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Abstract
Granular neural networks (GNNs) are a type of advanced prediction models that produce information granules, offer more

abstract and adaptable results. In this study, we address three significant issues in time series prediction within a federated

learning (FL) scenario: the management of distributed data, the aggregation of GNNs, and the optimization of granularity

levels. Traditional centralized models are insufficient for managing distributed data while ensuring privacy and reducing

communication costs, and existing studies on GNNs have not explored their aggregation under a federated framework,

which is essential for enhancing model robustness and stability. Additionally, determining the optimal level of granularity

for GNNs remains a challenge, impacting the model’s predictive accuracy and computational efficiency. To address these

issues, we propose a novel federated learning framework that enhances the performance of GNNs for time series pre-

diction. Our approach involves a comprehensive FL framework that enables the collaborative training of local GNNs,

refining their granular weights through global aggregation, ensuring better privacy management, and reducing commu-

nication overhead. By focusing on the aggregation of parameters within the federated scenario, we enhance the robustness

and stability of GNNs which are crucial for effective time series prediction. Furthermore, we determine the optimal levels

of information granularity by employing multi-objective optimization techniques, specifically using Pareto fronts to

balance the trade-offs between different objectives. Experiments on predicting air quality index for 35 stations in Beijing

(China) show the effectiveness of our method.
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1 Introduction

Granular neural networks (GNNs) have been proposed and

designed in several studies according to the location of

‘‘information granules’’: (1) input data are transformed into

information granules; (2) the structure of a network is

granulated; (3) outputs are information granules; (4) any

combinations of the above three cases. No matter which

type of GNNs, they all aim to provide more abstract and

general models. The existing studies of GNN have defined

their structures, shown the learning theories and testified

their effectiveness (Pedrycz 2018; Qin et al. 2023). How-

ever, there is no study exploring the aggregation of GNNs

to form a global GNN. This is the main motivation of our

study. In fact, we are also motivated by the wide applica-

tion of federated learning (FL) (Yang et al. 2019; Zhang

et al. 2022; Pedrycz 2023), Which FL technologies are

powerful when aggregating GNNs become one of our

objectives.

Recently, more and more intelligent devices are equip-

ped on the client sides to collect data. In general, those data

are then transmitted to a server side for modeling or

analysis. However, this increases the risk of privacy dis-

closure and the communication cost. In addition, no one

can guarantee that there is no information lost during the

transmission process. Hence, training a model locally and

sending parameters to the server side to obtain some

guidance become a popular selection. This is called fed-

erated learning. In general, it is hoped to obtain high
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accuracy of local models or pursue global insight into

complex problems.

Among the large amount of prediction models of time

series, granular models own a special property that they

can capture more abstract outputs and reflect more abstract

structures which are more like the way human beings’

thinking. A single granular neural network reveals the

performance of a local data set; whereas the aggregation of

several local granular neural networks motivates us to

explore whether the global result shows more useful or

better knowledge than the local ones. Therefore, the main

objective of this work is to design an effective framework

which aggregates local granular networks to create a global

time series prediction model.

In brief, the main contributions are:

1. We design a comprehensive federated learning frame-

work to interactively train local granular neural

networks. In this case, the granular weights obtain a

second round of refining from a global perspective.

2. The robustness and stability of GNNs when executing

FL strategies are testified and verified using air quality

index prediction data.

3. The best level of information granularity of a GNN is

determined through drawing pareto fronts and listing

values of a hybrid objective function.

The organization of the paper is as follows:

Section 2 introduces several fundamental concepts

including GNN, particle swarm optimization (PSO) and

federated learning. Section 3 elaborates on our methodol-

ogy. Section 4 show the experimental studies and com-

parison. Final is the conclusion in Sect. 5.

2 Preliminaries

In this section, we will introduce some preliminaries:

granular neural networks (GNN), optimization of multiple

variables with strict constraints, and federated learning.

