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Abstract

Linguistic g-rung orthopair fuzzy number (Lq-ROFN) is a valuable tool for expressing the uncertainty of qualitative
information that has received a lot of attention over the last 5 years. In this article, we propose the correlation coefficient to
measure the strength of the relationship between two linguistic q-rung orthopair fuzzy sets (Lq-ROFSs). We also provide
the various properties of the proposed correlation coefficient of Lq-ROFSs. Moreover, we also propose the weighted
correlation coefficient of Lq-ROFSs. Afterward, using the proposed weighted correlation coefficient of Lq-ROFSs and the
“technique for order of preference by similarity to ideal solution” (TOPSIS) method, we develop a novel multiattribute
group decision-making (MAGDM) method under the Lq-ROFNs environment. We also solve the different MAGDM
problems using the proposed MAGDM method and compare the preference order (PO) obtained by the proposed MAGDM
method with the POs obtained by the existing MAGDM methods. The comparison analysis shows that the drawbacks of the
existing MAGDM methods can be successfully overcome by the proposed MAGDM method, where existing MAGDM
methods cannot distinguish the POs of alternatives. In the Lq-ROFNs environment, the proposed MAGDM method
provides a useful decision-making method for solving MAGDM problems.

Keywords Fuzzy set - MAGDM - TOPSIS - Correlation coefficient - g-ROFS - Lq-ROFS

1 Introduction

Multiattribute group decision-making (MAGDM) is a
crucial component of decision-making theory. It involves
selecting the optimal alternative based on quantitative or
qualitative evaluations of each possible attribute by a group
of decision-making experts (DMExs). Due to the uncertain
information, the most challenging job for the DMEXs is to
provide the alternative’s assessment of a MAGDM prob-
lem. Therefore, Zadeh (1965) introduced the theory of
fuzzy sets (FS) to manage imprecise concepts in quantita-
tive data analysis. Fuzzy set theory has only explored
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membership degrees (MDs) for decision-making but
ignores non-membership degrees (NMDs), which may
result in erroneous results in many realistic evaluations.
Several applications utilizing FSs have been introduced in
previous studies (Chen and Jian 2017; Chen et al. 2019;
Zeng et al. 2019; Chen and Hsu 2008; Chen 1996; Chen
and Lee 2010; Lin et al. 2006; Chen and Chen 2002; Savita
et all. 2024; Akram and Martino 2023; Noor et al. 2023;
Muneeza and Abdullah 2023; Farman et al. 2023). To
compensate for the inadequacy of the FS, Atanassov (1986)
proposed the extension of the FS known as intuitionistic
fuzzy sets (IFS) (0,¢) that also includes NMD. The IFS
satisfies the condition 6 + ¥ <1, where 0 is the MD and 1
is the NMD. But in some cases, IFS is not able to express
the assessments of the DMEXs, where 0+ 9 > 1. To
handle these types of problems, Yager (2013) proposed the
pythagorean fuzzy set (PFS) (0,4) which satisfy the con-
dition 0% + 2 <1. The PFS provides more space for
DMEXs to express their assessment of the alternatives
compared to the IFSs. But in some cases, PFS is not also
able to express the assessments of the decision-making
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experts (DMEXs) where 0% + 92 > 1. Therefore, Yager
(2017) proposed the generalization of the IFS and PFS
known as g-rung orthopair fuzzy set (q-ROFS) (0, ) which
satisfies the condition: 67 + 97 <1 and ¢ > 1, which pro-
vides a more range to express the information. Under these
environments, different MAGDM approaches (Liu et al.
2020; Kumar and Chen 2023a; Garg and Chen 2020;
Pathak et al. 2024; Alcantud 2023; Kumar and Kumar
2023) have been developed by the researchers. Liu et al.
(2020) proposed the partitioned Maclaurin symmetric
mean AO for MAGDM under the intuitionistic fuzzy
number (IFNs) environment. Kumar and Chen (2023a)
defined the entropy measure and arithmetic mean aggre-
gation operator (AO) for MAGDM under the PFSs envi-
ronment. Garg and Chen (2020) defined the neutrality AOs
for MAGDM under the g-rung orthopair fuzzy number (g-
ROFNs) environment.

