j
eh〉 to construct the decision

matrix (DMx) L̃ j = (R̃
j
eh)m×n , shown as follows:

L̃ j =

	1 	2 . . . 	n⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

H1 R̃
j
11 R̃

j
12 . . . R̃

j
1n

H2 R̃
j
21 R̃

j
22 . . . R̃

j
2n

...
...

...
. . .

...

Hm R̃
j
m1 R̃

j
m2 . . . R̃

j
mn

.

The proposed MAGDM approach involves the following
steps:

Step 1: Convert the DMXs L̃1 = (R̃1
eh)m×n = (〈ζ̃ 1

eh,

�̃1
eh〉)m×n, L̃2 = (R̃2

eh)m×n = (〈ζ̃ 2
eh, �̃

2
eh〉)m×n, . . .,

L̃ y = (R̃
y
eh)m×n = (〈ζ̃ y

eh, �̃
y
eh〉)m×n , into nor-

malized DMxs (NDMxs) L1 = (R1
eh)m×n =

(〈ζ 1
eh, �

1
eh〉)m×n, L2 = (R2

eh)m×n = (〈ζ 2
eh,

�2
eh〉)m×n, . . ., Ly = (R

y
eh)m×n = (〈ζ y

eh, �
y
eh〉)m×n

as follows:

R
j
eh =

{
〈ζ̃ j

eh, �̃
j
eh〉 : for benefit type attribute

〈�̃ j
eh, ζ̃

j
eh〉 : for cost type attribute

, (10)

where e = 1, 2, . . . ,m, h = 1, 2, . . . , n and j =
1, 2, . . . , y.

Step 2: Compute the values T 1
eh, T

2
eh, . . ., and T y

eh of p, q-
QOFNsR1

eh,R
2
eh, . . ., andR

y
eh appeared inNDMxs

L1 = (R1
eh)m×n = (〈ζ 1

eh, �
1
eh〉)m×n, L2

= (R2
eh)m×n = (〈ζ 2

eh, �
2
eh〉)m×n, . . ., and Ly =

(R
y
eh)m×n = (〈ζ y

eh, �
y
eh〉)m×n , respectively, to con-

struct thematricesT 1 = (T 1
eh)m×n ,T 2 = (T 2

eh)m×n ,
. . ., and T y = (T y

eh)m×n , as follows:

T j
eh =

{
1 : if j = 1∏ j−1

a=1 S(Ra
eh) : if j = 2, 3, . . . , y

, (11)

where S(Ra
eh) = 1+(ζ aeh)

p−(�aeh)
q

2 is the score value
of the p, q-QOFNRa

eh which is obtained by Eq. (3),
p ≥ 1,q ≥ 1, e = 1, 2, . . . ,m, h = 1, 2, . . . , n and
a = 1, 2, . . . , y − 1.

Step 3: Based on the obtained matrices T 1 = (T 1
eh)m×n ,

T 2 = (T 2
eh)m×n and T y = (T y

eh)m×n and the
weights 1,2, . . . ,y of the DMExs �1, �2,

. . . , �y , respectively, we compute the weights
ς1
eh, ς

2
eh, . . ., and ς

y
eh of p, q-QOFNsR

1
eh,R

2
eh, . . .,

and R
y
eh , respectively, to construct the weighted

matrices W 1 = (ς1
eh)m×n , W 2 = (ς2

eh)m×n, . . . ,

and W y = (ς
y
eh)m×n , shown as follows:

ς
j
eh =  j T

j
eh∑y

j=1  j T
j
eh

, (12)
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where e = 1, 2, . . . ,m, h = 1, 2, . . . , n and j =
1, 2, . . . , y.

Step 4: Based on the obtained weights ς1
eh, ς

2
eh, . . ., and

ς
y
eh of p, q-QOFNsR

1
eh,R

2
eh, . . ., andR

y
eh , respec-

tively, and proposed p, q-QOFYPWGAO shown in
Eq. (8), we aggregate the p, q-QOFNs R1

eh,R
2
eh,

. . ., and R
y
eh that appeared in NDMxs L1 =

(R1
eh)m×n, L2 = (R2

eh)m×n, . . ., Ly = (R
y
eh)m×n

respectively, to get the aggregated p, q-QOFN
Reh = 〈ζeh, �eh〉 for constructing the collective
DMx (CDMx) L = (Reh)m×n , shown as follows:

Reh = p, q − QOFY PWG(R1
eh,R

2
eh, . . . ,R

y
eh)

=
〈

p

√√√√√√1 − min

⎧⎪⎨
⎪⎩1,

⎛
⎝ y∑

j=1

ς
j
eh

(
1 −

(
ζ
j
eh

)p)λ

⎞
⎠

1
λ

⎫⎪⎬
⎪⎭,

q

√√√√√√min

⎧⎪⎨
⎪⎩1,

⎛
⎝ y∑

j=1

ς
j
eh

(
�
j
eh

)qλ

⎞
⎠

1
λ

⎫⎪⎬
⎪⎭
〉

, (13)

where e = 1, 2, . . . ,m, h = 1, 2, . . . , n, p ≥ 1,
q ≥ 1, and λ ∈ (0,∞).

Step 5: Calculate the value Teh of the p, q-QOFNs Reh

appeared in CDMx L = (Reh)m×n to construct the
matrix T = (Teh)m×n , where

Teh =
{
1 : if t = 1,∏h−1

t=1 S(Ret ) : if h = 2, 3, . . . , n,
(14)

S(Ret ) is the score value of the p, q-QOFN Ret

obtained by using Eq. (3), e = 1, 2, . . . ,m; h =
1, 2, . . . , n; t = 1, 2, . . . , n − 1.