2.1 GNN

Granular neural networks are a type of abstract models that

can deal with both numerical and text data and output

corresponding more abstract data units. Researchers have

proposed several kinds of granular neural networks with

different architectures for different tasks in literature.

Melin and Sánchez (2018) delved into multi-objective

optimization strategies for modular GNNs in pattern

recognition tasks, underlining their versatility. Sánchez

et al. (2020) compared variants of particle swarm opti-

mization with fuzzy dynamic parameter adaptation for

modular GNNs in human recognition tasks. Al-Hmouz

et al. (2015) laid foundational groundwork in granular

computing for time series description and prediction. Chen

and Chen (2015) showcased the potential of a hybrid fuzzy

time series model based on granular computing for stock

price forecasting, emphasizing its applicability in financial

settings. Ghiasi et al. (2022) addressed uncertainty quan-

tification in pollutant longitudinal dispersion coefficient

prediction using a granular computing-based neural net-

work model, highlighting the importance of considering

uncertainty in predictive modeling tasks. Song et al. (2023)

proposed feature ranking techniques within an improved

GNN framework, enhancing interpretability and

performance.

In recent years, there are more and more studies on

granular computing-based methods for time series predic-

tion. Chen et al. (2019) proposed a novel fuzzy time series

forecasting method based on interval ratio and particle

swarm optimization (PSO) technique, which exhibited

excellent performance. Pant and Kumar (2022) introduced

a weighted fuzzy time series forecasting method based on

particle swarm optimization and computational algorithms

which add to the toolbox of time series prediction tech-

niques. Vovan (2023) explored forecasting models for

interval time series using fuzzy clustering techniques and

augmented the methodologies available for tackling

uncertainty in time series data. Song et al. (2023) demon-

strated the efficacy of GNNs in time series prediction and

captured complex temporal patterns. Liu and Wang (2024)

proposed a method for long-term time series prediction

based on fuzzy time series and information granulation,

shedding light on handling long-range dependencies in

forecasting.

In more recent developments, Karahasan et al. (2024)

unveiled a deep recurrent hybrid artificial neural network

for forecasting seasonal time series, showcasing advance-

ments in modeling intricate temporal patterns. Song et al.

(2024) introduced a hybrid time series interval prediction

method by combining a granular neural network and

ARIMA to increase prediction accuracy. Furthermore,

Song and Wang (2024) presented a complexity-aided time

series model which contributes to the evolution of

methodologies in the context of granular neural networks.

These advancements highlight the growing sophistication

and effectiveness in time series forecasting methodologies,

especially within the realm of granular neural networks.

This study will concentrate on developing more abstract

granular neural networks from the perspective of parame-

ters and thus, we choose granular neural networks intro-

duced by Song and Pedrycz (2013). This kind of granular

neural networks is developed on a basis of numeric neural

networks and optimized by using swarm optimization

algorithms, such as particle swarm optimization (PSO).
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Let’s firstly look at the learning process of a GNN. The

process is illustrated in Fig. 1.

A numeric neural network is well trained using an

original data set and a weight matrix W is returned. A

system level of information granularity e is provided by

experts. W = [wij] together with e is used to granulate W.

Some protocols are defined by Song and Pedrycz (2013)

and Song et al. (2024) to help the granulation process. Now

we obtain a granular weight matrix ~W and a set of levels of

information granularities which are stored in a matrix

E = [eij.]. The original numeric neural network becomes a

granular one due to the granular connections and the

granular neural network defines some advanced arithmeti-

cal operations for its training. After calculating the objec-

tive function value using E, ~W and the data set, a

comparison is done to determine whether stopping or

starting an optimization process. This kind of optimization

problem is often assisted by swarm intelligent algorithms,

such as PSO. Finally, the best granular neural network is

returned as well as the best set of information granularities.