However, using IFSs, PFSs, and q-ROFSs, the DMExs
can express the assessment information only in numerical
terms. In certain circumstances, DMExs may discover that
it is challenging to describe their assessment in numerical
terms. For instance, DMExs may have challenges when
expressing the weather conditions of any city. In that case,
the DMExs can use the linguistic phrases like “freezing”,
“cold”, “chilly”, “warm”, “hot”, and “burning” to
express the weather condition instead of numerical values.
First, Zadeh (1975) proposed the concept of linguistic
variables (LVs), where various applications (Herrera and
Martinez 2001; Xu 2004; Saha et al. 2024; Akram et al.
2023a, b) based on the LVs environment have been
developed. Afterward, Chen et al. (2015) defined the idea
of linguistic intuitionistic fuzzy sets (LIFS) by combining
the features of IFNs and LVs to express the qualitative
assessments more conveniently. Some MAGDM approa-
ches (Malik et al. 2024; Kumar and Chen 2023b; Arora and
Garg 2019; Kumar and Chen 2022a, b; Rahim 2023) have
been developed under the LIFSs environment. Afterward,
Garg (2018) defined the concept of the linguistic PFS
(LPFS) by combining the features of the PFS and LVs,
which is the extension of LIFS. Han et al. (2019) defined
the technique for order of preference by similarity to ideal
solution (TOPSIS) method based on the entropy measures
and distance measures for the LPFSs. Lin et al. (2019)
proposed the TOPSIS method based on the correlation
coefficient and entropy measures for the LPFSs. In 2019,
Liu and Liu (2019a) extended the idea of LIFSs and LPFSs,
and defined the idea of linguistic g-rung orthopair fuzzy
(Lg-ROF) set (Lq-ROFS) and Lg-ROF number (Lg-
ROFN), where the MD and NMD of the Lq-ROFN are
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indicated by LVs. The Lq-ROFS allows DMEXxs to provide
assessment information across a wider range. Several
decision-making applications utilizing Lgq-ROFSs have
been introduced in previous studies(Neelam et al. 2024;
Liu and Liu 2019a, b; Peng et al. 2019; Akram et al. 2021;
Bao and Shi 2022; Li and Zhang 2023; Liu et al. 2022;
Jana et al. 2023). Liu and Liu (2019a) proposed the power
Bonferroni AO of Lg-ROFNs and MAGDM approach
based on the proposed AOs under the Lq-ROFNs envi-
ronment. Liu and Liu (2019b) introduced the power
Muirhead mean AO and entropy measures for the
MAGDM approach under the Lg-ROFNs environment.
Peng et al. (2019) defined the similarity measures of Lg-
ROFSs and MAGDM approach using proposed similarity
measures under the Lq-ROFNs environment. Akram et al.
(2021) defined the MAGDM approach based on the Ein-
stein model in the Lg-ROFNs context. Bao and Shi (2022)
proposed the MAGDM approach under the Lq-ROFNs
environment based on the ELECTRE method. Liu et al.
(2022) defined the point weighted aggregation operators
(AOs) for Lq-ROFNs and MAGDM approach based on the
proposed AOs of Lq-ROFNs. Li and Zhang (2023) defined
the MAGDM approach in the context of the Lg-ROFNs
environment based on fuzzy preference relations. Jana
et al. (2023) defined the MAGDM approach for evaluation
of sustainable strategies for urban parcel delivery under the
Lg-ROFNs environment.

