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Abstract
In the realm of expressing fuzzy and vague information, T-spherical fuzzy sets (TSPFSs) emerge as a powerful extension of
both picture fuzzy sets (PFSs) and spherical fuzzy sets (SFSs), offering decision-makers a broader spectrum of descriptive
capabilities. Within the domain of multi-attribute group decision-making (MAGDM), the significance of T-spherical fuzzy
aggregation operators (AOs) under T-spherical fuzzy conditions cannot be overstated. Hence, our manuscript contributes by
introducing a collection of ground-breaking T-spherical fuzzyAOs. This paper establishes a set of innovative T-spherical fuzzy
operational laws grounded inDombi t-norm andDombi t-conorm (DTNCN) principles. Utilizing the strengths of power aggre-
gation operators, which effectively capture the implications of unfavorable information, and Heronian mean (HM) operators,
which adeptly assess the collective association among the evaluated arguments. Some aggregation operators are examined,
namely T-spherical fuzzy Dombi power Heronian mean (TSPFDPHM) operator, T-spherical fuzzy Dombi weighted power
Heronian mean (TSPFDWPHM) operator, T-spherical fuzzy Dombi geometric power Heronian mean (TSPFDGPHM) oper-
ator, and T-spherical fuzzy Dombi weighted geometric power Heronian mean (TSPFDWGPHM) operator. Additionally, we
present a host of properties exhibited by these proposed AOs, along with specific cases that allow for adjustable parame-
ters. Subsequently, we develop a comprehensive algorithm for MAGDM based on the proposed AOs within the T-spherical
fuzzy environment. In conclusion, we apply the devised algorithm to a real-world scenario involving selecting the best road
construction company for a post-flood road rehabilitation project in Pakistan. Through comparative analysis with exist-
ing methodologies, we demonstrate the validity and superiority of our developed scheme, thereby reinforcing its practical
applicability and effectiveness.
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1 Introduction

Mahmood et al. (2019) made a ground-breaking contribution
by unveiling the extraordinary and adaptable TSPFS within
the domain of fuzzy structures. This remarkable framework is
comprehensive and inclusive, embracing many other fuzzy
sets, such as the intuitionistic fuzzy set (IFS) and picture
fuzzy set (PFS). In the domain of the TSPFS framework,
three prominent membership functions take center stage:
the membership degree (MD), abstinence degree (AD), and
non-membership degree (NMD). These functions are critical
in characterizing the framework’s degree of belongingness,
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uncertainty, and exclusion. This unique composition offers
decision-makers (DMs) unprecedented flexibility in assign-
ing attribute values, guided by the flexible constraint that
the sum of the qth power of membership functions must be
less than 1. The allure and potential of this fuzzy structure
have captivated scholars from across the globe, leading to a
wealth of research in diverse fields, such as diabetic retinopa-
thy detection (Kakati et al. 2024a), assessing soil fertility
(Hussain et al. 2023), natural agribusinesses (Sarkar et al.
2023a), and solar systems evaluation (Khan et al. 2024).

Recognizing the advantages of aggregation operators over
conventional ranking methods, numerous scholars have con-
tributed valuable AOs (Akram et al. 2022; Akram and
Martino 2022; Alsalem et al. 2021; Guleria and Bajaj 2021;
Sarkar et al. 2023a, b) to enhance decision-making algo-
rithms. Garg et al. (2018) delved into improved operational
laws and their corresponding properties, while Mahmood
et al. (2021) proposed a generalizedMULTIMOORAmethod
based onDombi-prioritizedweightedAOs.Garg et al. (2021)
examined attribute relationships usingpower-averagingAOs.
Ullah et al. (2020b) presented an intriguing decision-making
problem by employing averaging and geometric AOs within
the TSPFS framework. Liu et al. (2019) unveiled T-spherical
AOs by ingeniously combining the Muirhead mean operator
with the power average operator. Ju et al. (2021) extended
the traditional TODIM decision-making scheme to accom-
modate TSPFSs. Further, Ali et al. (2020) developed a
suite of AOs to explore the intricate interrelationship among
complex T-spherical fuzzy numbers, unveiling new dimen-
sions of understanding within this fascinating domain. The
research conducted by Rong et al. (2022b) on the MARCOS
approach, which is based on a cubic Fermatean fuzzy set,
and its application provides valuable insights into improving
the efficiency of logistics operations. In the study by Rong
et al. (2022a), a novel multiple MADM approach was pro-
posed for evaluating emergency management schemes under
a picture-fuzzy environment. One valuable contribution to
the risk assessment of R&D projects is the FMEA model
based on LOPCOW-ARAS methods presented in the arti-
cle by Rong et al. (2024). Rong and Yu (2023) present a
decision support system for prioritizing offshore wind farm
sites, offering valuable insights into enhancing the selection
process. According to the research conducted by Hussain
et al. (2024a), the proposed approach demonstrated improved
decision-making capabilities in complex scenarios. Jabeen
et al. (2024) present a new methodological framework for
MADMusingT-spherical fuzzyAczelAlsinaHeronianmean
operators. In their study, Saha et al. (2024) proposed a novel
approach that utilizes dual probabilistic linguistic consensus
to facilitate effective MAGDM processes.

When developing T-spherical fuzzy AOs, two aspects
should be focused (1) operational laws and (2) aggregation
functions.Dombi (1982) proposed newoperational lawswith

variability and flexibility regarding the adjustable perimeter.
Dombi t-norm and t-conorm (DTNCN) have been utilized
under uncertainty, and several AOs have been established.
Senapati et al. (2024) proposed anovel approachusingq-rung
orthopair fuzzyDombi–Archimedean aggregation operators,
offering a promising avenue for handling uncertainty and
ambiguity in decision processes. Jana et al. (2019a) extended
DTNCN to PFS. He (2018) proposed novel operations for
hesitant fuzzy sets based on Dombi norms and suggested
innovative AOs. Some Dombi-prioritized AOs have been
established to address themore complicateddecision-making
issues (Wei and Wei 2018; Jana et al. 2019b).

Recently, researchers have faced several complications
while solving decision-making issues. To cope with such
problems, many averaging operators have been utilized to
develop more powerful AOs. Yager (2001) introduced a
power average operator (PAO) to proffer an AO which
permits assessment values to assist each other during the
aggregation. Jiang et al. (2018) extended PAO for IFS and
discussed entropy among IFSs. Sýkora (2009) extended the
classical Heronian mean operator concept in 2009. Wei
et al. (2018) utilized the HM operator to study the inter-
relationship phenomenon among attribute values. Xu et al.
(2018) combined the properties of a dual hesitant fuzzy set
and q-rung orthopair fuzzy set to develop the HM opera-
tors. In recent years, the fusion of AOs has become vital
to integrate their characteristics and resolve complex real-
life decision-making issues (Kakati et al. 2024b; Hussain
et al. 2024b). Many studies have been conducted to demon-
strate the combination of PAO and HM operators based
on DTNCN. Zhang et al. (2018) extended the idea of the
Dombi Heronian mean operator for PFS. Liu et al. (2021)
took advantage of Dombi power Heronian mean AOs under
2 tuples linguistic neutrosophic set. Sarkar et al. (2023b)
proposed a hybrid approach based on dual hesitant q-rung
orthopair fuzzy frank power partitioned Heronian mean
aggregation operators, offering a comprehensive method-
ology for estimating sustainable urban transport solutions.
Kalsoom et al. (2023) contributed to the field by intro-
ducing Schweizer–Sklar power aggregation operators, based
on complex interval-valued intuitionistic fuzzy information,
further expanding the toolkit available for MADM under
uncertain conditions. Senapati et al. (2023) presented an
intuitionistic fuzzy power Aczel–Alsina model for priori-
tizing sustainable transportation-sharing practices, providing
insights into decision-making processes to promote environ-
mentally friendly transport solutions. Furthermore, Jabeen
et al. (2023) proposed an approach to MADM based on
Aczel–Alsina power Bonferroni aggregation operators for
q-rung orthopair fuzzy sets, offering a tailored solution for
decision-making in complex, uncertain environments.

However, existing literature shows that the combination of
Dombi power Heronian means AOs still need to be extended
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to TSPFSs. Hence, the principle focus of this manuscript is
to establish some novel AOs based on the fusion of Dombi,
PA, and HM operators under TSPFSs. Additionally, TSPFS
features larger decision space and greater freedom than PFS
and spherical fuzzy sets (SFS). Further, we develop a novel
T-spherical fuzzy MAGDM algorithm by utilizing proposed
AOs and exhibit the validity and applicability of the scheme
via comparative analysis.

1.1 Motivation of the study

The motivation behind our research paper stems from the
dynamic landscape of decision-making under uncertainty,
where emerging research frontiers continually push the
boundaries of existing methodologies. In this context, we
are driven by a commitment to advancing knowledge by
exploring the application of advanced aggregation operators
within T-spherical fuzzy sets. By venturing into this rela-
tively unexplored territory, our research advances theoretical
frameworks and practical methodologies in decision science.

Practical relevance underscores another critical moti-
vation behind our paper. Decision-making processes are
integral to various real-world applications, and enhancing
these processes in complex and uncertain environments is
paramount. Our research addresses this practical need by
introducing novel aggregation operators tailored to handle
T-spherical fuzzy information, offering practical solutions
to decision-makers grappling with ambiguous and imprecise
data across diverse application domains.

Methodological innovation is central to our motivation,
as innovation in methodology drives progress in decision-
making theory and practice. By leveraging the unique
properties of T-spherical fuzzy sets and combining them
with advanced aggregation operators, our research pio-
neers a new methodological framework for multi-attribute
group decision-making. This innovative approach promises
to advance state-of-the-art decision-making methodologies,
offering fresh insights into handling complex decision-
making challenges.

Interdisciplinary integration is another motivating factor,
as decision-makingprocesses often require integration across
knowledge domains. Our research reflects a commitment
to multidisciplinary integration by bridging concepts from
fuzzy set theory, aggregation theory, and decision science.
By integrating insights from these diverse disciplines, our
research offers a holistic approach to addressing complex
decision-making challenges, fostering cross-pollination of
ideas and methodologies across disciplinary boundaries.

Contributing to decision support systems (DSS) is also a
key motivation behind our research. DSS assists decision-
makers by providing analytical tools and information pro-
cessing capabilities. Our study contributes to developing
more robust and effective DSS by introducing novel aggrega-
tion operators tailored to handle T-spherical fuzzy informa-
tion. This lays the foundation for developing advanced DSS
capable of handling complex decision-making scenarioswith
heightened uncertainty and ambiguity.