There are several classical frameworks of information

granules, such as intervals, fuzzy sets, and rough sets. In

this study, intervals are chosen are the formal information

granules. This is because intervals can capture the abstract

information of original data with fewer numbers of

parameters which determines the subsequent computing

resources. Assume that a numeric weight is represented by

wij and its extended interval form is fwij .

fwij ¼ ½w�ij ;wþij � ð1Þ

Thus, a critical issue is how to define w�ij and wþij . To
correlate the information granularity and the original

weight wij, we set the information granularity (eij) as a

parameter like learning rate to control the moving

amplitude.

w�ij ¼ wij � e�ij � wij ð2Þ

wþij ¼ wij þ eþij � wij ð3Þ

All possible allocation protocols are defined in (Song

and Wang 2024). In this study, we use the following

assumption to simplify the optimization process:

eij ¼ e�ij ¼ eþij ð4Þ

where E = [eij.]. This simple setting will decrease the size

of optimizing parameters in a half way. If a further better

result is required, a refinement operation may be executed

locally. Now the number of parameters that need to be

optimized is equal to the number of weights (and biases) of

the numeric neural network. Note that there should be

some constraints between the system level of information

granularity e and each eij. Simultaneously, each eij should
change in a rational range. Therefore, we require:

e� n� m ¼
X

n

i¼1

X

m

j¼1
eij; 0\eij\1 ð5Þ

The equation sets a constraint that there is a system level

of information granularity and all parameters under the

system are controlled by this information granularity. It

formally defines the relationship between the system level

and the structure level from the mathematical perspective.

The inequation is rational and mainly functions when

executing the optimization process.

2.2 Optimization of a set of parameters
with strict constraints

A challenging issue in the optimization research field is

when optimizing a set of variables that has no guidance for

the update process. In this case, heuristic optimization

methods provide a competitive alternative, and swarm

optimization methods, in particular. Swarm optimization

algorithms are computing algorithms that simulate swarm

activities in nature or human society. The algorithms learn

the interaction and rules among individuals in the swarm.

Fig. 1 The training process of a GNN
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Particle swarm optimization (PSO) is a type of swarm

intelligence optimization technique, proposed by Kennedy

and Eberhart (1995). It is inspired by the foraging behavior

of bird flocks and simulates the behavior of individual birds

within a flock when searching for food. PSO shows strong

optimization capabilities in a variety of scientific and

engineering fields, especially for optimizing continuous

nonlinear problems. It is an iterative process and stops until

some conditions are satisfied.

The process begins by randomly generating a group of

particles and each particle is described using a random

position and a velocity. A fitness function is predefined

according to the problem. At each generation, each particle

records its best position until now (pbest) and the best

position among all particles is recorded as well (gbest). Each

particle’s velocity and position are then updated based on

pbest and gbest. The evaluation and updating are repeated

until a maximum number of iterations is reached or other

termination criteria are met. Thus, the core of PSO is the

updating of speed and position. Please refer to the fol-

lowing formula:

v
ðtþ1Þ
id ¼ x � vðtÞid þ c1 � rand1ðpbest;id � x

ðtÞ
id Þ þ c2 � rand2

� ðgbest;d � x
ðtÞ
id Þ

ð6Þ

x
ðtþ1Þ
id ¼ x

ðtÞ
id þ v

ðtþ1Þ
id ð7Þ

where v
ðtÞ
id and x

ðtÞ
id represent the velocity and position of the

i-th particle in the d-th dimension during the t-th iteration,

respectively. rand1 and rand2 are random numbers within

the [0,1] interval. pbest;id is the best position of the i-th

particle in the d-th dimension, and gbest;d is the best global

solution in the d-th dimension. x is the inertia weight that

controls the preservation of particle velocity. c1 and c2 are

learning factors which are often regarded as cognitive and

social parameters, respectively. When the algorithm ter-

minates, it outputs the best vector and its fitness value,

serving as the best solution to the problem. Depending on

the above discussion, it seems that any multiple-parameter

optimization problems can be solved by using PSO as long

as the objective function is predefined or provided.