In this paper, we find that the majority of existing
MAGDM approaches under the Lq-ROFNs environment
are based on the AOs of Lq-ROFNSs, and there is limited
research on the classical MAGDM approaches under the
Lg-ROFNs environment. We also find that there is no study
on the correlation coefficient of Lq-ROFNs. Moreover, we
find that the Liu and Liu’s MAGDM approach (Liu and Liu
2019a) and Liu et al.’s MAGDM approach (Liu et al. 2022)
have the shortcomings that they cannot distinguish the
preference orders (POs) of alternatives in certain cases.
Hence, it is necessary to develop a new classical MAGDM
approach under the Lgq-ROFNs environment to overcome
the limitations of Liu and Liu’s MAGDM approach (Liu
and Liu 2019a) and Liu et al.”s MAGDM approach (Liu
et al. 2022).

In this paper, we propose the correlation coefficient for
the Lq-ROFSs. The proposed correlation coefficient mea-
sures the strength of the relationship between two Lg-
ROFSs. We also present proofs of the different properties
of the proposed correlation coefficient of Lq-ROFSs. We
also propose the weighted correlation coefficient of Lq-
ROFSs. Afterward, based on the proposed weighted
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correlation coefficient of Lg-ROFSs and the TOPSIS
method, we propose a new classical MAGDM approach to
solve the MAGDM problems in the Lq-ROFNs environ-
ment. The proposed MAGDM approach can overcome the
drawbacks of Liu and Liu’s MAGDM approach (Liu and
Liu 2019a) and Liu et al.’s MAGDM approach (Liu et al.
2022), where they cannot distinguish the POs of alterna-
tives in certain cases.

The remaining part of this paper is organized as follows:
Sect. 2 provides the fundamental definitions related to this
article. In Sect. 3, we develop the correlation coefficient
and weighted correlation coefficient for Lq-ROFSs. In
Sect. 4, we propose a novel MAGDM approach based on
proposed weighted correlation coefficient of Lq-ROFSs
and TOPSIS method under the Lg-ROFNs environment.
Finally, Sect. 5 gives the conclusion of the paper.

2 Preliminaries

Definition 1 (Herrera and Martinez 2001; Neelam et al.

2023a) A finite linguistic term (LT) set (LTS) Y =

{so,sl,...,sh} of odd cardinality, where LT s, reflects a

suitable value for a LV. For example, to express the
weather condition, we can consider the LTs as sy =
““Areezing’’, s; = “‘cold’’, s, = “‘chilly’’, s3 = ‘“‘warm”’
and s4 = “‘hot”’.

The LT s; meets the following criteria:

) si<s; & k<t
(i) Neg(sx) = sns;
(iil) max(sg,s;) = sk < Sk > 813
(iv)  min(sg,$;) = 8 < Sk > 81
Later on, the continuous LTS (CLTS) Y[Qh] is developed by
extending the discrete LTS Y as follows (Xu 2004; Neelam
et al. 2023b):

Yo = {Sk | so<sk < Sh}~

Definition 2 (Liu and Liu 2019a) A Lg-ROFS ( in a finite
universal set G is defined as:

= {(x5000) 59()) | 8 € G}, (1)

where sg(,) and sy,) indicate the membership degree (MD)
and non- MD (NMD) of g to (, respectively, where

50(8) € Yo S(e) € o> 0= (0(2))* + (9(g))* <h? and
g>1. The hes1tancy degree of g to ( is defined as

Su(e) = Stha—(0(g))"— (9(g))") /2"

In Liu and Liu (2019a), Liu and Liu called the pair
(so,s9) in the Lq-ROFS { = {(x, 5¢(¢), Su(¢)) | X € X} a Lg-
ROFN.

Let Q) be the set of all Lg-ROFNs in the CLTS Yo ).

Definition 3 (Liu and Liu 2019a) The score function S(g)
of the Lq-ROFN ¢ = (s, s9), where ¢ € Qo ), is defined as

follows:
he + 07 — 97\ /4
S(o) = (;) 7 )

2

where S(g) € [0, A].