Step 6: Compute the entropy Eh of the attribute	h by using
the p, q-QOFN R1 h , R2 h , . . ., Rmh appeared in
hth column of CDMx L = (Reh)m×n , shown as
follows:

Eh = 1

m

m∑
e=1

tan

(
π

4
− |(ζeh)p − (�eh)

q |(1 − (πeh)
l)

4
π

)
,

(15)

where e = 1, 2, . . . ,m, h = 1, 2, . . . , n, (πeh)
l =

1− (ζeh)
p − (�eh)

q , l is the LCM of p and q. Now
by using the above entropy, we compute the weights
w1, w2, . . ., wn of the attributes 	1,	2, . . . , 	n ,
respectively, as follows:

wh = 1 − Eh

n −∑n
h=1 Eh

, (16)

where wh ≥ 0, h = 1, 2, . . . , n and
∑n

h=1 wh = 1.
Step 7: By utilizing the obtained weights w1, w2, . . . , wn

and obtained matrix T = (Teh)m×n , we calculate
the weights ςe1, ςe2, . . ., and ςen of p, q-QOFNs
Re1,Re2, . . . , and Ren , respectively, to construct
the weighted matrix W = (ςeh)m×n , where

ςeh = whTeh∑n
h=1 whTeh

, (17)

e = 1, 2, . . . ,m and h = 1, 2, . . . , n.
Step 8: Based on the proposed p, q-QOFYPWG AO given

in Eq. (8), we aggregate the p, q-QOFNsRe1,Re2,

. . . , and Ren which appeared in the hth row of the
CDMx L = (Reh)m×n to obtain the overall p, q-
QOFN Re = 〈ζe, �e〉 of alternatives He, shown as
follows:

Re = p, q − QOFY PWG(Re1,Re2, . . . ,Ren)

=
〈

p

√√√√√1 − min

⎧⎨
⎩1,

(
n∑

h=1

ςeh (1 − (ζeh)p)
λ

) 1
λ

⎫⎬
⎭,

q

√√√√√min

⎧⎨
⎩1,

(
n∑

h=1

ςeh (�eh)
qλ

) 1
λ

⎫⎬
⎭
〉
, (18)

where, e = 1, 2, . . . ,m, p, q ≥ 1 and λ ∈ (0,∞).

Step 9: By using the Eq.(3), we calculate the score val-
ues S(R1), S(R2), . . ., and S(Rm) of the overall
p, q-QOFNs R1 = 〈ζ1, �1〉, R2 = 〈ζ2, �2〉, . . .,
Rm = 〈ζm, �m〉 of the alternative H1, H2, …, and
Hm , respectively, shown as follows:

S(Re) = 1 + (ζe)
p − (�e)

q

2
, (19)

where S(Re) ∈ [0, 1] and e = 1, 2, . . . ,m.
Step 10: If S(Ra) > S(Rb), then based on Definition 7, the

preference order (PO) between the alternatives Ra

andRb is “Ra � Rb",where a = 1, 2, . . . ,m, b =
1, 2, . . . ,m and a �= b. If S(Ra) = S(Rb), then,
by using Eq.(4), we compute the accuracy values
A(Ra) = (ζa)

p + (�a)
q and A(Rb) = (ζb)

p +
(�b)

q of the overall p, q-QOFNsRa = 〈ζa, �a〉 and
Rb = 〈ζb, �b〉, respectively. If A(Ra) > A(Rb),
then according to Definition 7, the PO between the
alternatives Ra and Rb is “Ra � Rb". If S(Ra) =
S(Rb) and A(Ra) = A(Rb), then alternatives Ra

and Rb have the same PO, where a �= b. Thus, we
get the PO of the alternatives R1,R2, . . . , and Re

and select the best choice.
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Example 3 (Garg 2020) The government wants to prevent
urban migration by selecting an ideal company for creat-
ing economic opportunities in rural areas of Jharkhand. Let
the four attributes outlined by the government for selecting
companies are: 	1 (“Focusing on technical capability”), 	2

(“Financial status”), 	3 (“Company background”) and 	4

(“References from previous projects”). Let the five compa-
nies H1, H2, H3, H4 and H5 as alternatives have shown keen
interest in the project. Three DMExs�1, �2 and�3 evaluate
the companies H1, H2, H3, H4 and H5 towards the attributes
	1, 	2, 	3 and 	4. The weights of the DMExs �1, �2 and
�3 are 1 = 0.35,2 = 0.40 and 3 = 0.25, respectively.
Each DMEx � j assesses the attribute 	h of the alterna-

tive He by utilizing p, q-QOFN R̃
j
eh = 〈ζ̃ j

eh, �̃
j
eh〉, where

j = 1, 2, 3, e = 1, 2, 3, 4, 5 and h = 1, 2, 3, 4, to construct
the DMx L̃ j = (R̃

j
eh)5×4, shown as follows:

L̃1 =

	1 	2 	3 	4⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

H1 〈0.2, 0.5〉 〈0.5, 0.6〉 〈0.4, 0.3〉 〈0.5, 0.1〉
H2 〈0.6, 0.3〉 〈0.4, 0.2〉 〈0.5, 0.1〉 〈0.5, 0.2〉
H3 〈0.4, 0.3〉 〈0.4, 0.4〉 〈0.3, 0.3〉 〈0.6, 0.3〉
H4 〈0.5, 0.3〉 〈0.3, 0.5〉 〈0.5, 0.2〉 〈0.5, 0.3〉
H5 〈0.6, 0.2〉 〈0.3, 0.5〉 〈0.7, 0.2〉 〈0.6, 0.2〉

,

L̃2 =

	1 	2 	3 	4⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

H1 〈0.3, 0.6〉 〈0.2, 0.7〉 〈0.5, 0.4〉 〈0.5, 0.3〉
H2 〈0.5, 0.2〉 〈0.5, 0.3〉 〈0.6, 0.2〉 〈0.4, 0.3〉
H3 〈0.5, 0.3〉 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.5, 0.4〉
H4 〈0.5, 0.3〉 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.6, 0.3〉
H5 〈0.7, 0.2〉 〈0.4, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.2〉

,

L̃3 =

	1 	2 	3 	4⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

H1 〈0.2, 0.7〉 〈0.5, 0.4〉 〈0.4, 0.3〉 〈0.2, 0.6〉
H2 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.2〉
H3 〈0.6, 0.3〉 〈0.6, 0.2〉 〈0.5, 0.3〉 〈0.5, 0.4〉
H4 〈0.4, 0.6〉 〈0.4, 0.4〉 〈0.6, 0.2〉 〈0.5, 0.3〉
H5 〈0.6, 0.3〉 〈0.5, 0.1〉 〈0.6, 0.3〉 〈0.6, 0.3〉

.