Q ¼ f ðdata;W ; eÞ ð8Þ

2.3 Federated learning

With the fast development of Internet of Things (IoT), a

plethora of IoT devices is utilized to collect data for

analysis or prediction tasks (Zhang et al. 2022). In this

case, traditional machine learning schemes become less

efficient and more complex because transferring distributed

data from many IoT devices to a central location is a

complicated and time-consuming process (Tonellotto et al.

2021; Xing et al. 2022). Therefore, federated learning or

local–global modeling strategies become popular. When

considering privacy or communication issues between

different sides, the term ‘‘federated learning’’ is more

proper; when modeling issues in client and server sides are

the main requirements, the terms ‘‘local and global’’ can be

used to describe the related methods as well. In this paper,

we concentrate on comparing the performances of feder-

ated learning methods with centralized learning methods

and not consider the privacy or communication issues.

Recent studies demonstrate the effectiveness of feder-

ated learning in diverse domains. Paragliola (2022a, b)

applied federated learning in eHealth time-series classifi-

cation, while Repetto et al. (2022) optimized goal pro-

gramming for time series forecasting. Truong et al. (2022)

developed a light-weight federated learning-based anomaly

detection system for time-series data in industrial control

systems. Dogra et al. (2023) proposed a federated learning

approach for consumer profiling in energy load forecasting.

Furthermore, Paragliola (2023) introduced a federated

learning-based approach to recognize subjects at high risk

of hypertension in a non-stationary scenario. Perifanis et al.

(2023) explored federated learning for 5G base station

traffic forecasting, improving network management

strategies.

Applications of federated learning approaches for time-

series predictions are still challenging because there are a

lot of complex conditions or requirements (Liu et al. 2020).

One important application field is the climate study,

especially the air quality issues. The study of air quality

index issues is important due to its critical effects on

human health, crop growth and daily life. For instance, in

Beijing (China), the air pollution issues have attracted

more attention than before and many observation stations

are allowed to collect different types of gases to monitor air

quality. Thus, air quality prediction research may help

people to make better decisions and avoid potential risks.

This study will run some experiments on the air quality

index data to verify the effectiveness of the proposed

method.

3 Methodology

We propose a federated learning framework to refine

individual information granularity matrix for time series

prediction problems. All individual models are built upon

numeric neural networks and then extended into granular

neural networks. The federated learning strategy is utilized

to refine each individual local granular model from both the

local and global perspectives. Figure 2 shows the archi-

tecture of the framework.
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Assume that there are p data (time series) observation

stations or sensors and they constantly collect time series

independently. At each station, we build a prediction model

using an artificial neural network (shallow or deep). The

type of neural networks depends on the complexity of the

time series. To make the subsequent aggregation process

easier, we require that each local station uses the same

architecture of the network, i.e., the same numbers of

hidden layers and the same number of input and output

neurons. Next, for each station, three items are adopted to

develop a GNN: an original time series, a numeric weight

matrix, and a system level of information granularity. The

system level of information granularity is assigned by

experts through their experiences or randomly. For stan-

dardization purpose, the information granularity is set in

the range of zero and one ([0, 1]). Note that each local

system level of information granularity may be the same or

not and this issue is another interesting topic that will be

further discusses in our future work.

Now, each local GNN is well trained and returns an

optimized set of information granularities. Next, we design

a federated learning framework to explore whether each

local granular model can be further refined. Furthermore,

we eager to summarize the future trend of the entire region

through the global–local modeling process. Among all

federated learning approaches, the federated averaging

algorithm shows outstanding performances and is preferred

in many papers (Li et al. 2020). Therefore, we choose

federated averaging algorithm as the federated learning

framework and utilize it to update the parameters of local

models. The term ‘‘averaging’’ reflects the way to compute

the global parameters: ~E. Please refer to formula (9).