Definition 4 (Liu and Liu 2019a) The accuracy function
H(g) of the Lq-ROFN ¢ = (sg,sy), where ¢ € Qy, is
defined as follows:

H(g) = (07 + 07"/, (3)

where H(g) € [0, h].

Definition 5 (Liu and Liu 2019a) Let ¢, = (sy,,s9,) and
0, = (s0,,59,) be two Lg-ROFNs, then the following rules
are defined:

(a) if S(ey) >
(b) if S(ey) <
() if S(ey) =

S(¢,) then ¢;>-¢,.
S(02) then ) < ;.
S(g,) then

() if H(g,) > H(e,) then ¢,-¢,.
(i) if H(g,) <H(g,) then ¢; < .
(i) if H(¢,) = H(g,) then ¢; = ¢,.

3 The proposed correlation coefficient
of Lq-ROFSs

In this section, we propose the correlation coefficient of
Lg-ROFSs. Let &(G) | be the set of all Lq-ROFSs over

the universal set X = {g1,£2,...,8x}, Where MD and
NMD of each element g; € G belong to the CLTS Yo .

Definition 6 Let {; — {(g,-,s(;;l (650 (6)) | 8 € G} be a
Lg-ROFS, where {; € &(G)| . The proposed information
energy T({;) of the Lq-ROFS (; is defined as:

1 & 2 2
T(6) = Do (0 60) ™+ (0, 00) -+, 5.

(4)
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where 0<T() <1,

(97, (g:))")"/? and g > 1.

mz,(8i) = (h? = (0;,(8:)" —

Definition 7 Let {; = {(g,',s(;; (g S0, @) | & € G} and

6= {(g,,s()&z(g,),sl;gz @) | & € G} be two Lq-ROFSs,
where (; € &(G)y and {; € &(G)y ;). The proposed cor-

relation C((;,{,) between the Lq-ROFNs {; and {, is
defined as follows:

C(l, &) = M%Z((Q;. ()" (0c. (8)) "+ (95, (81)* (¥, (80))
i=1

+(mg, (80)) " (mr, (2))7)

5)
where 0<C({y,8) <1, (i) = (B — (0, (8:)" — (U,
(8", 7 (g) = (b = (02, (89)" — (e ()" and
g=1.

The proposed correlation of Lg-ROFS satisfies the
following properties:

i C(,6)=T).
(i)  C({1,5) =C(6, ).

Definition 8 Let (| = {(g,',s(;:< )e50. @) | 81 € G} and

6= {(g,,s()&z(g,),sl;gz @) | & € G} be two Lg-ROFSs,
where {; € ¢(G)y,) and {; € &(G) (. The proposed CC

K({,{;) between the Lq-ROFNs (| and {, is defined as
follows:

C(Ch CZ)
max{T({;),T(()}
i (0, (80)" - (0, (1) + (¢, (82)" -

K(ClaCZ) =
I, (8:)" +

( 24 (g’))q

where 0<K({;,() <1, m;,(gi) =

(8D, me,(gr) =
g>1

(R — (6, (8:))" — (I,
(h = (0;,(2)" = (9,(2:))*)/* and

Example 1 Let (; = {(g1,s5,53),(82,54,54), (83,56, 51) }
and CZ = {<g1,S4,S2>, <g27s57s2>> <g3,S7,S1>} be two Lq_
ROFSs, where {; € &(G) g5 and {5 € &(G)(p -

First, using Eq. (4), we obtain the information energies
T({,) and T({,) of the Lq-ROFSs (| and {,, respectively,
where g = 3,

g 2
(60 = 35 20 (0 ()™ +

1

- 3x8°

(56 +30 4+ (89 =58 —3°) 440 445 4 (83 — 41 — 4%)°

(95, ()™ + (m, (30))™)

+6° 410+ (87— 6"~ 1%)7)
= 05535,

3
) = 3 D (O )™ + (O™ + (s 0™

1 2
:3X86(46+26+(83743723) +56+26
+(83 _ 53 _ 23)2+76 + 16 + (83 _ 73 _ 13)2)

=0.6396.