Addressing societal challenges is a fundamental motiva-
tion driving our research. Many decision-making problems
have profound societal implications, ranging from resource
allocation and environmental management to healthcare and
public policy. Our research addresses pressing societal needs
by offering innovative solutions to complex decision-making
problems. Our research promotes sustainable development
and societal well-being by developing a novel MAGDM
scheme tailored to a real-world scenario involving road con-
struction company selection for post-flood rehabilitation.

1.2 Contribution of the study

The contributions of our paper are multifaceted and aimed
at advancing the field of MAGDM within the framework of
TSPFSs, as outlined below:

1. Enhanced decision-making processesOur research intro-
duces TSPFSs into the analysis and leverages the math-
ematical properties of Dombi power Heronian mean
aggregation operators to improve decision-making pro-
cesses. By incorporating TSPFSs and the proposed
operators, decision-makers gain access to a broader spec-
trumof descriptive capabilities, leading tomore informed
and effective decisions in complex and uncertain environ-
ments.

2. Investigation of desirable properties The paper meticu-
lously investigates the desirable properties of the intro-
duced aggregation operators. Understanding these prop-
erties is paramount for evaluating their effectiveness
and applicability in practical decision-making scenar-
ios. Through this investigation, we provide insights into
the strengths and limitations of the proposed method-
ology, contributing to the theoretical underpinnings of
MAGDM.

3. Development of a novel MAGDM scheme Our research
presents a novel MAGDM scheme tailored to address
real-world challenges, such as selecting the best road con-
struction company for post-flood rehabilitation projects
in Pakistan. By developing a customized approach
grounded in TSPFSs and the proposed aggregation oper-
ators, we offer a practical solution to complex decision-
making problems, thus facilitating more effective and
transparent decision processes.
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4. Validation through comparative analysis To validate the
effectiveness of our proposed scheme, we conduct a rig-
orous comparative analysis against several aggregation
operators from pre-existing literature. This compara-
tive analysis highlights the strengths and advantages of
our approach, demonstrating its superiority over exist-
ing methodologies in terms of practical applicability
and effectiveness. Through this validation process, we
reinforce the credibility and robustness of our proposed
methodology, paving the way for its adoption in diverse
decision-making contexts.

1.3 Organization of the study

The other segments are arranged as follows. Section 2 recalls
some basic notations about Dombi, HM, PA operations, and
TSPFS.We present a family of Dombi power Heronianmean
AOs and some valuable characteristics for TSPFS in Sect. 3.
A MAGDM approach is discussed in Sect. 4. We develop
a novel MAGDM algorithm based on proposed AOs, and a
case study is discussed to confirm the validity and supremacy
of the suggested method in Sect. 5. We summarize the paper
in Sect. 6.

2 Preliminaries

In this section, we review the literature on TSPFSs, DTNCN,
HM, and PA, where TSPFSs are related to fuzzy sets (Chen
andWang 1995, 2010; Chen et al. 2009, 2019; Chen and Jian
2017; Horng et al. 2005; Zadeh 1965).

Definition 1 (Mahmood et al. 2019) Let X be a finite ordi-
nary set, while a TSPFS � can be defined as follows:

� �
{(

x ,

(
˙́s, i., dˆ

))
|∀x ∈ X

}
, (1)

where ˙́s, i., dˆ , and r denote the membership degree (MD),

non-membership degree (NMD), abstinence degree (AD),
and refusal degree (RD), 0 ≤ (˙́sq(x) + i.

q(x) + d
ˆ
q (x) ≤ 1,

q ∈ Z
+. Further, r(x) � q

√
1 − (˙́sq(x) + i.

q(x) + d
ˆ
q (x)) is the

hesitancy degree.

Definition 2 (Mahmood et al. 2019; Ullah et al. 2020a) For
two TSFNs �1 � (˙́s1, i.1, dˆ 1) and �2 � (˙́s2, i.2, dˆ 2) and a

real ζ > 0, then characteristics axioms are defined as:

(1) �C
1 � (d

ˆ 1
, i.1, ˙́s1),

(2) �1 ⊆ �2 if ˙́s1 ≤ ˙́s2, i.1 ≥ i.2 and d
ˆ 1

≥ d
ˆ 2
,

(3) �1 � �2 if �1 ⊆ �2 and �2 ⊆ �1,

(4) �1⊕�2 �
(

q
√

˙́sq1 + ˙́sq2 − ˙́sq1 ˙́sq2 , i.1i.2, dˆ 1dˆ 2
)
,

(5) �1⊕�2 �
(

˙́s1 ˙́s2, , i.1i.2, q

√
d
ˆ
q

1
+ d

ˆ
q

2
− d

ˆ
q

1
d
ˆ
q

2

)
,

(6) ζ�1 �
(

q

√
1 −

(
1 − ˙́sq1

)ζ

, i.
ζ
1 , dˆ

ζ

1

)
,

(7) �1
ζ �

(
˙́sζ1 , i.ζ1 , q

√
1 −

(
1 − ˙́sq1

)ζ
)

.

Definition 3 (Mahmood et al. 2019) For a TSFN � �(
˙́s(x), i.(x), dˆ (x)

)
, the score function and accuracy func-

tion for TSFNs is defined as under:

SC(�) � ˙́sq − d
ˆ
q , and SC(�) ∈ [−1, 1], (2)

AC(�) � ˙́sq + i.
q + d

ˆ
q , andAC(�) ∈ [0, 1]. (3)

Definition 4 (Mahmood et al. 2019) Let �1 and �2 be two
TSFNs. SC is the “score function”, and AC is the “accuracy
function”, then �1 > �2, where the notation > stands for
“preferred to” if either SC(�1) > SC(�2) or SC(�1) �
SC(�2) and AC(�1) > AC(�2) holds.

Definition 5 (Liu et al. 2019) Assume�1 � (˙́s1, i.1, dˆ 1) and
�2 � (˙́s2, i.2, dˆ 2) be any two TSFNs. Then, the Hamming

distance between �1 and �2 is formulated as

d(�1, �2) � 1

3

(∣∣∣˙́s1 − ˙́s2
∣∣∣ + ∣∣i.1 − i.2

∣∣ +
∣∣∣∣dˆ 1 − d

ˆ 2

∣∣∣∣
)

. (4)

The following introduces new operation rules for TSFNs
based on Dombi t-norm and t-conorm (DTCN). The genera-
tor of DTCN is defined as under.

Definition 6 (Dombi 1982) Consider a real number ζ > 0
and y, z ∈ [0,1]. Then, DTNCN is defined as
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TD, ζ (y, z) � 1

1 +

((
1−y
y

)ζ

+
(
1−z
z

)ζ
) 1

ζ

. (5)

T ∗
D, ζ (y, z) � 1 − 1

1 +

((
1−y
y

)ζ

+
(
1−z
z

)ζ
) 1

ζ

. (6)

Based onDTNCN,we suggest some new operational laws
for TSFNs.

Definition 7 Let �1 � (˙́s1, i.1, dˆ 1) and �2 � (˙́s2, i.2, dˆ 2) be
any two TSFNs, and ζ > 0, γ > 0 are real numbers, then

1. �1⊕�2 �

⎛
⎜⎜⎜⎜⎜⎝ q

√√√√1 − 1

1+

(( ˙́s1q
1−˙́s1q

)ζ

+

( ˙́s2q
1−˙́s2q

)ζ
) 1

ζ

,
q

√√√√ 1

1+

((
1−i.1

q

i.1
q

)ζ

+

(
1−i.2

q

i.2
q

)ζ
) 1

ζ

,
q

√√√√√
1

1+

⎛
⎝
(

1−d
ˆ1

q

d
ˆ1

q

)ζ

+

(
1−d

ˆ2
q

d
ˆ2

q

)ζ
⎞
⎠

1
ζ

⎞
⎟⎟⎟⎟⎟⎠
,

2. �1⊗�2 �

⎛
⎜⎜⎜⎜⎜⎝ q

√√√√ 1

1+

((
1−˙́s1q˙́s1q

)ζ

+

(
1−˙́s2q˙́s2q

)ζ
) 1

ζ

,
q

√√√√1 − 1

1+

((
i.1

q

1−i.1
q

)ζ

+

(
i.2

q

1−i.2
q

)ζ
) 1

ζ

,
q

√√√√√
1 − 1

1+

⎛
⎝
(

d
ˆ1

q

1−d
ˆ1

q

)ζ

+

(
d
ˆ2

q

1−d
ˆ2

q

)ζ
⎞
⎠

1
ζ

⎞
⎟⎟⎟⎟⎟⎠
,

3. γ�1 �

⎛
⎜⎜⎜⎜⎜⎝ q

√√√√1 − 1

1+

(
γ

( ˙́s1q
1−˙́s1q

)ζ
) 1

ζ

,
q

√√√√ 1

1+

(
γ

(
1−i.1

q

i.1
q

)ζ
) 1

ζ

,
q

√√√√√
1

1+

⎛
⎝γ

(
1−d

ˆ1
q

d
ˆ1

q

)ζ
⎞
⎠

1
ζ

⎞
⎟⎟⎟⎟⎟⎠
,

4. �1
γ �

⎛
⎜⎜⎜⎜⎜⎝ q

√√√√ 1

1+

(
γ

( ˙́s1q
1−˙́s1q

)ζ
) 1

ζ

,
q

√√√√1 − 1

1+

(
γ

(
1−i.1

q

i.1
q

)ζ
) 1

ζ

,
q

√√√√√
1 − 1

1+

⎛
⎝γ

(
1−d

ˆ1
q

d
ˆ1

q

)ζ
⎞
⎠

1
ζ

⎞
⎟⎟⎟⎟⎟⎠

Definition 8 (Sýkora 2009) Consider a series of crisp num-

bers. x h

(

h� 1, 2, ..., y
)
, and s, t ≥ 0, then Heronian mean

is defined as follows

HMs, t
(
x1, x2, . . . , x h

)
�
⎛
⎜⎝ 2

y(y + 1)

y∑

h�1

y∑
Þ� h

xshx
tÞ

⎞
⎟⎠

1
s+t

.