In the following, we utilize the proposed MAGDM
approach to solve this MAGDM problem.

Step 1: Since all the attributes 	1, 	2,	3 and 	4 are
benefit type, by using Eq. (10), we get NDMxs
L1 = (R̃1

eh)5×4 = (R1
eh)5×4 = (〈ζ 1

eh, �
1
eh〉)5×4,

L2 = (R̃2
eh)5×4 = (R2

eh)5×4 = (〈ζ 2
eh, �

2
eh〉)5×4 and

L3 = (R̃3
eh)5×4 = (R3

eh)5×4 = (〈ζ 3
eh, �

3
eh〉)5×4.

Step 2: By using Eq. (11), we calculate the values of
T 1
eh, T

2
eh and T

3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh

of the NDMx L1 = (R1
eh)5×4, L2 = (R2

eh)5×4,
and L3 = (R3

eh)5×4, respectively, to obtain the
matrices T 1 = (T 1

eh)5×4, T 2 = (T 2
eh)5×4 and

T 3 = (T 3
eh)5×4, where, p = 1, q = 4, λ = 1,

T 1 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

,

T 2 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.5687 0.6852 0.6959 0.7500
0.7960 0.6992 0.7500 0.7492
0.6959 0.6872 0.6460 0.7960
0.7460 0.6188 0.8492 0.7992
0.7992 0.6188 0.8492 0.7992

,

T 3 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.3328 0.3289 0.5131 0.5594
0.5963 0.5216 0.5994 0.5214
0.5191 0.5492 0.5162 0.5868
0.5564 0.3312 0.6260 0.6361
0.6787 0.4306 0.6759 0.6387

.

Step 3: By using Eq. (12), the obtained matrices T 1, T 2

and T 3 and the weights 1 = 0.35,2 = 0.40
and 3 = 0.25 of the DMExs �1, �2 and �3,
respectively, we calculate the weights ς1

eh, ς
2
eh and

ς3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh , respectively,

to construct the weighted matricesW 1 = (ς1
eh)5×4,

W 2 = (ς2
eh)5×4 and W 3 = (ς3

eh)5×4, where p = 1,
q = 4, e = 1, 2, 3, 4, 5 and h = 1, 2, 3, 4,

W 1 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.5297 0.4955 0.4626 0.4431
0.4282 0.4605 0.4376 0.4487
0.4616 0.4592 0.4746 0.4294
0.4444 0.5145 0.4136 0.4223
0.4170 0.4963 0.4076 0.4220

,
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W 2 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.3443 0.3881 0.3679 0.3798
0.3895 0.3680 0.3751 0.3842
0.3672 0.3606 0.3504 0.3906
0.3789 0.3638 0.4014 0.3858
0.3809 0.3510 0.3956 0.3855

,

W 3 =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.1259 0.1164 0.1695 0.1771
0.1824 0.1716 0.1873 0.1671
0.1712 0.1801 0.1750 0.1800
0.1767 0.1217 0.1850 0.1919
0.2021 0.1527 0.1968 0.1925

.

Step 4: By using Eq. (13), we obtain the aggregated p, q-
QOFN Reh = 〈ζeh, �eh〉 by aggregating the p, q-
QOFNs R1

eh = 〈ζ 1
eh, �

1
eh〉, R2

eh = 〈ζ 2
eh, �

2
eh〉 and

R3
eh = 〈ζ 3

eh, �
3
eh〉 that appeared in the NDMxs

L1 = (R1
eh)5×4, L2 = (R2

eh)5×4 and L3 =
(R3

eh)5×4, respectively, to construct the CDMx L =
(Reh)5×4 = 〈ζeh, �eh〉5×4, where λ = 1, p = 1 and
q = 4,

L =

	1 	2 	3 	4⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

H1 〈0.2344, 0.5732〉 〈0.3836, 0.6328〉 〈0.4368, 0.3472〉 〈0.4469, 0.4018〉
H2 〈0.5428, 0.2732〉 〈0.4711, 0.2673〉 〈0.5562, 0.2156〉 〈0.4783, 0.2530〉
H3 〈0.4710, 0.3000〉 〈0.5082, 0.3352〉 〈0.4401, 0.2762〉 〈0.5429, 0.3667〉
H4 〈0.4823, 0.4147〉 〈0.2758, 0.5358〉 〈0.5175, 0.3218〉 〈0.5374, 0.3000〉
H5 〈0.6381, 0.2323〉 〈0.3656, 0.4290〉 〈0.6408, 0.2717〉 〈0.6000, 0.2311〉

.

Step 5: By using Eq. (14), we calculate the value Teh of the
aggregated p, q-QOFN Reh , to get the matrix T =
(Teh)5×4, where e = 1, 2, 3, 4, 5 and h = 1, 2, 3, 4,

T =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1 0.5632 0.3445 0.2450
1 0.7686 0.5634 0.4378
1 0.7314 0.5469 0.3922
1 0.7264 0.4334 0.3265
1 0.8176 0.5444 0.4451

.

Step 6: By using Eq. (15), we calculate the entropies E1,
E2, E3 and E4 of the attributes 	1, 	2, 	3 and 	4,
respectively, where E1 = 0.6890, E2 = 0.7785,
E3 = 0.6444 and E4 = 0.6428. Then, by using
Eq. (16), we calculate the weights w1, w2, w3, w4

of the attributes 	1, 	2, 	3 and 	4, respectively,
where w1 = 0.2497, w2 = 0.1779, w3 = 0.2855
and w4 = 0.2869.