Now, using Eq. (5), we calculate the correlation C({;,{,)
between the Lq-ROFSs {; and {,, where ¢ = 3,

(72, (8))") (©)

max{ 1, (0, (8% + (9, (80 + (s, (80)) ) o0y (102, (80 + (0, (80) + (mca(00))™) |

9
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3

Ce12) = 5 D (0 80"

(0, (gz)) (9, (€))7 - (9, (8:))" + (7t, (81)*
3 (53 43+33 23
+(8 5 -3%).(8° -4 -
+(8 -4 —4%).(8° - 5°
+(83 —_63—13
=0.5650.

(m,(8)7)

23)+43_53+43.23
-2 46 P11

)-(88 =7 - 1))

Hence, using Eq. (6), we get the proposed correlation
coefficient K({;,{;) between the Lq-ROFSs {; and (5,
where g = 3,

B C((y,6)
K(,8) —maX{T(Cll),zT(Cz)}
=0.8834.

Theorem 1 Let (= {(gi,s(;; ()> 59 1(8i>> | gi € G} and

{ = {<g”S9g2(g!),S1952 @) | & € G} be two Lg-ROFSs,
where {; € &(G)(y ) and {5 € &(G) . The proposed cor-
relation coefficient K ((, (,) between the Lq-ROFNs (, and
{», defined in Eq. (6), satisfies the following conditions:

Pl K(1,6) =K(6,4).
(P2) O0<K((,5H)<1.
P3) 4L =K((,L)=1.

Proof Let (; = {(g,,s(; (¢1)7 50, @) | 8 EG} and {, =

{(g,,s(;gz(g/),sq;gz @) | & € G} be two Lg-ROFSs, where
C] 6 8( )[O,h] and gz 6 S(G)[O,h]'

(P3)

According to Cauchy—Schwarz inequality, we
have

(gyi+gy+ - +gy) <(@+&+...+8)
0Tz
Therefore

n

(C(Cl7C2))z = (Z((QC. (gi))q : (9& (gi))q

i=1

+0;, (8))" - (9, (8)" + (mz,(20))" - (e, (80))1))°
< (i((’;. ()" + (9, (8)" + (z, (gi))")

i=1

n 2
: (Z( 6 (8)" + (95,(80)" + (m, (&))")

1

(0, (80))* + (92, (80) + (e, (80))™

: IA
M”ﬂ s

(0, (80))™ + (92, (80) + (m, (1))

= (Cl) T(£).

Therefore, C({;,{>) < max{T((;),
K((1, ) <1
Let the Lg-ROFSs {; = {, then 0;,(g;) = 0¢,(g:),
U, (8i) = V5, (8i) and m (gi) = 75, (8i), Vi € G.
By using Eq. (6), we have

T(()}. Thus,

(P1) We have
K(éhgz) Z (0 (gx))q (0 (gr))q (19 gl))q (195; gl)>l e (g,)) ( sz g,)))
max{S ((05,<g,>>"'+w,< DY+ (e (80 0 (05,80 + (92, (80)) + (m, () }
_ S0 (O (8)" - (0, (80))" + (9 ()" (P ()" + (e ()" - (i, (1))
max{ S (105 (80 + (92, (80)) + ()™ s (106, (80 + (95, (80))™ + (s, ()™ }
=K((, ).
(P2) 1t is obvious K({;,{,)>0. Then we will prove
K(Cl ) £2) S l
(41752)72((99(&)) (0, (80)* + (95, (80))" - (9, (80)* + (mz, ()" - (7, (84))")
= (0, (81))" - (02, (81))" + (9, (g1))" - (9, (81))" + (g, (81))" - (mz,(81))7)
+ (05, (82))" - (0,(82))" + (97, (82))" - (9, (82))" + (7, (2))7 - (m, (82))*
F ot (0, (80)" - (0, (8a))" + (9, ()" - (U, (80))* + (7, ()" - (e, (80))7)-
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)
>
—~
ﬂ
—
e
S~—
~
—
)
A
_
—