(7)

Definition 9 (Sýkora 2009) Consider a series of crisp num-

bers x h

(

h� 1, 2, ..., y
)
, and s, t ≥ 0, then geometric

Heronian mean is defined as

GHMs, t
(
x1, x2, ..., x h

)
�

⎛
⎜⎜⎝ 1

s + t

y∏

h�1

y∏
Þ� h

(
sx h+ t xÞ

) 2
y(y+1)

⎞
⎟⎟⎠. (8)

Definition 10 (Yager 2001) Let � h

(

h� 1, 2, . . . , y
)
be

a set of nonnegative real numbers, and the PA operator is
defined as follows

PA
(
�1, �2, ..., �y

) �
∑y

h�1

(
1 + T

(
� h

))
� h

∑yÞ�1(1 + T (�Þ))
, (9)

where
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T

(
� h

)
�

y∑
Þ�1,Þ�� h

Sup

(
� h, �Þ

)
, (10)

and Sup

(
� h, �Þ

)
� 1− d

(
� h, �Þ

)
, Sup

(
� h, �Þ

)
is

the support for � hfrom �Þ, with the following conditions:

1. Sup

(
� h, �Þ

)
∈ [0,1],

2. Sup

(
� h, �Þ

)
� Sup

(
�Þ, � h

)
,

Sup

(
� h, �Þ

)
≥ Sup

(
�i , � j

)
, if d

(
� h, �Þ

)
≤

d
(
�i , � j

)
.

3 T-spherical fuzzy Dombi power Heronian
mean aggregation operators

Some novel aggregation operators under TSPFS will be dis-
cussed in the given section.

Definition 11 Let s, t ≥ 0, and�p be a group of “y” TSFNs.
Then TSFDHM of

(
�1, �2, ..., �y

)
is defined as

TSPFDHMs, t(�1, �2, ..., �y

)

�
(

2

y(y + 1)

y∑

h�1

y∑
Þ� h

⎛
⎜⎜⎝

y

(
1 + T

(
� h

))
∑y

o�1(1 + T (�o))
� h

⎞
⎟⎟⎠

s

⊗
(

y
(
1 + T

(
�p
))

∑y
o�1(1 + T (�o))

�Þ
)t) 1

s+t

. (11)

where T

(
� h

)
� ∑yÞ� hSup

(
� h, �Þ

)
,

Sup

(
� h, �Þ

)
� 1 − d

(
� h, �Þ

)
, Sup

(
� h, �Þ

)

is the support for � hfrom �Þ, with following condi-

tions: (1) Sup

(
� h, �Þ

)
∈ [0,1], (2) Sup

(
� h, �Þ

)
�

Sup

(
�Þ, � h

)
, (3) Sup

(
� h, �Þ

)
≥ Sup

(
�i , � j

)
if

d

(
� h, �Þ

)
≤ d

(
�i , � j

)
here, d

(
� h, �Þ

)
represents

the distance between �Þ and � h.

Let R̄. Þ � (1+T (�p))∑y
o�1(1+T (�o))

and R̄. h�
y

(
1+T

(
� h

))
∑y

o�1(1+T (�o))
.

Then (8) becomes,

TSPFDPHMs, t (�1, �2, ..., �y

)

�
⎛
⎜⎝ 2

y (y + 1)

y∑

h�1

y∑
Þ� h

(
yR̄. h� h

)s

⊗(yR̄. Þ�Þ)t
⎞
⎟⎠

1
s+t

.

(12)

Theorem 1 Let s, t ≥ 0 and � h� (˙́s h, i. h, dˆ h

) be a group

of “y” TSFNs and a real number ζ > 0. Then, aggregation
of � hby using Definition 11 is also a TSFN
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TSPFDPHMs, t (�1, �2, ..., �y

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√√√√√
1/

⎛
⎜⎜⎜⎜⎜⎜⎝
1 +

⎛
⎜⎜⎜⎜⎜⎜⎝
y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎜⎜⎜⎜⎜⎝

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎜⎜⎜⎜⎝

s⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠

+
t(

yR̄. Þ
( ˙́sÞq

1−˙́sÞq

)ζ
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1/ζ⎞
⎟⎟⎟⎟⎟⎟⎠
,

q

√√√√√√√√√√√√√
1 − 1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s⎛
⎜⎝yR̄. h

⎛
⎝ i. h

q

1−i. h

q

⎞
⎠

ζ
⎞
⎟⎠

+
t(

yR̄. Þ
(

i.Þ
q

1−i.Þq

)ζ
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ζ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

q

√√√√√√√√√√√√√√
1 − 1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s⎛
⎜⎝yR̄. h

⎛
⎝

d
ˆ h

q

1−d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠

+
t(

yR̄. Þ
( d

ˆÞ
q

1−d
ˆÞ

q

)ζ
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ζ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof Let
˙́s h

q

1−˙́s h

q � K h,
˙́sÞq

1−˙́sÞq � KÞ,
1−i. h

q

i. h

q � L h,

1−i.Þq

i.Þ
q � LÞ,

1−d
ˆ h

q

d
ˆ h

q � M h,
1−d

ˆÞ
q

d
ˆÞ

q � MÞ.

Using Definition 6, we obtain

yR̄. h�

h

�

⎛
⎜⎜⎜⎜⎜⎝ q

√√√√√√
1 − 1(

1 +

(
yR̄. h

) 1
ζ

K h

) ,
q

√√√√√√
1(

1 +

(
yR̄. h

) 1
ζ

L h

) ,
q

√√√√√√
1(

1 +

(
yR̄. h

) 1
ζ

M h

)

⎞
⎟⎟⎟⎟⎟⎠
,

yR̄. Þ�Þ �

⎛
⎜⎜⎜⎝ q

√√√√√1 − 1(
1 +
(
yR̄. Þ

) 1
ζ KÞ

) ,
q

√√√√√
1(

1 +
(
yR̄. Þ

) 1
ζ LÞ

) ,
q

√√√√√
1(

1 +
(
yR̄. Þ

) 1
ζ MÞ

)
⎞
⎟⎟⎟⎠,
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⎛
⎝yR̄. h�

h

⎞
⎠

s

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√√√

1⎛
⎜⎜⎜⎝1 +

⎛
⎜⎜⎝ s(

yR̄. hK hζ
)

⎞
⎟⎟⎠

1
ζ

⎞
⎟⎟⎟⎠

,

q

√√√√√√√√√√

1 − 1⎛
⎜⎜⎜⎝1 +

⎛
⎜⎜⎝ s(

yR̄. hL hζ
)

⎞
⎟⎟⎠

1
ζ

⎞
⎟⎟⎟⎠

,

q

√√√√√√√√√√

1 − 1⎛
⎜⎜⎜⎝1 +

⎛
⎜⎜⎝ s(

yR̄. hM hζ
)

⎞
⎟⎟⎠

1
ζ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
yR̄. Þ�Þ

)t �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝ q

√√√√√√√
1⎛

⎝1 +
(

t(
yR̄. ÞKÞ

ζ
)
) 1

ζ

⎞
⎠
,

q

√√√√√√√
1 − 1⎛

⎝1 +
(

t(
yR̄. ÞLÞ

ζ
)
) 1

ζ

⎞
⎠
,

q

√√√√√√√
1 − 1⎛

⎝1 +
(

t(
yR̄. ÞMÞ

ζ
)
) 1

ζ

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎝yR̄. h�

h

⎞
⎠
s

⊗(yR̄. Þ�Þ)t

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ q

√√√√√√√√√

1⎛
⎜⎜⎝1 +

⎛
⎜⎝ s(

yR̄. hK hζ
) + t(

yR̄. ÞKÞ
ζ
)
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ s(

yR̄. hL hζ
) + t(

yR̄. ÞLÞ
ζ
)
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ s(

yR̄. hM hζ
) + t(

yR̄. ÞMÞ
ζ
)
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

y∑

h�1

y∑
Þ � h

⎛
⎝yR̄. h�

h

⎞
⎠

s

⊗(yR̄. Þ�Þ
)t

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1 − 1(

1 +

(∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))) 1
ζ

) ,

q

√√√√√√
1(

1 +

(∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hL hζ

)
+ t/

(
yR̄. ÞLÞζ

))) 1
ζ

) ,

q

√√√√√√
1(

1 +

(∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hM hζ

)
+ t/

(
yR̄. ÞMÞζ

))) 1
ζ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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2

y (y + 1)

y∑

h�1

y∑
Þ � h

⎛
⎝yR̄. h�

h

⎞
⎠

s

⊗(yR̄. Þ�Þ
)t

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1 − 1(

1 +

(
2

y(y+1)

∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))) 1
ζ

) ,

q

√√√√√√
1(

1 +

(
2

y(y+1)

∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hL hζ

)
+ t/

(
yR̄. ÞLÞζ

))) 1
ζ

) ,

q

√√√√√√
1(

1 +

(
2

y(y+1)

∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hM hζ

)
+ t/

(
yR̄. ÞMÞζ

))) 1
ζ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎝ 2

y (y + 1)

y∑

h�1

y∑
Þ� h

⎛
⎝yR̄. h�

h

⎞
⎠

s

⊗(yR̄. Þ�Þ
)t
⎞
⎟⎠

1
s+t

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

)))) 1
ζ

) ,

q

√√√√√√
1 − 1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y
h�1

∑yÞ� h1/

(
s/

(
yR̄. hL hζ

)
+ t/

(
yR̄. ÞLÞζ

)))) 1
ζ

) ,

q

√√√√√√
1 − 1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
s/

(
yR̄. hM hζ

)
+ t/

(
yR̄. ÞMÞζ

)))) 1
ζ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We put
˙́s h

q

1−˙́s h

q � K h,
˙́sÞq

1−˙́sÞq � KÞ,
1−i. h

q

i. h

q � L h,

1−i.Þq

i.Þ
q � LÞ,

1−d
ˆ h

q

d
ˆ h

q � M h,
1−d

ˆÞ
q

d
ˆÞ

q � MÞ.
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⎛
⎜⎝ 2

y (y + 1)

y∑

h�1

y∑
Þ� h

⎛
⎝yR̄. h�

h

⎞
⎠

s

⊗(yR̄. Þ�Þ
)t
⎞
⎟⎠

1
s+t

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yR̄. Þ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠
,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

hh�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ 1−i. h

q

i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
1−i.Þq

i.Þ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝

1−d
ˆ h

q

d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

( 1−d
ˆÞ

q

d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

TSPFDPHMs, t (�1, �2, ..., �y

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yR̄. Þ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠
,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑y
� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ 1−i. h

q

i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
1−i.Þq

i.Þ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝

1−d
ˆ h

q

d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

( 1−d
ˆÞ

q

d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This fulfills our result.
Now, we discuss some salient properties of the operator.

Example 1 Consider three TSFNs�1 � (0.6,0.2,0.3) �2 �
(0.4,0.3,0.7) �3 � (0.5,0.4,0.4),s � 1t � 2, q � 3 and
ζ � 3 we use TSPFDPHM to aggregate the four TSFNs.
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q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yR̄. Þ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠

� 0.5326,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ 1−i. h

q

i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
1−i.Þq

i.Þ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

� 0.2376,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝

1−d
ˆ h

q

d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

( 1−d
ˆÞ

q

d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

� 0.3513.

Therefore, we get TSPFDPHMs, t (�1, �2, �3) �
(0.5326,0.2376,0.3513).