Step 7: By using Eq. (17), the obtained matrix T and the
weights w1 = 0.2497, w2 = 0.1779, w3 = 0.2855
and w4 = 0.2869 of the attributes 	1,	2,	3 and
	4, respectively, we calculate the weight ςeh of
p, q-QOFN Reh , to construct the weighted matrix
W = (ςeh)5×4, where e = 1, 2, 3, 4, 5, h =
1, 2, 3, 4,

W =

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.4816 0.1932 0.1897 0.1355
0.3711 0.2032 0.2391 0.1866
0.3851 0.2006 0.2408 0.1735
0.4187 0.2166 0.2075 0.1571
0.3682 0.2144 0.2292 0.1883

.

Step 8: By using Eq. (18) and obtained weight matrixW =
(ςeh)5×4, we obtain the overall aggregated p, q-
QOFN Re = 〈ζe, �e〉 of the alternative He, where
e = 1, 2, 3, 4, 5, ζ1 = 0.3304, �1 = 0.5466,
ζ2 = 0.5194, �2 = 0.2573, ζ3 = 0.4835, �3 =
0.3177,ζ4 = 0.4535, �4 = 0.4286, ζ5 = 0.5731,
�5 = 0.3172, R1 = 〈0.3304, 0.5466〉, R2 =
〈0.5194, 0.2573〉, R3 = 〈0.4835, 0.3177〉, R4 =

〈0.4535, 0.4286〉 and R5 = 〈0.5731, 0.3172〉.
Step 9: By using Eq. (19), we calculate the score values

S(R1),S(R2), S(R3), S(R4) and S(R5) of the over-
all aggregated p, q-QOFNsR1 = 〈0.3304, 0.5466〉,
R2 = 〈0.5194, 0.2573〉, R3 = 〈0.4835, 0.3177〉,
R4 = 〈0.4535, 0.4286〉 andR5 = 〈0.5731, 0.3172〉,
respectively, where S(R1) = 0.6206,S(R2) =
0.7575, S(R3) = 0.7366, S(R4) = 0.7099 and
S(R5) = 0.7815.

Step 10: Because S(R5) > S(R2) > S(R3) > S(R4) >

S(R1), where S(R1) = 0.6206,S(R2) = 0.7575,
S(R3) = 0.7366, S(R4) = 0.7099 and S(R5) =
0.7815, the PO of the alternatives H1, H2, H3, H4

and H5 is “H5 � H2 � H3 � H4 � H1". Thus, H5

is the best alternative.

Table 1 presents a comparison of the POs of the alterna-
tives H1, H2, H3, H4 and H5 obtained by various MAGDM
approaches for Example 3. From Table 1, it is clear that
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Garg’s MAGDM approach (Garg 2020), Seikh and Man-
dal’s MAGDM approach (Seikh and Mandal 2022), Rahim
et al.’s MAGDM approach (Rahim et al. 2023a), Ahmad et
al.’s MAGDM approach (Ahmad et al. 2024) and the pro-
posed MAGDM approach obtain the same PO “H5 � H2 �
H3 � H4 � H1" of the alternatives H1, H2, H3, H4 and H5.

Example 4 Let H1, H2, H3 and H4 be four alternatives and
	1, 	2, 	3 and 	4 be four attributes. The weights of the
DMExs �1, �2 and �3 are 1 = 0.40,2 = 0.20 and
3 = 0.40, respectively. Each DMEx � j assesses the
attribute 	h of the alternative He by utilizing p, q-QOFN
R̃

j
eh = 〈ζ̃ j

eh, �̃
j
eh〉, where j = 1, 2, 3, e = 1, 2, 3, 4 and

h = 1, 2, 3, 4, to construct the DMx L̃ j = (R̃
j
eh)4×4, shown

as follows:

L̃1 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.5, 0.3〉 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.5, 0.4〉
H2 〈0.2, 0.7〉 〈0.5, 0.4〉 〈0.4, 0.3〉 〈0.2, 0.6〉
H3 〈0.1, 0.1〉 〈0.3, 0.5〉 〈0.5, 0.2〉 〈0.5, 0.3〉
H4 〈0.6, 0.2〉 〈0.3, 0.5〉 〈0.7, 0.2〉 〈0.6, 0.2〉

,

L̃2 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.3, 0.6〉 〈0.2, 0.7〉 〈0.5, 0.4〉 〈0.5, 0.3〉
H2 〈0.2, 0.5〉 〈0.5, 0.6〉 〈0.4, 0.3〉 〈0.5, 0.1〉
H3 〈0.5, 0.3〉 〈0.2, 0.6〉 〈0.5, 0.4〉 〈0.6, 0.3〉
H4 〈0.7, 0.2〉 〈0.4, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.2〉

,

L̃3 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.6, 0.3〉 〈0.4, 0.2〉 〈0.5, 0.1〉 〈0.5, 0.2〉
H2 〈0, 1〉 〈0.6, 0.2〉 〈0, 1〉 〈0.5, 0.4〉
H3 〈0.4, 0.6〉 〈0.4, 0.4〉 〈0.6, 0.2〉 〈0.5, 0.3〉
H4 〈0.6, 0.3〉 〈0.5, 0.1〉 〈0.6, 0.3〉 〈0.6, 0.3〉

.

In the following, we utilize the proposed MAGDM
approach to solve this MAGDM problem.

Step 1: Since all the attributes 	1, 	2, 	3 and 	4 are
benefit type, by using Eq. (10), we get NDMxs
L1 = (R̃1

eh)4×4 = (R1
eh)4×4 = (〈ζ 1

eh, �
1
eh〉)4×4,

L2 = (R̃2
eh)4×4 = (R2

eh)4×4 = (〈ζ 2
eh, �

2
eh〉)4×4 and

L3 = (R̃3
eh)4×4 = (R3

eh)4×4 = (〈ζ 3
eh, �

3
eh〉)4×4.