_ D1 (02, (80))" - (0, (80)” + (z, (81))" - (Vr, (8)" + (e, (80))* - (e, (81))7)

=
)
bl
—
L4
Il
~/
—
=
—
)
\_/
=
S
<
+
—
3
—~
%
v
=
+
—
3
o
—~
)
\_/
=
12>
8
~—

S (0 (800 + 0, (80 + (s, (80)™) }

O

In many practical scenarios, distinct elements g1, g2, - . .,
gn may have varying weights. Therefore, we consider the
weights wy, wo, ..., w,, of the elements g, g, ..., &,
respectively, where w; >0,i =1,2,...,nand ) ., w; = 1.
In the following, we propose the weighted correlation
coefficient K,,({;, {,) between the Lq-ROFNs {; and {, as
follows:

Definition 9 Let {; = {(g,,s@ (w50 (6)) | 8 € G} be a
Lg-ROFS, where {; € ¢(G)y . The proposed weighted

((laCZ)
max{T,((;), Tw({2)}
Zi:l Wi(((i“l (g,-))

(é’lv gZ)

(0, (2:))" + 9z, (81))" - (95, (20))" + (7z, (81)" - (

where 0 < C,, ({1, () <1, w; is the weight of the element g;,
wi>0,i=12,..,n Y., w=1 m(g)=(h—
(0, ()" — (9, (&), 7e,(gi) = (M — (0, (8:)" —
(9:,(:))*)"/* and g > 1.

Definition 11 Let {; = {(gi,s@; ()7 SV 1(8f)> | gi € G} and

£, = {<g,,s0n(g,) Soy(e) | 8 € G} be two Lg-ROFSs,
where (; EE(G)[O,h] and (; € &(G)y. The proposed

weighted correlation coefficient K,,({;, {;) between the Lg-
ROFNSs {; and {, is defined as follows:

72, (8))") ©)

max {1 wi (0, (80)) + (92, (80))™ + (e, (80)™), Sy wi (02, (80))™ + (9,80 + (7, () }

information energy T,,((;) of the Lq-ROFS (| is defined as:
l n

T(61) = 7 D (05 (g™

(02, (8:)) + (e, (8))

where 0 <T,({;) <1, w; is the weight of the element g;,
w;>0,i=1,2,...,n, Z?:IW,-:], e, (gi) = (h? —
(0, (8:))* = (9, (:)")"/* and g > 1.

Definition 10 Let {; = {<gi,S9: ()

(7)

So.,(¢)) | 8 € G} and

(= {(g,,s()q(m S0, (g1) ) | gi € G} be two Lg-ROFSs,
where (| € S(G)[O,h] and (; € &(G)y. The proposed
weighted correlation C,,({;,(,) between the Lq-ROFNs (;
and (, is defined as follows:

w ClvéIZ hzqzwl 4 g’ w(gi))q
+(0¢, (80))* (95, (8:)* + (e, (81)) (me, (1)),

(8)

@ Springer

where 0 < K,, ({1, {3) <1, w; is the weight of the element g;,
Wi207i:1727"'5n’ Z?:lwizl’ nl}(gi):(hqi
(0, (8)) — (W, (gD, mey(gi) = (9 — (0, (g:))* —
(92, (2)")"/? and g> 1.

Example 2 Let {; = {(g1,54,53),(82,57,51),(g3,53,55)}
and {, = {(g1,51,55), (g2, 54,53), (g3, 53,52) } be two Lq-
ROFSs, where (; € ¢(G)g and (; € &(G)yg, with
weights w; = 0.3, w, = 0.4 and w3 = 0.3, respectively.