Furthermore, the TSFDHM operators satisfy the proper-
ties given below.

Theorem 2 (Idempotency) Let s, t ≥ 0 and � h� (˙́s h, i. h,

d
ˆ h

) be a collection of “y” TSFNs, If � his equal ∀ h, ( h� 1,

2, ..., y) that is, � h� � �
(

˙́s, i., dˆ
)
. Then,

TSPFDPHMs, t(�1, �2, ..., �y

) � �. (13)

Proof Since, � h� � �
(

˙́s, i., dˆ
)
so we have ∀Þ, h� 1,

2, ..., y. Thereby we will prove R̄. h� 1
y , h� 1, 2, ..., y.
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TSPFDPHMs, t (�1, �2, ..., �y

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
s/

(
y 1
y

( ˙́sq
1−˙́sq

)ζ
)
+ t/

(
y 1
y

( ˙́sq
1−˙́sq

)ζ
)))) 1

ζ

) ,

q

√√√√√√
1 − 1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
s/

(
y 1
y

(
1−i.q
i.
q

)ζ
)
+ t/

(
y 1
y

(
1−i.q
i.
q

)ζ
)))) 1

ζ

) ,

q

√√√√√√√
1 − 1⎛

⎝1 +
(

y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
s/

(
y 1
y

( 1−d
ˆ
q

d
ˆ
q

)ζ
)
+ t/

(
y 1
y

( 1−d
ˆ
q

d
ˆ
q

)ζ
)))) 1

ζ

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
(s + t)/

( ˙́sq
1−˙́sq

)ζ
))) 1

ζ

) ,

q

√√√√√√
1 − 1(

1 +

(
y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
(s + t)/

(
1−i.q
i.
q

)ζ
))) 1

ζ

) ,

q

√√√√√√√
1 − 1⎛

⎝1 +
(

y(y+1)
2(s+t) × 1/

(∑y

h�1

∑yÞ� h1/

(
(s + t)/

( 1−d
ˆ
q

d
ˆ
q

)ζ
))) 1

ζ

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√
1(

1 +

(
1

(s+t) × 1/

(( ˙́sq
1−˙́sq

)ζ

/(s + t)

)) 1
ζ

) ,

q

√√√√√√
1 − 1(

1 +

(
1

(s+t) × 1/

((
1−i.q
i.
q

)ζ

/(s + t)

)) 1
ζ

) ,

q

√√√√√√√
1 − 1⎛

⎝1 +
(

1
(s+t) × 1/

(( 1−d
ˆ
q

d
ˆ
q

)ζ

/(s + t)

)) 1
ζ

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
(

˙́s, i., dˆ
)

� �.

Hence, the result is proven.
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Theorem 3 (Monotonicity) Let � h� (˙́s h, i. h, dˆ h

) and

� h� (˙́s h, i. h, dˆ h

) be two groups of “y” TSFNs, if� h≤ � h,

∀ h, then,

(14)

TSPFDPHMs, t (�1, �2,

..., �y

) ≤ TSPFDPHMs, t (�1, �2, ..., �y

)
.

Proof Let TSPFDPHMs, t
(
�1, �2, ..., �y

) �
(

˙́s, i., dˆ
)

and TSPFDPHMs, t
(
�1, �2, ..., �y

) �
(

˙́s, i., dˆ
)
, since

˙́s h≤ ˙́s hand ˙́sÞ ≤ ˙́sÞ, so we get:

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝

˙́s h

q

1 − ˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

⎛
⎝yR̄. Þ

( ˙́sÞq

1 − ˙́sÞq

)ζ
⎞
⎠
⎞
⎟⎠

≤
y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎝s/

⎛
⎜⎜⎝yR̄. h

⎛
⎜⎝

˙́s h

q

1 − ˙́s h

q

⎞
⎟⎠

ζ
⎞
⎟⎟⎠

+ t/

⎛
⎜⎝yR̄. Þ

⎛
⎝ ˙́sÞ

q

1 − ˙́sÞ
q

⎞
⎠

ζ
⎞
⎟⎠
⎞
⎟⎟⎠

and

1 +

⎛
⎜⎜⎜⎜⎜⎜⎝
y(y + 1)

2(s + t)
× 1/

⎛
⎜⎜⎜⎜⎜⎜⎝

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎜⎜⎜⎜⎝

s⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠

+
t(

yR̄. Þ
( ˙́sÞq

1−˙́sÞq

)ζ
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1/ζ

≤ 1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
y(y + 1)

2(s + t)
× 1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∑

h�1

y∑
Þ� h

1/

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s⎛
⎜⎝yR̄. h

⎛
⎝ ˙́s h

q

1−˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠

+
t(

yR̄. Þ
(

˙́sÞ
q

1−˙́sÞ
q

)ζ
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ζ

.

Therefore

q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yR̄. h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yR̄. Þ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞
⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠
,

≤
q

√√√√√√√√√

1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ ˙́s h

q

1−˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
˙́sÞ

q

1−˙́sÞ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,
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it shows that ˙́s h ≤ ˙́s h, in the same way, we

can prove i. h ≥ i. h and d
ˆ h

≥ d
ˆ h

. Using Def-

inition 3 we obtain SC(�) ≤ SC
(
�
)
, that is

� ≤ �. Hence, TSFDPHMs, t
(
�1, �2, ..., �y

) ≤
TSFDPHMs, t

(
�1, �2, ..., �y

)
.

Theorem 4 (Boundedness) Let � h � (˙́s h,

i. h, d
ˆ h

) be a group of “y" TSFNs, if �+ �
⎛
⎝max

(
˙́s h

)
, min

(
i. h

)
, min

⎛
⎝d

ˆ h

⎞
⎠
⎞
⎠ and �− �

⎛
⎝min

(
˙́s h

)
, max

(
i. h

)
, max

⎛
⎝d

ˆ h

⎞
⎠
⎞
⎠, then,

v f � TSFDWPHMs, t(v f 1, v f 2, ..., v f z
)
. (15)

Proof Using Theorem 2, we can have

TSPFDPHMs, t (�−, �−, ..., �−)
� �−, TSPFDPHMs, t (�+, �+, ..., �+) � �+.

Subsequently,

TSPFDPHMs, t (�−, �−,
..., �−) ≤ TSPFDPHMs, t (�1, �2, ..., �y

)
≤ TSPFDPHMs, t (�+, �+, ..., �+) .
Hence, Theorem 4 is proved.

Definition 12 Lets, t ≥ 0, and � hbe a set of “y” TSFNs.

Then, TSPFDWPHM of
(
�1, �2, ..., �y

)
is defined as

TSPFDWPHMs, t(�1, �2, ..., �y

)

�
(

2

y(y + 1)

y∑

h�1

y∑
Þ� h

⎛
⎜⎜⎝

yω h

(
1 + T

(
� h

))
∑y

o�1 ωo(1 + T (�o))
� h

⎞
⎟⎟⎠

s

⊗
(

yωÞ(1 + T (�Þ))∑y
o�1 ωo(1 + T (�o))

�Þ
)t) 1

s+t

, (16)

where T

(
� h

)
� ∑yÞ� hSup

(
� h, �Þ

)
,

Sup

(
� h, �Þ

)
� 1 − d

(
� h, �Þ

)
, Sup

(
� h, �Þ

)

is the support for � hfrom �Þ and ω � (
ω1, ω2, ...ωy

)T
represents the weight of � hand satisfying ω h∈ [0,1],∑y

h�1 ω h� 1.

ψ h�
ω h

(
1 + T

(
� h

))
∑y

o�1 ωo(1 + T (�o))
. (17)

For the sake of simplicity of (9), let

(18)

TSPFDWPHMs, t (�1, �2, ..., �y

)

�
⎛
⎜⎝ 2

(y + 1)

y∑

h�1

y∑
Þ� h

(
yψ h� h

)s

⊗ (yψÞ�Þ)t
⎞
⎟⎠

1
s+t

.

Now, (9) will be given as

Theorem 5 Let s, t ≥ 0 and � h� (˙́s h, i. h, dˆ h

) be a group

of “y” TSFNs and a real number ζ > 0. Then, aggregation
of � husing Definition 12 is also a TSFN.
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TSPFDWPHMs, t(�1, �2, ..., �y

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yψ h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yψÞ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠
,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝ 1−i. h

q

i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

(
1−i.Þq

i.Þ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝

1−d
ˆ h

q

d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

( 1−d
ˆÞ

q

d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. The proof is same as the Theorem 1.

Example 2 Consider four TSFNs �1 � (0.7,0.3,0.6) �2 �
(0.8,0.6,0.5) �3 � (0.5,0.4,0.7), ω � (0.4, 0.25, 0.35)s �
1, t � 2,q � 3 and ζ � 3, we useTSFWDPHMto aggregate
the three TSFNs.

q

√√√√√√√√

1⎛
⎜⎝1 +

⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yψ h

( ˙́s h

q

1−˙́s h

q

)ζ
⎞
⎠ + t/

(
yψÞ

( ˙́sÞq

1−˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠

� 0.7252,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝ 1−i. h

q

i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

(
1−i.Þq

i.Þ
q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

� 0.3506,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝

1−d
ˆ h

q

d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

( 1−d
ˆÞ

q

d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

� 0.5755

.
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Therefore, we get T SPFW PDHMs, t (�1, �2, �3) �
(0.7252,0.3506,0.5755).

The TSFDWPHM operator satisfies boundedness only,
idempotency, and monotonicity are not satisfied.

Definition 13. Lets, t ≥ 0, and� hbe a group of “y”TSFNs.

Then TSFDPGHM of
(
�1, �2, ..., �y

)
is defined as

TSPFDPGHMs, t
(

�1, �2, ..., � h

)

� 1

s + t

⎛
⎜⎜⎜⎝

y∏

h�1

y∏
Þ� h

⎛
⎜⎜⎜⎝s� h

y

(
1+T

(
� h

))
∑y

o�1(1+T (�o)) ⊕t�Þ
y(1+T (�Þ))∑y
o�1(1+T (�o))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

2
y(y+1)

.

(19)

Based on operation laws defined in Definition 7, the result
shown in Theorem 8 can easily be proven.

Theorem 8 Let s, t ≥ 0 and � h� (˙́s h, i. h, dˆ h

) be a group

of “y” TSFNs and a real number ζ > 0. Then, aggregation
of � husing Definition 13 is also a TSFN.