Step 2: By using Eq. (11), we calculate the values of
T 1
eh, T

2
eh and T

3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh

of the NDMx L1 = (R1
eh)4×4, L2 = (R2

eh)4×4

and L3 = (R3
eh)4×4, respectively, to obtain the

matrices T 1 = (T 1
eh)4×4, T 2 = (T 2

eh)4×4 and

T 3 = (T 3
eh)4×4, where p = 3, q = 3, λ = 1,

T 1 =
⎛
⎜⎝

⎞
⎟⎠

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

,

T 2 =
⎛
⎜⎝

⎞
⎟⎠

0.5490 0.6040 0.6040 0.5305
0.3325 0.5305 0.5185 0.3960
0.5000 0.4510 0.5585 0.5490
0.6040 0.4510 0.6675 0.6040

,

T 3 =
⎛
⎜⎝

⎞
⎟⎠

0.2226 0.2008 0.3204 0.2912
0.1468 0.2411 0.2688 0.2226
0.2745 0.1786 0.2963 0.3264
0.4032 0.2338 0.3968 0.3648

.

Step 3: By using Eq. (12), the obtained matrices T 1, T 2

and T 3 and the weights 1 = 0.40,2 = 0.20
and 3 = 0.40 of the DMExs �1, �2 and �3,
respectively, we calculate the weights ς1

eh, ς
2
eh and

ς3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh , respectively,

to construct the weighted matrices W 1 = (ς1
eh)4×4,

W 2 = (ς2
eh)4×4 and W 3 = (ς3

eh)4×4, where p =
3, q = 3, e = 1, 2, 3, 4 and h = 1, 2, 3, 4,

W 1 =
⎛
⎜⎝

⎞
⎟⎠

0.5598 0.5453 0.5211 0.5512
0.6735 0.5623 0.5603 0.6205
0.5658 0.6086 0.5406 0.5375
0.5055 0.5944 0.4887 0.5126

,

W 2 =
⎛
⎜⎝

⎞
⎟⎠

0.3512 0.3764 0.3597 0.3342
0.2559 0.3409 0.3320 0.2808
0.3233 0.3137 0.3450 0.3372
0.3489 0.3064 0.3728 0.3538

,
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Table 1 A comparison of the POs of alternatives obtained by several MAGDM approaches for Example 3

MAGDM approaches POs

Garg’s MAGDM approach (Garg 2020) H5 � H2 � H3 � H4 � H1

Seikh and Mandal’s MAGDM approach (Seikh and Mandal 2022) H5 � H2 � H3 � H4 � H1

Rahim et al.’s MAGDM approach (Rahim et al. 2023a) H5 � H2 � H3 � H4 � H1

Ahmad et al.’s MAGDM approach (Ahmad et al. 2024) H5 � H2 � H3 � H4 � H1

Proposed MAGDM approach H5 � H2 � H3 � H4 � H1

W 3 =
⎛
⎜⎝

⎞
⎟⎠

0.0890 0.0782 0.1193 0.1147
0.0706 0.0968 0.1076 0.0986
0.1109 0.0776 0.1144 0.1253
0.1456 0.0993 0.1385 0.1336

.

Step 4: By using Eq. (13), we obtain the aggregated p, q-
QOFN Reh = 〈ζeh, �eh〉 by aggregating the p, q-
QOFNs R1

eh = 〈ζ 1
eh, �

1
eh〉, R2

eh = 〈ζ 2
eh, �

2
eh〉 and

R3
eh = 〈ζ 3

eh, �
3
eh〉 that appeared in the NDMxs

L1 = (R1
eh)4×4, L2 = (R2

eh)4×4 and L3 =
(R3

eh)4×4, respectively, to construct the CDMx L =
(Reh)4×4 = 〈ζeh, �eh〉4×4, where λ = 1, p = 3
and q = 3,

L =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.4621, 0.4537〉 〈0.5011, 0.5119〉 〈0.5566, 0.3011〉 〈0.5000, 0.3563〉
H2 〈0.1952, 0.6935〉 〈0.5115, 0.4797〉 〈0.3851, 0.5088〉 〈0.3742, 0.5200〉
H3 〈0.3636, 0.3216〉 〈0.2881, 0.5299〉 〈0.5135, 0.3012〉 〈0.5380, 0.3000〉
H4 〈0.6385, 0.2208〉 〈0.3636, 0.4356〉 〈0.6527, 0.2607〉 〈0.6000, 0.2192〉

.

Step 5: By using Eq. (14), we calculate the value Teh of the
aggregated p, q-QOFN Reh , to get the matrix T =
(Teh)4×4, where e = 1, 2, 3, 4 and h = 1, 2, 3, 4,

T =
⎛
⎜⎝

⎞
⎟⎠

1 0.5027 0.2492 0.1427
1 0.3369 0.1724 0.0798
1 0.5074 0.2220 0.1230
1 0.6248 0.3016 0.1900

.

Step 6: By using Eq. (15), we calculate the entropies E1,
E2, E3 and E4 of the attributes 	1, 	2, 	3 and 	4,
respectively, where E1 = 0.9336, E2 = 0.9868,
E3 = 0.9480 and E4 = 0.9614. Then, by using
Eq. (16), we calculate the weights w1, w2, w3, w4

of the attributes 	1, 	2, 	3 and 	4, respectively,
where w1 = 0.3902, w2 = 0.0775, w3 = 0.3054
and w4 = 0.2268.

Step 7: By using Eq. (17), the obtained matrix T and the
weights w1 = 0.3902, w2 = 0.0775, w3 = 0.3054

and w4 = 0.2268 of the attributes 	1,	2,	3 and
	4, respectively, we calculate the weight ςeh of
p, q-QOFN Reh , to construct the weighted matrix
W = (ςeh)4×4, where e = 1, 2, 3, 4, h = 1, 2, 3, 4,

W =
⎛
⎜⎝

⎞
⎟⎠

0.7258 0.0724 0.1416 0.0602
0.8012 0.0536 0.1081 0.0371
0.7429 0.0749 0.1291 0.0531
0.6800 0.0844 0.1605 0.0751

.