~Eðt þ 1Þ ¼
Pp

i¼1 EiðtÞ
p

ð9Þ

where Ei(t) represents the parameters (weights) of the i-th

local model at time t, and ~E(t ? 1) refers to the aggregated

matrix using all local models at time t. The federated

averaging algorithm aggregates all local parameters

through computing their mean values. Take neural net-

works for example. In the training process of each local

model, Ei(t) is obtained through the backpropagation

method and then Ei(t ? 1) is obtained at the global model

side.

It is an iterative process which includes local iterative

processes. The interactive process is illustrated in Fig. 3,

and the specific procedure is shown in Algorithm 1.

Note that all local models have identical network

structures in Fig. 3. The set of GNN parameters is opti-

mized through employing evolutionary methods like PSO.

Therefore, we need to define a hybrid objective function

comprising two objectives:

QðQ0Þ ¼ coverage=ðwidthþ 1Þ ð10Þ

In formula (10), ‘‘coverage’’ calculates the ratio that

how many real outputs are covered by the intervals of the

final model. ‘‘width’’ describes the average length of all

output intervals. These two criteria are the most important

features of information granules and thus are set as two

objectives when constructing models.

The algorithm is summarized as follows.

Algorithm 1: GNN with federated learning (GNN-FL)

Input: Number of clients P, number of global iterations T, number

of local epochs K for PSO, same local model parameter matrix

W0

Output: granular matrix of each local model EpðTÞ
Initialization: Initialize all clients with the same local model

granular matrix E0

for t = 0, …, T do

for i 2 ð1; . . .;PÞ in parallel do

Perform K rounds of PSO

EiðtÞ  PSOð ~EðtÞ;W0Þ
end for

~Eðt þ 1Þ  
Pp

i¼1 EiðtÞ
p

end for

Fig. 2 The architecture of the proposed framework
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4 Experimental studies

All the experiments are run on a computer with an Intel

Core i7 processor, 16 GB of RAM, and Windows 11

operating system. The programming environment is Visual

Studio Code, and the experiments were coded in Python

3.7. For deep learning tasks, the PyTorch framework was

employed.

In this section, we apply our method to solve a real time

series prediction task: an air quality prediction issue in

Beijing, China. The data are collected from 35 monitoring

stations and we choose several of them to form groups for

FL analysis. The link of the data set is: http://www.

bjmemc.com.cn/. We choose the univariate time series and

one-step ahead prediction topic. 35 time series of year 2022

are downloaded as the training and testing data. The ratio

of the test set to training set is 2:8.

We conduct experiments on three groups of stations, and

show their results with and without FL at different granu-

larities. The experiments for each group are repeated five

times and the averaged value is taken as the result. The

three groups are: (1) station 1 and station 6; (2) station 16

and station 17; (3) station 29 and station 30. Each group

has two stations and this number can be modified according

to the experts or other conditions. Here, we choose two

stations because they show better results in numeric fed-

erated learning methods.

We compare the performances of federated learning and

centralized learning using GNN through visualizing the

hybrid value of the objective function and the individual

criterion in the objective function.

4.1 The comparison of federated learning
and centralized learning of GNN in terms
of the hybrid objective function value

Three different levels of information granularities are

adopted (0.005, 0.02 and 0.1) and it can be inferred that

higher level of granularity will return larger coverage and

width. To compare the performances of federated learning

GNN with centralized learning GNN, we use Q and Q0 to
represent the two methods, respectively. The definition of

the objective function is the same. Please refer to formula

(10). Larger values reveal better performance of the model.

Table 1 shows the objective values using FL and without

using FL for station 1 and station 6. Both stations have

similar level of the objective values and with the increasing

of the granularity, the objective values decrease. This

implies that when the level of granularity increases, the

change amplitude of the length of intervals (specificity) is

larger than the change amplitude of the coverage. In other

words, the coverage doesn’t change much when increasing

the granularity. However, the premise is that the granu-

larity is proper to capture enough evidence (coverage).