TSFDPHMs, t (�1, �2, ..., �y
) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ 1−˙́s h

q

˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
1−˙́sÞq

˙́sÞq

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ i. h

q

1−i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
i.Þ

q

1−i.Þq

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√√

1 − 1⎛
⎜⎜⎜⎝1 +

⎛
⎜⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎜⎝s/

⎛
⎜⎜⎝yR̄. h

⎛
⎜⎝

d
ˆ h

q

1−d
ˆ h

q

⎞
⎟⎠

ζ
⎞
⎟⎟⎠ + t/

⎛
⎝yR̄. Þ

(
d
ˆÞ

q

1−d
ˆÞ

q

)ζ
⎞
⎠
⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

1
ζ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof

(
� h

)yR̄. h�

⎛
⎜⎜⎜⎜⎝

q

√√√√√√√√1/

⎛
⎜⎜⎜⎝1 +

⎛
⎜⎝yR̄. h

⎛
⎝1 − ˙́s h

q

˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎟⎠,

q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝yR̄. h

⎛
⎝ i. h

q

1 − i. h

q

⎞
⎠

ζ
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠, q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝yR̄. h

⎛
⎝ d

ˆÞ
q

1 − d
ˆÞ

q

⎞
⎠

ζ
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠,
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(�Þ)yR̄. Þ �

⎛
⎜⎜⎜⎝

q

√√√√√√1/

⎛
⎜⎝1 +

⎛
⎝yR̄. Þ

(
1 − ˙́sÞq

˙́sÞq

)ζ
⎞
⎠

1
ζ

⎞
⎟⎠,

q

√√√√√1 − 1/

⎛
⎝1 +

(
yR̄. h

(
i.Þq

1 − i.Þq

)ζ
) 1

ζ

⎞
⎠,

q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝yR̄. h

⎛
⎝ d

ˆÞ
q

1 − d
ˆÞ

q

⎞
⎠

ζ
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎠ .

Weput
˙́s h

q

1−˙́s h

q � K h,
˙́sÞq

1−˙́sÞq � KÞ,
1−i. h

q

i. h

q � L h,
1−i.Þq

i.Þ
q �

LÞ,
1−d

ˆ h

q

d
ˆ h

q � M h,
1−d

ˆÞ
q

d
ˆÞ

q � MÞ.

(
� h

)yR̄. h�
⎛
⎝ q

√√√√1/

(
1 +

(
yR̄. h

) 1
ζ

K h

)
, q

√√√√1 − 1/

(
1 +

(
yR̄. h

) 1
ζ

L h

)
, q

√√√√1 − 1/

(
1 +

(
yR̄. h

) 1
ζ

M h

)⎞
⎠,

(�Þ)yR̄. Þ �
(

q

√
1/

(
1 +
(
yR̄. Þ

) 1
ζ KÞ

)
, q

√
1 − 1/

(
1 +
(
yR̄. Þ

) 1
ζ LÞ

)
, q

√
1 − 1/

(
1 +
(
yR̄. Þ

) 1
ζ MÞ

))
,

s

(
� h

)yR̄. h�
⎛
⎝ q

√√√√1 − 1/

(
1 +

(
s/

(
yR̄. hK hζ

)) 1
ζ

)
, q

√√√√1/

(
1 +

(
s/

(
yR̄. hL hζ

)) 1
ζ

)
, q

√√√√1/

(
1 +

(
s/

(
yR̄. hM hζ

)) 1
ζ

)⎞
⎠,

t

(
� h

)yR̄. h�
(

q

√
1 − 1/

(
1 +
(
t/
(
yR̄. ÞKÞζ

)) 1
ζ

)
, q

√
1/

(
1 +
(
t/
(
yR̄. ÞLÞζ

)) 1
ζ

)
, q

√
1/

(
1 +
(
t/
(
yR̄. ÞMÞζ

)) 1
ζ

))
.

Thereafter,

s

(
� h

)yR̄. h⊕t

(
� h

)yR̄. h

�

⎛
⎜⎜⎜⎜⎜⎜⎝

q

√√√√1 − 1/

(
1 +

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

)) 1
ζ

)
, q

√√√√1/

(
1 +

(
s/

(
yR̄. hL hζ

)
+ t/

(
yR̄. ÞLÞζ

)) 1
ζ

)
,

q

√√√√1/

(
1 +

(
s/

(
yR̄. hM hζ

)
+ t/

(
yR̄. ÞMÞζ

)) 1
ζ

)

⎞
⎟⎟⎟⎟⎟⎟⎠

and
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y∏

h�1

y∏
Þ� h

⎛
⎝s
(

� h

)yR̄. h⊕t

(
� h

)yR̄. h

⎞
⎠ ��

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝

y∑

h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠,

q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝

y∑

h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hL hζ

)
+ t/

(
yR̄. ÞLÞζ

))
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠,

q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝

y∑

h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hM hζ

)
+ t/

(
yR̄. ÞMÞζ

))
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

s + t

⎛
⎜⎝

y∏

h�1

y∏
Þ� h

⎛
⎝s
(

� h

)yR̄. h⊕t

(
� h

)yR̄. h

⎞
⎠
⎞
⎟⎠

2
y(y+1)

�

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√1 − 1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎝

y∑

h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠,

q

√√√√√√√1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎝

y∑
h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠,

q

√√√√√√√1/

⎛
⎜⎜⎝1 +

⎛
⎜⎝y (y + 1)

2 (s + t)
× 1/

⎛
⎜⎝

y∑

h�1

y∑
Þ� h

1/

(
s/

(
yR̄. hK hζ

)
+ t/

(
yR̄. ÞKÞζ

))
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We put
˙́s h

q

1−˙́s h

q � K h,
˙́sÞq

1−˙́sÞq � KÞ,
1−i. h

q

i. h

q � L h,

1−i.Þq

i.Þ
q � LÞ,

1−d
ˆ h

q

d
ˆ h

q � M h,
1−d

ˆÞ
q

d
ˆÞ

q � MÞ,

1

s + t

⎛
⎜⎝

y∏

h�1

y∏
Þ� h

⎛
⎝s
(

� h

)yR̄. h⊕t

(
� h

)yR̄. h

⎞
⎠
⎞
⎟⎠

2
y(y+1)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√
1 − 1⎛

⎜⎝1 +
⎛
⎝ y(y+1)

2(s+t) × 1/

⎛
⎝∑y

h�1

∑yÞ� h1/

⎛
⎝s/

⎛
⎝yR̄. h

(
1−˙́s h

q

˙́s h

q

)ζ
⎞
⎠ + t/

(
yR̄. Þ

(
1−˙́sÞq

˙́sÞq

)ζ
)⎞⎠
⎞
⎠
⎞
⎠

1
ζ

⎞
⎟⎠
,

q

√√√√√√√√√

1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝ i. h

q

1−i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

(
i.Þ

q

1−i.Þq

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1

∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yR̄. h

⎛
⎝

d
ˆ h

q

1−d
ˆ h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yR̄. Þ

( d
ˆÞ

q

1−d
ˆÞ

q

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Definition 14. Lets, t ≥ 0, and� hbe a group of “y”TSFNs.

Then TSFDWGHM of
(
�1, �2, ..., �y

)
is defined as

TSFDWPGHMs, t
(

�1, �2, ..., � h

)
� 1

s + t

⎛
⎜⎜⎜⎝

y∏

h�1

y∏
Þ� h

⎛
⎜⎜⎜⎝s� h

yω h

(
1+T

(
� h

))

∑y
o�1 ωo(1+T (�o)) ⊕t�Þ

yωÞ(1+T (�Þ))∑y
o�1 ωo(1+T (�o))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

2
y(y+1)

, (20)

where T

(
� h

)
� ∑y

p � 1
u �� p

Sup

(
� h, �Þ

)
,

Sup

(
� h, �Þ

)
� 1 − d

(
� h, �Þ

)
, Sup

(
� h, �Þ

)

is the support for � hfrom �Þ and ω � (
ω1, ω2, ...ωy

)T
represents the weight of � hand satisfyingω h ∈ [0,1],∑y

h�1 ω h� 1.

For the sake of simplicity of (8), let.

ψ h�
ω h

(
1 + T

(
� h

))
∑y

o�1 ωo(1 + T(�o))
.

Now, (19) will be given as
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(21)

TSFDWPGHMs, t (�1, �2, ..., �y
)

� 1

s + t

⎛
⎜⎜⎝

y∏

h�1

y∏
Þ� h

(
s

(
� h

)yψ h

⊕t
(
�Þ)yψÞ

)⎞⎟⎟⎠

2
y(y+1)

.

Based on operation laws defined in Definition 7, the result
shown in Theorem 12 can easily be proven.

Theorem 12 Let s, t ≥ 0 and � h� (˙́s h, i. h, dˆ h

) be a group

of “y” TSFNs and a real number ζ > 0. Then, aggregation
of � hby using Definition 13 is also a TSFN.

TSPFDWPHMs, t (�1, �2, ..., �y
) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√√√√√√

1 − 1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝ 1−˙́s h

q

˙́s h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

(
1−˙́sÞq

˙́sÞq

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√

1⎛
⎜⎜⎝1 +

⎛
⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎝s/

⎛
⎜⎝yψ h

⎛
⎝ i. h

q

1−i. h

q

⎞
⎠

ζ
⎞
⎟⎠ + t/

(
yψÞ

(
i.Þ

q

1−i.Þq

)ζ
)⎞⎟⎠
⎞
⎟⎠
⎞
⎟⎠

1
ζ

⎞
⎟⎟⎠

,

q

√√√√√√√√√√

1⎛
⎜⎜⎜⎝1 +

⎛
⎜⎜⎝ y(y+1)

2(s+t) × 1/

⎛
⎜⎜⎝∑y

h�1
∑yÞ� h1/

⎛
⎜⎜⎝s/

⎛
⎜⎜⎝yψ h

⎛
⎜⎝

d
ˆ h

q

1−d
ˆ h

q

⎞
⎟⎠

ζ
⎞
⎟⎟⎠ + t/

⎛
⎝yψÞ

(
d
ˆÞ

q

1−d
ˆÞ

q

)ζ
⎞
⎠
⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

1
ζ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This result can be followed using Theorem 5.

Next, we will propose a novel scheme to solve the
MAGDM problem.

4 The proposedMAGDMmethod based
on T-spherical fuzzy Dombi power
Heronianmean-based aggregation
operators

In this section, we present Dombi power HeronianmeanAOs
to introduce an algorithm for MAGDM under the TSPFS
environment.We pick the best alternative among the possible
options during the DM activity. Interestingly, we have fuzzy
information regarding alternatives in the form of TSPFS.