Step 8: By using Eq. (18) and obtained weight matrix
W = (ςeh)4×4, we obtain the overall aggregated

p, q-QOFN Re = 〈ζe, �e〉 of the alternative He,
where e = 1, 2, 3, 4, ζ1 = 0.4830, �1 = 0.4381,
ζ2 = 0.2770, �2 = 0.6639, ζ3 = 0.3985,
�3 = 0.3443,ζ4 = 0.6231, �4 = 0.2617, R1 =
〈0.4830, 0.4381〉, R2 = 〈0.2770, 0.6639〉, R3 =
〈0.3985, 0.3443〉 and R4 = 〈0.6231, 0.2617〉.

Step 9: By using Eq. (19), we calculate the score values
S(R1), S(R2), S(R3) and S(R4) of the overall
aggregated p, q-QOFNs R1 = 〈0.4830, 0.4381〉,
R2 = 〈0.2770, 0.6639〉, R3 = 〈0.3985, 0.3443〉
and R4 = 〈0.6231, 0.2617〉, respectively, where
S(R1) = 0.5143,S(R2) = 0.3643, S(R3) =
0.5112 and S(R4) = 0.6120.

Step 10: Because S(R4) > S(R1) > S(R3) > S(R2),
where S(R1) = 0.5143,S(R2) = 0.3643, S(R3) =
0.5112 and S(R4) = 0.6120, the PO of the alterna-
tives H1, H2, H3 and H4 is “H4 � H1 � H3 � H2".
Thus, H4 is the best alternative.

Table 2 presents a comparison of the POs of the alter-
natives H1, H2, H3 and H4 obtained by various MAGDM
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approaches for Example 4. From Table 2, it is clear that
Seikh and Mandal’s MAGDM approach (Seikh and Man-
dal 2022) and Ahmad et al.’s MAGDM approach (Ahmad
et al. 2024) cannot handle this MAGDM problem because
it get the indeterminant form in the intermediate steps while
solving this MAGDM problem. However, Garg’s MAGDM
approach (Garg 2020), Rahim et al.’s MAGDM approach
(Rahim et al. 2023a) and the proposed MAGDM approach
obtain the same PO “H4 � H1 � H3 � H2" for the
alternatives H1, H2, H3 and H4. Therefore, the proposed
MAGDM approach can overcome the shortcomings of Seikh
and Mandal’s MAGDM approach (Seikh and Mandal 2022)
and Ahmad et al.’s MAGDM approach (Ahmad et al. 2024)
in this case.

Example 5 Let H1, H2, H3 and H4 be four alternatives and
	1, 	2, 	3 and 	4 be four attributes. The weights of the
DMExs �1, �2 and �3 are 1 = 0.40,2 = 0.40 and
3 = 0.20, respectively. Each DMEx � j assesses the
attribute 	h of the alternative He by utilizing p, q-QOFN
R̃

j
eh = 〈ζ̃ j

eh, �̃
j
eh〉, where j = 1, 2, 3, e = 1, 2, 3, 4 and

h = 1, 2, 3, 4, to construct the DMx L̃ j = (R̃
j
eh)4×4, shown

as follows:

L̃1 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.4, 0.2〉 〈0.5, 0.1〉 〈0, 0.2〉 〈0.5, 0.4〉
H2 〈0.1, 0.6〉 〈0.4, 0.3〉 〈0.3, 0.3〉 〈0.2, 0.6〉
H3 〈0, 1〉 〈0.3, 0.4〉 〈0.4, 0.1〉 〈0.5, 0.3〉
H4 〈0.5, 0.1〉 〈0.2, 0.4〉 〈0.7, 0.2〉 〈0.6, 0.2〉

,

L̃2 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.2, 0.5〉 〈0.1, 0.6〉 〈0.4, 0.3〉 〈0.5, 0.3〉
H2 〈0.1, 0.4〉 〈0.4, 0.5〉 〈0.3, 0.2〉 〈0, 0.1〉
H3 〈0.4, 0.1〉 〈0.1, 0.5〉 〈0.5, 0.4〉 〈0.6, 0.3〉
H4 〈0.6, 0.1〉 〈0.3, 0.2〉 〈0.5, 0.2〉 〈0.6, 0.2〉

,

L̃3 =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.5, 0.2〉 〈0.3, 0.1〉 〈0.4, 0.2〉 〈0.5, 0.2〉
H2 〈0, 0.1〉 〈0.5, 0.1〉 〈0.4, 0.2〉 〈0.4, 0.3〉
H3 〈0.3, 0.5〉 〈0.3, 0.3〉 〈0.6, 0.2〉 〈0.4, 0.2〉
H4 〈0.5, 0.2〉 〈0.5, 0.1〉 〈0, 0.2〉 〈0.5, 0.3〉

.

In the following, we utilize the proposed MAGDM
approach to solve this MAGDM problem.

Step 1: Since all the attributes 	1, 	2, 	3 and 	4 are
benefit type, by using Eq. (10), we get NDMxs
L1 = (R̃1

eh)4×4 = (R1
eh)4×4 = (〈ζ 1

eh, �
1
eh〉)4×4,

L2 = (R̃2
eh)4×4 = (R2

eh)4×4 = (〈ζ 2
eh, �

2
eh〉)4×4 and

L3 = (R̃3
eh)4×4 = (R3

eh)4×4 = (〈ζ 3
eh, �

3
eh〉)4×4.