First, using Eq. (7), we obtain the weighted information
energies T,,({;) and T,,({,) of the Lq-ROFSs {; and (5,
respectively, where g = 3,
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- %Z wi <(9qu ()% + (9, (8:))* + (m, (gi))zq)

i=1

Tu(&1)
= % (03(46 +136 4 (83 43 33)2)
F04(70 4104 (8 =7 — 1))

103(30 450+ (8 -3~ 5°)))

= 0.5980,
. 1< )
Tu(E) = w0500 + )™ + (i (5)™)
_1 6 <6 313 _ &3\2
786(0.3(1 +50 4 (8- 1P -5 )
+0.4(46 +30 4 (8 -4 - 33)2)
+0.3(36 +20 4 (8 -3 - 23)2))
—0.7275.

Now, using Eq. (8), we calculate the weighted correlation
Cy ({1, (5) between the Lg-ROFSs {; and {,, where g = 3,

3

Cw(é/l ) CZ) = ﬁz Wi((HCI (gl))q

i=1
(0, (80))" + (95, (20)) - (V. (80))" + (e, (80))" - (mc,(20)")
o TGRS DN (IR Y)
+04(7 - £+ 1737+ (8 -7 - 1%).(8° -4 - 37))
+03(3%- 345720 4 (87 - 37 - 57) (87 — 37 - 2%)))
=0.5299.

Hence, using Eq. (9), we get the proposed weighted cor-
relation coefficient K,,({;,{,) between the Lq-ROFSs (;
and {,, where ¢ = 3,

_ C(C], CZ)
K, ({1, 8) T max{T((,),T()}
=0.7283.

Theorem 2 Let (; = {(gi,s(;gl(g[),sqggl @) | & € G} and

(= {<gi,S()§2(g’)7Sﬁg2(g’.>> | gi € G} be two Lg-ROFSs,
where (y € ¢(G)y, and ( € &(G)yy. The proposed
weighted correlation coefficient K,,({;, (,) between the Lg-
ROFNs {; and {,, defined in Eq. (9), satisfies the following
conditions:

P K, (1,8) = Ko(G, 4).
P2) O0<K,({,4) <1

P3) L=0L=K/J(,L) =1

Proof The proof is similar to the proof of Theorem 1. [

4 The proposed MAGDM approach based
on the proposed weighted correlation
coefficient of Lq-ROFSs and the TOPSIS
method

In this section, we propose a new MAGDM approach under
the Lq-ROFNs environment based on the proposed
weighted correlation coefficient of Lgq-ROFSs and the
TOPSIS method.

Let {y,(s,...,{, be p alternatives and let Cy, Cy,...,C;
be r attributes. Let wy, wy, ..., w, represent the weights of
Cy,Cy, ..., C,, respectively, where w; >0,i=1,2,...,r
and Y ., w; = L. Let &1, &, . .., &, be the decision-making
experts (DMExs) with weights ¢, ¢,, ..., ¢, respectively
¢>0,j=1,2,....,m and 377", ¢ = 1. Every DMEx ¢
evaluates the attributes C; of the alternatives {; by utilizing
a Lg-ROFN g/, = (s%, s%} to construct the decision

matrix (DMx) R/ = (g],),,,» shown as follows:

G G ... G

~j ~j ~j
& (0 0 - 0y,

~j ~j ~j
O |0y Opn - Oy

X
Il

6 &, . &

Step 1: ~ Convert the DMxs R' = ()., =

({51 »
S79~Al,,>)p><r’ R2 = (é]%i)pxr = (<s0~i1’s19~k"[>)p><r’ e
R" = (ég)pxr
malize DMx (NDMxs) R' = (0};),, = ({sq!
Sﬂ}(i>)p><r’ Rz = (lei)pxr = ((s()zi’s'l()ii>)p><r’ ce
R™ = (0§i) pxr = ({802, 592)) - as follows:

. (s .89 )
Q;a :{ ki ki

(s, 58,)