Consider S̈ � {S̈1, S̈2, ..., S̈y
}
be a collection of alterna-

tives and
�
Z �

{
�
Z1,

�
Z2, ...,

�
Zz

}
are the attributes with ω �

(
ω1, ω2, ...ωz

)T is theweight vector of�Þ(Þ � 1, 2, ..., z),
satisfying ωÞ ∈ [0,1],

∑zÞ�1 ωÞ � 1. A panel of decision-

makers (DMs) is denoted as Ň �
{
Ň1, Ň2, Ň3, ..., Ňr

}
stands for r DMs where � � (�1, �2, ...�r )

T satisfying
�P ∈ [0,1],

∑r
P�1 �p � 1.

Assume that �P � (�P
f g
)
y×z

represents the decision

matrix, where �P
f g � (˙́s f g , i. f g , dˆ f g

) (P � 1, 2, ..., r)

denotes the TSPFN of the Pth DM, where f and g denote
the variation of attributes and alternatives, respectively, con-
taining the data in the form of TSPFS. The following steps
of the new scheme are presented to handle such MAGDM

issues.
Step 1: In this step, we aim to normalize the decision

matrix �P (P � 1, 2, ..., r), where V P � (vP
f g
)
y×z

, f �
1, 2, ..., y; g � 1, 2, ..., z; P � 1, 2, ..., r . Normalization
of the matrix converts every attribute into a benefit type if
there is some cost type attribute. For this purpose, Mahmood
et al. (2019) provide us with basic characteristics.

vP
f g � �P

f g

�

⎧⎪⎪⎨
⎪⎪⎩

(
˙́sP f g , i.

P
f g , dˆ

P

f g

)
, f or bene f i t t ype(

d
ˆ
P

f g
, i.

P
f g , dˆ

P

f g

)
, f or cost t ype,

where F1 represents the benefit type and F2 represents cost
type attributes.

Step 2: Determine the support by (22)

Sup
(
vP

f g , vP
f g

)
� 1 − d

(
vP

f g , vP
f g

)
, f � 1, 2, ...,

y; g � 1, 2, ..., z; P � 1, 2, ..., r .

(22)
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Step 3: Compute the support T
(
vP

f g
)
of the TSFN vP

f g

to other TSFNs vP
f g
(
P , P � 1, 2, ..., r , P �� P

)

T
(
vP

f g

)
�

r∑
P�1, P ��P

Sup
(
vP

f g , vP
f g

)
. (23)

Step 4: Compute weights ∇P
f g by using weights

�P (P � 1, 2, ..., r) for decision-makers associated with
the TSFNs vP

f g given under

∇P
f g � �P

(
1 + T

(
vP

f g
))

∑r
P�1 �P

(
1 + T

(
vP

f g
)) (P � 1, 2, ..., r), (24)

where ∇P
f g ≥ 0,

∑r
P�1 ∇P

f g � 1.
Step 5: Aggregate all the individual decision matrices

V P � (
vP

f g
)
y×z

to obtain group decision matrix V
P �(

vP
f g
)
y×z

by utilizing TSFDWPHM or TSFDWPGHM
aggregation operators,

vP
f g � T SFDW PHMs, t

(
v1 f g , v2 f g , ..., vP

f g

)
(25)

or

vP
f g � T SFDW PGHMs, t

(
v1 f g , v2 f g , ..., vP

f g

)
.

(26)

Calculate the supports Sup
(
v f g , v f w

)
.

(27)

Sup
(
v f g , v f w

) � 1 − d
(
v f g , v f w

)
( f � 1, 2, ...,

y; g, w � 1, 2, ..., z; g �� w) .

Step 6: Determine the support T
(
v f g
)
of the TSFN v f g

to the other TSFNs v fw(w � 1, 2, ..., z; f �� w)

T
(
v f g
) �

z∑
w�1,w ��g

Sup
(
v f g , v f w

)
. (28)

Step 7: Obtain the weights
k f g( f � 1, 2, ..., y; g, � 1, 2, ..., z) associated with
TSFN v f g by attribute weightsωg , and

k f g � ωg
(
1 + T

(
v f g
))

∑z
g�1 ωg

(
1 + T

(
v f g
)) . (29)

Step 8:Aggregate all TSFNs v f g to obtain the total assess-
ment values v f ( f � 1, 2, ..., y) using the TSFDWPHM or
TSFDWPGHM aggregation operator.

v f � TSFDWPGHMs, t(v f 1, v f 2, ..., v f z
)

(30)

or

v f � TSFDWPHMs, t(v f 1, v f 2, ..., v f z
)
. (31)

Step 9: Determine the score values
SC
(
v f
)
( f � 1, 2, ..., y) using Definition 5.

Step 10:Rank the alternatives S̈ ( f � 1, 2, ..., y) accord-
ing to SC

(
v f
)
in ascending or descending order. The higher

the SC, the better the alternative.

5 Numerical illustration

In this section, we will present a numerical example.

5.1 Case study

2022 has proved a year of irremediable calamity for Pakistan.
The republic that occupies the heartland of ancient South
Asian civilization in the Indus River valley first exhibited
severe weather extremes at the beginning of the year. Now,
the floods have deserted a third of the country’s provinces
underwater, bringing a new level of human misery besides
infrastructure loss. The record monsoon, rainy season in
southern Asia when the southwestern monsoon blows, has
torn through villages, sweeping away thousands of houses,
schools, roads, and bridges and destroying 18,000 km2 of
agricultural land. Sindh, one of the southern provinces of
Pakistan, whose capital is Karachi, has suffered the most
irrecoverable devastation and destruction as 90% of crops
have been ruined after the Indus River burst its banks. It
would be worth noting that the province in question produces
half the country’s food.

Almost every few years, it has been noticed that the roads
in the flood-prone region turn dysfunctional after the flood.
Many resources are needed to revamp the roads. Further, the
revamping process demands valuable time; meanwhile, the
broken roads must be fixed or only partly functional. Over
the rehabilitation time, obstruction, vehicle operating costs,
and aggravation of the drivers rise immensely. It is especially
crucial for the state’s main highways. As highways bear the
provinces’ enormous percentage of passenger and carriage
movement, any interruption in the road network would intro-
duce a huge deficit to the country’s economy. To overcome
these conditions, it is imperative to reconstruct or repair the
main highways as early as possible.

Khyber Pakhtunkhwa (KP) is a northern province of
Pakistan that was severely hit by a recent disaster. KP gov-
ernment wants to repair the road network as its priority.
For this, the KP government advertised a global tender in
newspapers to invite well-reputed construction companies

and considered four attributes: company background

(
�
Z1

)
,
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Table 1 TSF decision matrix
Experts

�
Z1

�
Z2

�
Z3

�
Z4

Ň
(1)

S̈1 (0.6, 0.21, 0.33) (0.54, 0.19, 0.43) (0.7, 0.45, 0.29) (0.66, 0.21, 0.76)

S̈2 (0.76, 0.45, 0.44) (0.44, 0.29, 0.49) (0.83, 0.19, 0.23) (0.76, 0.13, 0.45)

S̈3 (0.66, 0.54, 0.32) (0.54, 0.43, 0.44) (0.76, 0.43, 0.22) (0.43, 0.33, 0.54)

S̈4 (0.56, 0.31, 0.73) (0.87, 0.12, 0.65) (0.91, 0.13, 0.51) (0.85, 0.19, 0.54)

Ň
(2)

S̈1 (0.43, 0.31, 0.77) (0.24, 0.44, 0.65) (0.77, 0.65, 0.44) (0.54, 0.34, 0.76)

S̈2 (0.82, 0.23, 0.29) (0.65, 0.45, 0.36) (0.65, 0.34, 0.72) (0.72, 0.32, 0.65)

S̈3 (0.59, 0.43, 0.44) (0.56, 0.54, 0.78) (0.65, 0.66, 0.32) (0.43, 0.54, 0.65)

S̈4 (0.65, 0.16, 0.64) (0.54, 0.49, 0.65) (0.76, 0.34, 0.65) (0.86, 0.43, 0.65)

Ň
(3)

S̈1 (0.54, 0.43, 0.45) (0.69, 0.32, 0.79) (0.83, 0.34, 0.69) (0.93, 0.12, 0.22)

S̈2 (0.66, 0.54, 0.61) (0.32, 0.75, 0.81) (0.76, 0.55, 0.43) (0.87, 0.43, 0.44)

S̈3 (0.77, 0.45, 0.54) (0.82, 0.15, 0.66) (0.65, 0.43, 0.44) (0.65, 0.54, 0.65)

S̈4 (0.84, 0.41, 0.67) (0.55, 0.51, 0.67) (0.77, 0.37, 0.62) (0.84, 0.41, 0.67)

mechanical capacity

(
�
Z2

)
, financial standing

(
�
Z3

)
, and

the number of projects completed within time

(
�
Z4

)
. The

KP government had deputed a panel of three officers as a
decision-maker committee. The four construction compa-
nies are Khattak Allied Construction Company

(
S̈1
)
, Karcon

Pvt. Ltd
(
S̈2
)
, Umerjan & Co.

(
S̈3
)
, Ghulam Rasool &

Company Pvt. Ltd.
(
S̈4
)
bid for road network rehabili-

tation scheme. Subsequently, the KP government aims to
recognize the best construction company among the possi-
ble options. The weight of the attributes is given as ω �
(0.21,0.29,0.19, 0.31). The decision panel used TSFNs to
represent its assessment. Data are shown in Table 1.

Step 1: The TSF decision matrix does not need to be
normalized because all attributes are of benefit types. As a
result, we can proceed with further analysis using the TSF
decision matrix shown in Table 1.