Step 2: By using Eq. (11), we calculate the values of
T 1
eh, T

2
eh and T

3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh

of the NDMx L1 = (R1
eh)4×4, L2 = (R2

eh)4×4 and
L3 = (R3

eh)4×4 respectively, to obtain the matri-
ces T 1 = (T 1

eh)4×4, T 2 = (T 2
eh)4×4 and T 3 =

(T 3
eh)4×4, where p = 3, q = 3, λ = 1,

T 1 =
⎛
⎜⎝

⎞
⎟⎠

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

,

T 2 =
⎛
⎜⎝

⎞
⎟⎠

0.5280 0.5620 0.4960 0.5305
0.3925 0.5185 0.5000 0.3960

0 0.4815 0.5315 0.5490
0.5620 0.4720 0.6675 0.6040

,

T 3 =
⎛
⎜⎝

⎞
⎟⎠

0.2331 0.2206 0.2572 0.2912
0.1839 0.2434 0.2547 0.1978

0 0.2109 0.2820 0.3264
0.3414 0.2405 0.3728 0.3648

.

Step 3: By using Eq. (12), the obtained matrices T 1, T 2

and T 3 and the weights 1 = 0.40,2 = 0.40
and 3 = 0.20 of the DMExs �1, �2 and �3,
respectively, we calculate the weights ς1

eh, ς
2
eh and

ς3
eh of p, q-QOFNsR

1
eh,R

2
eh andR

3
eh , respectively,

to construct the weighted matrices W 1 = (ς1
eh)4×4,

W 2 = (ς2
eh)4×4 and W 3 = (ς3

eh)4×4, where p =
3, q = 3, e = 1, 2, 3, 4 and h = 1, 2, 3, 4,

W 1 =
⎛
⎜⎝

⎞
⎟⎠

0.5650 0.5556 0.5712 0.5512
0.6329 0.5661 0.5703 0.6274

1 0.5879 0.5528 0.5375
0.5302 0.5844 0.4928 0.5126

,

W 2 =
⎛
⎜⎝

⎞
⎟⎠

0.3409 0.3569 0.3238 0.3342
0.2839 0.3355 0.3259 0.2839

0 0.3235 0.3358 0.3372
0.3405 0.3152 0.3760 0.3538

,

123



Granular Computing             (2024) 9:75 Page 15 of 17    75 

Table 2 A comparison of the
POs of alternatives obtained by
several MAGDM approaches for
Example 4

MAGDM approaches POs

Garg’s MAGDM approach (Garg 2020) H4 � H1 � H3 � H2

Seikh and Mandal’s MAGDM approach (Seikh and Mandal 2022) Cannot handle

Rahim et al.’s MAGDM approach (Rahim et al. 2023a) H4 � H1 � H3 � H2

Ahmad et al.’s MAGDM approach (Ahmad et al. 2024) Cannot handle

Proposed MAGDM approach H4 � H1 � H3 � H2

Table 3 A comparison of the
POs of alternatives obtained by
several MAGDM approaches for
Example 5

MAGDM approaches POs

Garg’s MAGDM approach (Garg 2020) H1 = H4 � H2 � H3

Seikh and Mandal’s MAGDM approach (Seikh and Mandal 2022) Cannot handle

Rahim et al.’s MAGDM approach (Rahim et al. 2023a) H1 = H2 = H4 � H3

Ahmad et al.’s MAGDM approach (Ahmad et al. 2024) H4 � H1 � H2 � H3

Proposed MAGDM approach H4 � H1 � H2 � H3

W 3 =
⎛
⎜⎝

⎞
⎟⎠

0.0941 0.0875 0.1049 0.1147
0.0831 0.0984 0.1038 0.0886

0 0.0886 0.1113 0.1253
0.1293 0.1004 0.1312 0.1336

.

Step 4: By using Eq. (13), we obtain the aggregated p, q-
QOFN Reh = 〈ζeh, �eh〉 by aggregating the p, q-
QOFNs R1

eh = 〈ζ 1
eh, �

1
eh〉, R2

eh = 〈ζ 2
eh, �

2
eh〉 and

R3
eh = 〈ζ 3

eh, �
3
eh〉 that appeared in the NDMxs

L1 = (R1
eh)4×4, L2 = (R2

eh)4×4 and L3 =
(R3

eh)4×4, respectively, to construct the CDMx L =
(Reh)4×4 = 〈ζeh, �eh〉4×4, where λ = 1, p = 3
and q = 3,

L =

	1 	2 	3 	4⎛
⎜⎝

⎞
⎟⎠

H1 〈0.3700, 0.3631〉 〈0.4163, 0.4268〉 〈0.3016, 0.2419〉 〈0.5000, 0.3563〉
H2 〈0.0971, 0.5371〉 〈0.4121, 0.3856〉 〈0.3136, 0.2661〉 〈0.2203, 0.5170〉
H3 〈0, 1〉 〈0.2649, 0.4317〉 〈0.4663, 0.2841〉 〈0.5290, 0.2909〉
H4 〈0.5383, 0.1240〉 〈0.2952, 0.3421〉 〈0.6000, 0.2000〉 〈0.5885, 0.2192〉

.

Step 5: By using Eq. (14), we calculate the value Teh of the
aggregated p, q-QOFN Reh , to get the matrix T =
(Teh)4×4, where e = 1, 2, 3, 4 and h = 1, 2, 3, 4,

T =
⎛
⎜⎝

⎞
⎟⎠

1 0.5014 0.2493 0.1263
1 0.4230 0.2142 0.1084
1 0 0 0
1 0.5770 0.2844 0.1718

.

Step 6: By using Eq. (15), we calculate the entropies E1,
E2, E3 and E4 of the attributes 	1, 	2, 	3 and 	4,

respectively, where E1 = 0.7313, E2 = 0.9963,
E3 = 0.9781 and E4 = 0.9634. Then, by using
Eq. (16), we calculate the weights w1, w2, w3, w4

of the attributes 	1, 	2, 	3 and 	4, respectively,
where w1 = 0.8119, w2 = 0.0113, w3 = 0.0662
and w4 = 0.1106.