Table 2 reveals similar rules as Table 1. The difference

is that the time series from the two stations are not alike.

The time series from station 16 seems more suitable for the

model because the objective values are larger than the ones

of station 17. Another point is there is no big differences

between the values of Q and Q0. To further explore the

effectiveness of our method, we resort to the two criteria

comprised in the objective function in the following

section.

Table 3 displays the results of station 29 and station 30.

The overall performance of the comparison decreases, that

is the objective function values are smaller. This may

because for these two stations, smaller levels of granularity

can capture knowledge well and we may decrease the

granularity. In all three tables, the values of Q are larger

than the values of Q0. This shows the robustness of the FL

in time series prediction tasks when using GNN as models.

It is obvious that the value of Q is always larger than the

value of Q0 at all three granularities in Tables 1, 2 and 3.

This means that the prediction with FL performs better than

without using FL. In other words, our method effectively

refines the model parameters through adopting FL

strategies.

The above experiments are realized on the groups of two

stations and now let’s look at the results of more stations.

Stations 1, 6, and 2 are collected to form a group due to

their close distances on the earth. Centralized modeling and

Fig. 3 The interactive process of local models and global side

Table 1 The average value of the objective function (five times) with

and without FL under three granularities (stations 1 and 6)

Granularity Station 1 Station 6

Q Q0 Q Q0

0.005 0.0565 0.0447 0.0503 0.0452

0.02 0.0290 0.0265 0.0278 0.0254

0.1 0.0188 0.0179 0.0192 0.0178
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FL modeling are executed on the three stations. Table 4

displays the objective values using FL and without using

FL. It is obvious that FL strategies further optimizes the

model parameters through increasing the value of Q. There

are obvious improvements when using FL, especially in the

case of station 2.

4.2 The comparison of federated learning
and centralized learning of GNN in terms
of subobjectives

Section 4.1 shows the comparison the FL and centralized

learning in terms of the single hybrid objective function.

However, there are two conflicting subobjectives in the

single objective function: coverage and width. ‘‘coverage’’

describes the ratio of the testing samples falling into the

output intervals, whereas ‘‘width’’ describes the average

length of all output intervals. In fact, the two objectives are

conflicting. Under optimized results, we draw the values of

coverage and width for different groups.

Figures 4 and 5 show the results of station 1 and station

6. The left axis represents coverage, the right axis repre-

sents width, and the horizontal axis represents three

granularities. It can be found that both width and coverage

values without FL are slightly higher than the values with

FL when granularity is 0.02.

Figures 6 and 7 show the results of station 16 and station

17, respectively. For both width and coverage, the values

are larger when trained without FL.

Figures 8 and 9 show the results of station 28 and station

29. In this case, the two metrics without FL are not con-

sistently higher than those for FL. When the granularity is

equal to 0.005, the value of training with FL is higher. And

Table 2 The average value of the objective function (five times) with

and without FL under three granularities (stations 16 and 17)

Granularity Station 16 Station 17

Q Q0 Q Q0

0.005 0.0571 0.0562 0.0436 0.0429

0.02 0.0359 0.0323 0.0276 0.0251

0.1 0.0256 0.0237 0.0189 0.0184

Table 3 The average value of the objective function (five times) with

and without FL under three granularities (stations 29 and 30)

Granularity Station 29 Station 30

Q Q0 Q Q0

0.005 0.0413 0.0366 0.0366 0.0355

0.02 0.0272 0.0269 0.0250 0.0242

0.1 0.0203 0.0192 0.0148 0.0142

Table 4 The average of the objective function with and without FL

under granularity of 0.005 (station1, 6 and 2)

Station 1 Station 6 Station 2

Q 0.0494 0.0497 0.0531

Q’ 0.0447 0.0452 0.0385
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Fig. 4 The coverage and width of station 1 with and without FL under

three granularities
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Fig. 5 The coverage and width of station 6 with and without FL under

three granularities
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Fig. 6 The coverage and width of station 16 with and without FL

under three granularities
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when the granularity is 0.1, the value of training without

FL is higher.