Step 2: We use the Eq. (22) to find the support values.
Let’s assume that the support between vP

f g and vP
f g is rep-

resented as ς PP
f g . This means we are calculating how well

one set of values vP
f g supports another set of values vP

f g .
The support values are crucial in understanding the relation-
ships and dependencies between different data sets in our
model. By doing this, we can evaluate the degree to which
the observed data supports the hypothesized or expected val-
ues:

ς11
12 � ς11

21 � 0.8074, ς12
12 � ς12

21 � 0.8609, ς13
12

� ς13
21 � 0.8807, ς14

12 � ς14
21 � 0.9466,

ς21
12 � ς21

21 � 0.9159, ς22
12 � ς22

21 � 0.8909, ς23
12

� ς23
21 � 0.7698, ς24

12 � ς24
21 � 0.9067,

ς31
12 � ς31

21 � 0.9291, ς32
12 � ς32

21 � 0.8382, ς33
12

� ς33
21 � 0.8685, ς34

12 � ς34
21 � 0.8657,

ς41
12 � ς41

21 � 0.9161, ς42
12 � ς42

21 � 0.7943, ς43
12

� ς43
21 � 0.8354, ς44

12 � ς44
21 � 0.9294,

ς11
13 � ς11

31 � 0.9387, ς12
13 � ς12

31 � 0.7965, ς13
13

� ς13
31 � 0.8051, ς14

13 � ς14
31 � 0.6824,

ς21
13 � ς21

31 � 0.8801, ς22
13 � ς22

31 � 0.7121, ς23
13

� ς23
31 � 0.8801, ς24

13 � ς24
31 � 0.8991,

ς31
13 � ς31

31 � 0.8710, ς32
13 � ς32

31 � 0.7759, ς33
13

� ς33
31 � 0.9204, ς34

13 � ς34
31 � 0.8554,

ς41
13 � ς41

31 � 0.8185, ς42
13 � ς42

31 � 0.7836, ς43
13

� ς43
31 � 0.8496, ς44

13 � ς44
31 � 0.9244,

ς11
23 � ς11

32 � 0.8356, ς12
23 � ς12

32 � 0.8048, ς13
23

� ς13
32 � 0.8020, ς14

23 � ς14
32 � 0.6291,

ς21
23 � ς21

32 � 0.7960, ς22
23 � ς22

32 � 0.6475,

ς23
23 � ς23

32 � 0.8049, ς24
23 � ς24

320.8262,

ς31
23 � ς31

32 � 0.8883, ς32
23 � ς32

32 � 0.7610, ς33
23

� ς33
32 � 0.9132, ς34

23 � ς34
32 � 0.8802,

ς41
23 � ς41

32 � 0.8595, ς42
23 � ς42

32 � 0.9833, ς43
23

� ς43
32 � 0.9783, ς44

23 � ς44
32 � 0.9733.

Step 3: Using Eq. (23), we determine T
(
vP

f g
)
,

T11
1 � 1.7461, T12

1 � 1.6431, T13
1

� 1.7743, T14
1 � 1.6575,
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T21
1 � 1.6658, T22

1 � 1.6013, T23
1

� 1.6858, T24
1 � 1.6827,

T31
1 � 1.6071, T32

1 � 1.6290, T33
1

� 1.5757, T34
1 � 1.3114,

T41
1 � 1.7960, T42

1 � 1.7120, T43
1

� 1.6762, T44
1 � 1.6030,

T11
2 � 1.5385, T12

2 � 1.3596, T13
2

� 1.6498, T14
2 � 1.5747,

T21
2 � 1.6850, T22

2 � 1.8058, T23
2

� 1.7329, T24
2 � 1.7252,

T31
2 � 1.8091, T32

2 � 1.8175, T33
2

� 1.7682, T34
2 � 1.6141,

T41
2 � 1.5992, T42

2 � 1.5369, T43
2

� 1.7888, T44
2 � 1.7817,

T11
3 � 1.8335, T12

3 � 1.7210, T13
3

� 1.7458, T14
3 � 1.7355,

T21
3 � 1.7346, T22

3 � 1.7756, T23
3

� 1.1.6781, T24
3 � 1.5779,

T31
3 � 1.7776, T32

3 � 1.7669, T33
3

� 1.6851, T34
3 � 1.8137,

T41
3 � 1.8278, T42

3 � 1.8538, T43
3

� 1.9027, T44
3 � 1.8977.

Step 4: Using Eq. (24), we calculate the weight ∇P
f g ,

∇11
1 � 0.4023, ∇12

1 � 0.2420, ∇13
1

� 0.3556, ∇14
1 � 0.4026,

∇21
1 � 0.2524, ∇22

1 � 0.3459, ∇23
1

� 4043, ∇24
1 � 0.2523,

∇31
1 � 0.3434, ∇32

1 � 0.4198, ∇33
1

� 0.2571, ∇34
1 � 0.3230,

∇41
1 � 0.4092, ∇42

1 � 0.2480, ∇43
1

� 0.3427, ∇44
1 � 0.4162,

∇11
2 � 0.2536, ∇12

2 � 0.3301, ∇13
2

� 0.4009, ∇14
2 � 0.2435,

∇21
2 � 0.3555, ∇22

2 � 0.4067, ∇23
2

� 0.2476, ∇24
2 � 0.3456,

∇31
2 � 0.4017, ∇32

2 � 0.2518, ∇33
2

� 0.3464, ∇34
2 � 0.4047,

∇41
2 � 0.2515, ∇42

2 � 0.3437, ∇43
2

� 0.3980, ∇44
2 � 0.2481,

∇11
3 � 0.3538, ∇12

3 �, 0.3983∇13
3

� 0.2512, ∇14
3 � 0.3504,

∇21
3 � 0.4014, ∇22

3 � 0.2526, ∇23
3

� 0.3439, ∇24
3 � 0.3827,

∇31
3 � 0.2577, ∇32

3 � 0.3594, ∇33
3

� 0.3881, ∇34
3 � 0.2542,

∇41
3 � 0.3576, ∇42

3 � 0.3961, ∇43
3

� 0.2518, ∇44
3 � 0.3519.

Step 5: Using TSFDWPHM or TSFDWPGHM aggre-
gation operators, as represented in Eq. (25) or (26), we
aggregate all the individual decision matrices to obtain a
group decision matrix, as mentioned in Tables 2 and 3. Then,
using Eq. (27), we calculate the supports as.

(27)

Sup
(
v f g , v f w

) � 1 − d
(
v f g , v f w

) (
f � 1, 2, ...,

y; g, w � 1, 2, ..., z; g �� w
)
.

ς1
12 � ς1

21 � 0.9542, ς1
13 � ς1

31

� 0.8719, ς1
14 � ς1

41 � 0.8066,

ς1
23 � ς1

32 � 0.8686, ς1
24 � ς1

42

� 0.8059, ς1
34 � ς1

43 � 0.9029,

ς2
12 � ς2

21 � 0.8881, ς2
13 � ς2

31

� 0.9792, ς2
14 � ς2

41 � 0.9412,

ς2
23 � ς2

32 � 0.8673, ς2
24 � ς2

42

�, 0.8534ς2
34 � ς2

43 � 0.9451,

ς3
12 � ς3

21 � 0.9218, ς3
13 � ς3

31

� 0.9836, ς3
14 � ς3

41 � 0.8710,

ς3
23 � ς3

32 � 0.9095, ς3
24 � ς3

42

� 0.8754, ς3
34 � ς3

43 � 0.8638,

ς4
12 � ς4

21 � 0.9655, ς4
13 � ς4

31

� 0.8942, ς4
14 � ς4

41 � 0.9162,

ς4
23 � ς4

32 � 0.9281, ς4
24 � ς4

42

� 0.9474, ς4
34 � ς4

43 � 0.9755,
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Table 2 Aggregated values by
utilizing TSPFDWPHM S̈1 S̈2 S̈3 S̈4

�
Z1 (0.5456,0.2492,0.3867) (0.6093,0.2262,0.5035) (0.7838,0.3986,0.3433) (0.8844,0.1463,0.2686)
�
Z2 (0.7648,0.2884,0.3582) (0.5474,0.3424,0.4346) (0.7785,0.2266,0.2740) (0.8170,0.1551,0.4704)
�
Z3 (0.7056,0.4651,0.3760) (0.7421,0.1822,0.5140) (0.7004,0.4554,0.2610) (0.5639,0.3901,0.6098)
�
Z4 (0.7681,0.2001,0.6769) (0.8076,0.1441,0.6584) (0.8643,0.1559,0.5745) (0.8488,0.2270,0.6047)

ς1
12 � ς1

21 � 0.9425, ς1
13 � ς1

31

� 0.8329, ς1
14 � ς1

41 � 0.9239,

ς1
23 � ς1

32 � 0.7754, ς1
24 � ς1

42

� 0.9133, ς1
34 � ς1

43 � 0.8328,

ς2
12 � ς2

21 � 0.7526, ς2
13 � ς2

31

� 0.9654, ς2
14 � ς2

41 � 0.9464,

ς2
23 � ς2

32 � 0.7732, ς2
24 � ς2

42

� 0.7130, ς2
34 � ς2

43 � 0.9398,

ς3
12 � ς3

21 � 0.8926, ς3
13 � ς3

31

� 0.9529, ς3
14 � ς3

41 � 0.8657,

ς3
23 � ς3

32 � 0.8455, ς3
24 � ς3

42

� 0.9488, ς3
34 � ς3

43 � 0.8277,

ς4
12 � ς4

21 � 0.9513, ς4
13 � ς4

31

� 0.8769, ς4
14 � ς4

41 � 0.8513,

ς4
23 � ς4

32 � 0.8538, ς4
24 � ς4

42

� 0.8371, ς4
34 � ς4

43 � 0.9470.

Step 6: Using (28), we obtain support T
(
v f g
)
,

T (v11) � 2.6327, T (v12) � 2.6287, T (v13)

� 2.6434, T (v14) � 2.5155,

T (v11) � 2.8086, T (v12) � 2.6089, T (v13)

� 2.7916, T (v14) � 2.7397,

T (v11) � 2.7765, T (v12) � 2.7067, T (v13)

� 2.7570, T (v14) � 2.6103,

T (v11) � 2.7759, T (v12) � 2.8409, T (v13)

� 2.7978, T (v14) � 2.8391,

or determine support.

T (v11) � 2.6994, T (v12) � 2.6313, T (v13)

� 2.4413, T (v14) � 2.6701,

T (v11) � 2.6646, T (v12) � 2.2389, T (v13)

� 2.6785, T (v14) � 2.5993,

T (v11) � 2.7112, T (v12) � 2.6870, T (v13)

� 2.6262, T (v14) � 2.6423,

T (v11) � 2.6803, T (v12) � 2.6422, T (v13)

� 2.6786, T (v14) � 2.6352.

Step 7: Using (29), we calculate weight as

k11 � 0.2121, k12 � 2925, k13 � 0.1924, k14 � 0.3030,

k21 � 0.2146, k22 � 0.2808, k23 � 0.1933, k24 � 0.3111,

k31 � 0.2143, k32 � 0.2904, k33 � 0.1929, k34 � 0.3024,

k41 � 0.2076, k42 � 0.2917, k43 � 0.1889, k44 � 0.3167,

or

k11 � 0.2145, k12 � 0.2907, k13 � 0.1805, k14 � 0.3142,

k21 � 0.2184, k22 � 0.2666, k23 � 0.1983, k24 � 0.3167,

k31 � 0.2125, k32 � 0.2916, k33 � 0.1879, k34 � 0.3079,

k41 � 0.2145, k42 � 0.2890, k43 � 0.1912, k44 � 0.3083.

Step 8:We obtain the comprehensive assessment value of
each alternative as

v1 � (0.8262, 0.1774, 0.3158) , v2 � (0.7822,

0.1872, 0.3358) , v3 � (0.7059, 0.4069,

0.3287) , v4 � (0.8434, 0.1762, 0.6061)

or

v1 � (0.6364, 0.4414, 0.6599) , v2 � (0.5225,

0.5221, 0.6468) , v3 � (0.4529, 0.6167,

0.6463) , v4 � (0.5225, 0.5221, 0.6468) .