Step 7: By using Eq. (17), the obtained matrix T and the
weights w1 = 0.8119, w2 = 0.0113, w3 = 0.0662
and w4 = 0.1106 of the attributes 	1,	2,	3 and
	4, respectively, we calculate the weight ςeh of
p, q-QOFN Reh , to construct the weighted matrix
W = (ςeh)4×4, where e = 1, 2, 3, 4 and h =
1, 2, 3, 4,

W =
⎛
⎜⎝

⎞
⎟⎠

0.9574 0.0067 0.0195 0.0165
0.9633 0.0056 0.0168 0.0142

1 0 0 0
0.9482 0.0076 0.0220 0.0222

.

Step 8: By using Eq. (18) and obtained weight matrix
W = (ςeh)4×4, we obtain the overall aggregated
p, q-QOFN Re = 〈ζe, �e〉, of the alternative He,
where e = 1, 2, 3, 4, ζ1 = 0.3722, �1 = 0.3619,
ζ2 = 0.1249, �2 = 0.5336, ζ3 = 0, �3 = 1,ζ4 =
0.5399, �4 = 0.1361, R1 = 〈0.3722, 0.3619〉,
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R2 = 〈0.1249, 0.5336〉, R3 = 〈0, 1〉 and R4 =
〈0.5399, 0.1361〉.

Step 9: By using Eq. (19), we calculate the score val-
ues S(R1),S(R2), S(R3) and S(R4) of the overall
aggregated p, q-QOFNs R1 = 〈0.3722, 0.3619〉,
R2 = 〈0.1249, 0.5336〉, R3 = 〈0, 1〉 and R4 =
〈0.5399, 0.1361〉, respectively, where S(R1) =
0.5021,S(R2) = 0.4250, S(R3) = 0 and S(R4) =
0.5774.

Step 10: Because S(R4) > S(R1) > S(R2) > S(R3),
where S(R1) = 0.5021,S(R2) = 0.4250, S(R3) =
0 and S(R4) = 0.5774, the PO of the alternatives
H1, H2, H3 and H4 is “H4 � H1 � H2 � H3".
Thus, H4 is the best alternative.

Table 3 presents a comparison of the POs of the alter-
natives H1, H2, H3 and H4 obtained by various MAGDM
approaches for Example 5. From Table 3, it is clear that
Seikh and Mandal’s MAGDM approach (Seikh and Mandal
2022) cannot handle thisMAGDMproblembecause it get the
indeterminant form in the intermediate steps while solving
thisMAGDMproblem.However,Garg’sMAGDMapproach
(Garg 2020) obtain the PO “H1 = H4 � H2 � H3" the
alternatives H1, H2, H3 and H4, where it cannot distinguish
the PO between the alternatives H1 and H4 in this particu-
lar case. While, Rahim et al.’s MAGDM approach (Rahim
et al. 2023a) obtain the PO “H1 = H2 = H4 � H3" for the
alternatives H1, H2, H3, and H4, where it cannot distinguish
the PO among the alternatives H1, H2 and H4 in this par-
ticular case. Moreover, Ahmad et al.’s MAGDM approach
(Ahmad et al. 2024) and the proposed MAGDM approaches
obtain the same PO “H4 � H1 � H2 � H3" of the alterna-
tives H1, H2, H3, and H4. Therefore, the proposedMAGDM
approach can overcome the shortcomings of Seikh andMan-
dal’s MAGDM approach (Seikh and Mandal 2022), Garg’s
MAGDMapproach (Garg 2020) andRahim et al.’sMAGDM
approach (Rahim et al. 2023a) in this case.

6 Conclusion

In this paper, we have proposed new multiplication opera-
tion and scalar power operation for p, q-quasirung orthopair
fuzzy numbers (p, q-QOFNs) based on Yager’s norm. Then,
by using the proposed multiplication operation and scalar
power operation of p, q-QOFNs and the concept of prior-
itized geometric aggregation operator (AO), we have pro-
posed the p, q-quasirung orthopair fuzzy Yager prioritized
weighted geometric (p, q-QOFYPWG) AO for aggregating
p, q-QOFNs. We have also proved several properties of the
proposed p, q-QOFYPWG AO of p, q-QOFNs. However,
based on the proposed p, q-QOFYPWG AO, we have pro-
posed a new MAGDM approach under the p, q-QOFNs

environment. Afterwards, we have utilized the proposed
MAGDM approach to solve different numerical MAGDM
problems and compare the preference orders (POs) obtained
from the proposed MAGDM method with POs obtained
from Garg’s MAGDM approach (Garg 2020), Seikh and
Mandal’s MAGDM approach (Seikh and Mandal 2022),
Rahim et al.’s MAGDM approach (Rahim et al. 2023a) and
Ahmadet al.’sMAGDMapproach (Ahmadet al. 2024). From
Example 3, Example 4 and Example 5, it is clear that the pro-
posed MAGDM method can overcome the shortcomings of
Garg’sMAGDM approach (Garg 2020), Seikh andMandal’s
MAGDM approach (Seikh andMandal 2022), Rahim et al.’s
MAGDM approach (Rahim et al. 2023a) and Ahmad et al.’s
MAGDM approach (Ahmad et al. 2024), where they can not
distinguish between the POs of available alternatives. The
proposedMAGDMapproach offers a useful approach to deal
with MAGDM problems in the p, q-QOFNs environment.

Author Contributions Each author has equal contribution.

Funding Authors have no funding.

Data availability The numerical data used to support the findings of this
study are available from the corresponding author upon request.

Declarations

Conflict of interest The authors declare that they have no Conflict of
interest.

References

Ahmad T, Rahim M, Yang J, Alharbi R, Khalifa HAEW (2024)
Development of p, q- quasirung orthopair fuzzy Hamacher aggre-
gation operators and its application in decision-making problems.
Heliyon. https://doi.org/10.1016/j.heliyon.2024.e24726

AkramM, Ilyas F, Garg H (2020) Multi-criteria group decision making
based on ELECTRE I method in Pythagorean fuzzy information.
Soft Comput 24:3425–3453

Alcantud JCR (2023) Multi-attribute group decision-making based on
intuitionistic fuzzy aggregation operators definedbyweighted geo-
metric means. Granular Comput 8(6):1857–1866

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst
20(1):87–96
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