The most proper granularity can be determined by

several ways. One is through selecting the granularity with

the largest objective function value. Another alternative is

through observing the pareto front when each subobjective

needs to be considered with the same importance. Tables 1,

2 and 3 have list the values of objective functions. Now

let’s look at the distribution of the two subobjectives: width

and coverage. Please refer to Figs. 10 and 11.

Figure 10 draws the distribution of ten points which

represent different levels of information granularity.

Smaller values of both width and (1-coverage) are pre-

ferred. Hence, we may choose the granularity of 0.02 or

0.03 as the best result for station 1.

Figure 11 reveals the performances of ten different

levels of granularity on station 6. In this case, the granu-

larity may be determined as 0.02 or 0.01. Although it is

obvious when using Pareto front to choose a proper

information granularity for an expert, there is no mecha-

nisms or evaluation metrics to automatically determine this

critical parameter.

4.3 The optimized GNN structure using FL

No matter FL is adopted or not, the final optimized GNN

will return a network with granular structure. To capture

the nature of this GNN and the change of GNN when FL is

applied, we draw the final GNNs on different stations.

Please refer to Fig. 12.

Figure 12 visualizes the granularity matrices of station 1

and station 6 without FL and with FL when the granularity

is equal to 0.005. The thickness of the connection lines
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represents the size of the granularity. It can be observed

that after FL, the allocation of granularities has dramatic

change. In other words, most GNNs trained locally only

reach local optima and FL helps move towards global

optima.

4.4 The comparison of GNN and numerical
neural networks with and without FL

In this section, we compare our interval prediction results

with the point prediction results of numerical neural net-

works. To standardize the metrics, we convert the infor-

mation granules obtained from intervals into specific

values, aligning them with the format of point predictions.

The upper and lower bounds of the interval prediction are

denoted as gup and gup. The average of the upper and lower

bounds of information granules ypred is selected as a rep-

resentative of the model prediction results (formula (11)),

and the model performance is assessed using the following

evaluation metrics: MAE and MAPE.

ypred ¼ ðglow þ gupÞ=2 ð11Þ

Table 5 lists the experimental results of four methods

under the metrics of MSE and MAPE. The granularity was

set to 0.008, and the training epoch was 100. To mitigate

the extended learning time associated with large-scale

datasets, we compared the predictions of the initial 20 data

points in the test set. Four classical methods were used:

MLP, GNN, FL_GNN (Granular Neural Network with

Federated Learning), and FL_MLP (Multilayer perceptron

with Federated Learning).

From Table 5, it is evident that FL_GNN has the

smallest MAE and MAPE values, supporting the efficacy

of our proposed framework. Additionally, FL_NN and

GNN exhibit comparable performances, while the NN was

the most common method among four methods.

Fig. 12 The final structure of the optimized GNN (granularity is 0.005)

Table 5 The performances comparison on four methods using MAE

and MAPE (stations 16 and 17)

Method Station 16 Station 17

MAE MAPE MAE MAPE

MLP 4.716 8.837 9.416 20.608

GNN 3.763 6.979 8.624 17.865

FL_MLP 3.933 7.102 8.474 17.678

FL_GNN 3.676 6.871 8.449 17.318
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5 Conclusion

This study focuses on proposing an interactive refinement

of GNN under a federated scenario. The proposed method

is then used to solve a multiple-station air quality index

prediction problem. Experimental studies reveal that after

FL, each local GNN is refined and returns better prediction

results in terms of the objective function defined in the

paper. However, it is only used for predicting one time

series data set and our future work will try to apply it to

more time series data sets. Another direction should be

noted is the interpretability of GNN. The explainability of

artificial neural networks has been an obsession for a long

time and GNN also faces this problem. How to explain the

granular weights will become our next topic.
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