Step 9: We calculate the score values as

SC (v1) � 0.5325, SC (v2) � 0.4406, SC (v3)

� 0.3163, SC (v4) � 0.3771
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Table 3 Aggregated values by utilizing TSPFDWPGHM

S̈1 S̈2 S̈3 S̈4

�
Z1 (0.5056, 0.3637, 0.6650) (0.3006, 0.3605, 0.7134) (0.7574, 0.5482, 0.5990) (0.6242, 0.2747, 0.7249)
�
Z2 (0.7242, 0.4763, 0.5263) (0.3791, 0.6599, 0.7270) (0.7333, 0.4666, 0.6114) (0.7717, 0.3638, 0.5504)
�
Z3 (0.6558, 0.4832, 0.4696) (0.5877, 0.4598, 0.6917) (0.6782, 0.5566, 0.3727) (0.4635, 0.5021, 0.6769)
�
Z4 (0.6306, 0.3503, 0.6853) (0.5847, 0.4657, 0.6577) (0.7982, 0.3299, 0.6035) (0.8495, 0.3860, 0.6321)

Table 4 Impact of parameters ˙́s
and t on score values Parameters Score values Ranking orders

S̈1 S̈2 S̈3 S̈4

s � 1, t � 2, ζ � 3 0.5325 0.4406 0.3163 0.3772 S̈1 > S̈2 > S̈4 > S̈3

s � 5, t � 9, ζ � 3 0.4514 0.3576 0.2435 0.2536 S̈1 > S̈2 > S̈4 > S̈3

s � 9, t � 15, ζ � 3 0.4379 0.3436 0.2323 0.2324 S̈1 > S̈2 > S̈4 > S̈3

s � 19, t � 31, ζ � 3 0.4253 0.3310 0.221 0.2127 S̈1 > S̈2 > S̈3 > S̈4

s � 2, t � 130, ζ � 3 0.2532 0.1779 0.0634 −0.1236 S̈1 > S̈2 > S̈3 > S̈4

s � 35, t � 3, ζ � 3 0.4969 0.4050 0.3124 0.3390 S̈1 > S̈2 > S̈4 > S̈3

s � 150, t � 7, ζ � 3 0.4945 0.4076 0.3175 0.3451 S̈1 > S̈2 > S̈4 > S̈3

s � 250, t � 11, ζ � 3 0.4940 0.4071 0.3178 0.3454 S̈1 > S̈2 > S̈4 > S̈3

Table 5 Influence of parameter ζ

on ranking results Parameters Score values Ranking orders

S̈1 S̈2 S̈3 S̈4

s � 1, t � 2, ζ � 3 0.5325 0.4406 0.3163 0.3772 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 7 0.7133 0.5536 0.4400 0.4923 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 15 0.7672 0.6112 0.5018 0.5687 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 25 0.7815 0.6300 0.5224 0.5955 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 45 0.7892 0.6404 0.5338 0.6108 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 75 0.7921 0.6443 0.5383 0.6169 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 100 0.7930 0.6455 0.5397 0.6188 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 110 0.7932 0.6458 0.5400 0.6192 S̈1 > S̈2 > S̈4 > S̈3

or

SC (v1) � −0.0295, SC (v2) � −0.1280, SC (v3)

� −0.3013, SC (v4) � −0.1771.

Step 10: Finally, we obtain the final ranking pattern as

S̈1 > S̈2 > S̈4 > S̈3

or

S̈1 > S̈2 > S̈4 > S̈3.

5.2 Sensitivity analysis

In the subsequent analysis, we delve into the impact of three
independent parameters, namely s, t , and ζ , on decision-
making. We examine how altering these parameters affects
the ranking results derived fromapplyingTSPFPDWHMand
TSPFPDWGHM operators.

To begin with, we explore the influence of different values
of s and t , while keeping ζ fixed, as part of Step 7. Subse-
quently, we investigate the impact of parameters ζ on the
ranking results while s and t remain constant. The findings
of these investigations are presented in Tables 4, 5, and 6.

Upon careful examination of Tables 4, 5, and 6, it becomes
apparent that variations in the ranking of alternatives emerge
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Table 6 Impact of higher values
of q Parameters Score values Ranking orders

S̈1 S̈2 S̈3 S̈4

s � 1, t � 2, ζ � 3, q � 3 0.5325 0.4406 0.3163 0.3772 S̈1 > S̈2 > S̈4 > S̈3

s � 1, t � 2, ζ � 3, q � 5 0.4291 0.3178 0.2013 0.3809 S̈1 > S̈4 > S̈2 > S̈3

s � 1, t � 25, ζ � 3, q � 8 0.2931 0.1734 0.0913 0.2777 S̈1 > S̈4 > S̈2 > S̈3

s � 1, t � 2, ζ � 3, q � 11 0.2104 0.0991 0.0445 0.1869 S̈1 > S̈4 > S̈2 > S̈3

s � 1, t � 2, ζ � 3, q � 15 0.1420 0.0500 0.0182 0.1093 S̈1 > S̈4 > S̈2 > S̈3

s � 1, t � 2, ζ � 3, q � 23 0.0707 0.0144 0.0034 0.0407 S̈1 > S̈4 > S̈2 > S̈3

Fig. 1 Geometrical interpretation of scores when “ζ” varies, where s �
1, t � 2

Fig. 2 Geometrical interpretation of scores when “q” varies, where s �
1, t � 2

for different combinations of s and t . However, despite these
variations, the optimal and suboptimal construction com-
panies consistently maintain their positions throughout the
analysis. Furthermore, Table 5 reveals that, as the value of
ζ increases, the ranking rule remains stable, while the score
function exhibits a consistent upward trend.

Figure 1 visually represents this trend, demonstrating a
uniform increase in score values up to ζ � 20, beyond which
the changes in score values become negligible. Figure 2, on
the other hand, highlights a decreasing behavior in the score
values of the four alternatives as the parameter q increases.

Although slight fluctuations in ranking patterns are observed,
the best and worst options remain unchanged.

5.3 Comparative analysis

In this subsection,we aim to validate the proposed approach’s
stability and advantages by comparing it to existing tech-
niques in the realm of T-spherical fuzzy sets (TSPFSs).

To provide a comprehensive assessment of the novel
method’s validity, we will contrast it with the T-spherical
fuzzy Hamacher weighted averaging (TSFHWA) operator
(Ullah et al. 2020a), theT-spherical fuzzyweighted averaging
(TSFWA) operator (Ullah et al. 2020b), and the T-spherical
fuzzyDTNCN aggregation operator (Ullah et al. 2021). Each
of these operators will be employed to evaluate the above-
mentioned real-life problem, and the resulting scores and
ranking outcomes will be presented in Table 7.

When comparing our method with TSFHWA operator
(Ullah et al. 2020a), which utilizes the Hamacher t-norm
and t-conorm, notable differences in the ranking order
emerge. This discrepancy in ranking patterns indicates that
the TSFHWA operator overlooks the interrelation among
attributes and exhibits less flexibility than our proposed
method.

Likewise, the rankings obtained from TSFWA and
TSFWG differ due to using a simple averaging aggregation
operator, which needs more flexibility to handle unreason-
able data and make nuanced evaluations.

Furthermore, a careful analysis of Table 7 reveals that
TSFDWA (Ullah et al. 2021), TSFDWG (Ullah et al. 2021),
and TSFHWG (Ullah et al. 2020a) consistently identify
the optimal construction company. This consistency further
strengthens the validity of the newly introduced MAGDM
model. It becomes evident that the anticipated operators are
more rational and practical for addressing MAGDM issues
within the TSPF environment.
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Table 7 Ranking patterns by
applying different AOs Methods S̈1 S̈2 S̈3 S̈4 Ranking order

TSFHWA (Ullah et al.
2020a)

0.0056 0.1073 − 0.0204 − 0.0198 S̈2 > S̈1 > S̈4 > S̈3

TSFHWG (Ullah et al.
2020a)

0.4955 0.3787 0.3055 0.2768 S̈1 > S̈2 > S̈4 > S̈3

TSFWA (Ullah et al.
2020b)

0.2426 0.2581 0.1437 0.1969 S̈2 > S̈1 > S̈4 > S̈3

TSFWG (Ullah et al.
2020b)

0.0112 0.1250 0.0534 0.1517 S̈4 > S̈2 > S̈3 > S̈1

TSFDWA (Ullah et al.
2021)

0.3380 0.3242 0.1959 0.2959 S̈1 > S̈2 > S̈4 > S̈3

TSFDWG (Ullah et al.
2021)

0.1232 0.0497 0.0083 − 0.0771 S̈1 > S̈2 > S̈4 > S̈3

TSFDWHM 0.5325 0.4406 0.3163 0.3772 S̈1 > S̈2 > S̈4 > S̈3

TSDWGHM − 0.0295 − 0.1280 − 0.3013 − 0.1771 S̈1 > S̈2 > S̈4 > S̈3

6 Conclusions

This article delves into integrating the Dombi operator, HM
operator, and PA operator within the framework of TSPFSs,
aiming to address MAGDM challenges. A novel set of AOs
is introduced, extending the sphere of influence to include
the spherical fuzzy Dombi power Heronian mean operator
and spherical fuzzy Dombi power in the TSPF environment.

The article commences with a foundation-laying explo-
ration, providing essential definitions of TSPFSs while revis-
iting the fundamental expressions of HM, PA, and Dombi
operators. Subsequently, a family of AOs is established,
including the TSPFDPHM operator, TSPFDPHM operator,
TSPFDPHM operator, and TSPFDPHM operator, alongside
the definition of their desirable properties. Additionally, the
numerical problem of MAGDM is addressed by utilizing
TSPFS, a task unobtainable by SPFSs.

Building upon the newly introduced AOs, a MAGDM
approach is formulated and presented. The proposed
approach provides a flexible and comprehensive framework
for addressing complex decision problems, particularly in
post-disaster scenarios like flood recovery projects.

Through a real-world case study, we demonstrate the
effectiveness of our approach in providing a systematic and
transparent decision-making process. Considering uncertain-
ties and varying degrees of importance among decision
criteria, our method empowers decision-makers to make
informed choices that alignwith project objectives and stake-
holder preferences.

Future research directions may include applying this
approach to other decision problems and exploring differ-
ent parameterization schemes for Dombi power aggregation
operators to tailor themethod further to specific contexts.Our
proposed methodology offers a valuable tool for improving

decision-making in complex scenarios and can contribute to
more resilient and sustainable disaster recovery efforts.
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