= ((s(;zf,s,19~z>)pxr into the nor-

for benefit type attribute

for cost type attribute
(10)
where k=1,2,...,p, i=1,2,...r and
j=12,...,m.
For each NDMx R/, obtain the positive ideal
alternative (PIA) ({*Y and the negative ideal
alternative (NIA) ({~ )j, where j = 1,2,...,m,
shown as follows:

Step 2:

@ Springer
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Step 3:

(C+) {<Cl7s(0+)/7 (1)+)> i= 1 2

}
Y = {(c,.,s(ei),-,s(l%),),i =1,2,... }
(12
)=

where  (07) = max; {0}, (
mlnk{%} 19+ / = mmk{%} = maxy
{0}, (n (07 Y) ﬂm Ve,
== (I %

,2,..,p,i=1,2,...randj=1,2,....m

Based on Eq. (9), obtain the weighted corre-
lation coefficient (K;)’ between the alterna-
tives {; and the PIA ({*)’ and obtain the

where w; is the weight of attribute C;, w; >0,
and Y., w; = 1.

Step 4:  Calculate the aggregated positive weighted
correlation coefficient (PWCC) (K;') and
negative weighted correlation coefficient
(NWCC) (K; ) for each alternative {;, where
k=1,2,...,p, shown as follows:

K= oK), (15)
j=1
Ko =Y gk, (16)
J=1
where ¢; is the weight of DMEx &j, ¢; > 0, and
Step 5:  Calculate the closeness coefficient ¢, of the

alternative (; based on the aggregated PWCC

weighted  correlation  coefficient (K )j N © .
between the alternatives (; and the NIA K, and aggregated NWCC K, of alternatives
) , wh
(7)) for each DMEx ¢, where . where )
j=12,...mk=1,2,....,p, shown as fol- b, = Ky (17)
lows: Ki +K;
(K =K, (G, (E7))
— i Wz((ek,)q-((Gf)‘f)q+(ﬁif)"-((ﬁf)‘f)q+(ﬂii)q-((nf)j" (13)
~max{p w06 o (d)) w ((O PP+ (@) + ()
(Kk_)j :K{v(gkv( )])
_ S wi((80)7 - (0)) + () - (97))" + () - (m5)")* (14)

max{ 7 wi (0 + 01 + (), S0 wi((67))

()P (7))}

Table 1 PIA (") and NIA ({” for each DMEx ¢; for Example 3,

where j = 1,2,3.

DMEx PIA and NIA G C3 Cy

& ! (s5,81)  (s6,82)  (s6,51)  (S4,82)
) (s4,53) (84,53) (s5,52) (s3,54)

& (CH? (s5,52)  {s6,52)  (s6,81)  (s5,81)
( )2 (s3,55) (S4,54) (s4,53) (s3,53)

& ) (ss;51)  (s7,81)  (ss,83)  (s5,%2)
( )3 (s4,52) (s4,52) (s3,55) (s3,53)

@ Springer

where k =1,2,...,p

Rank the alternatives (;,{5,...,{, based on
the obtained closeness coefficients ¢, ¢,, ...,
bp-

A higher closeness coefficient ¢, for alter-
native (; indicates a superior preference order
(PO) for that alternative, where
k=1,2,...,p

Step 6:

Example 3 (Liu and Liu 2019a) We are analyzing a
specific postgraduate entrance requirement at a college.
There are four potential students denoted as (i, {5, {3, and
{4, but only two enrollment places are open. The college
aims to conduct a comprehensive assessment of the four
students and ultimately admit the two most suitable appli-
cants. The college has invited three DMExs named &;, &,
and &5 to evaluate the performance of four students {;, {5,
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{5, and {4. The DMExs &, &, and ¢&; have their weights
¢1 =035, ¢, =04, and ¢3 =0.25, respectively. The
DMEzxs ¢, &, and &3 examine the students (;, {,, {5 and {4
under the four attributes denoted as C; (“the score of the
written test”), C, (“the professional relevance”), Cs (“the
logical ability”), and C4 (“the learning attitude”), where
wy; = 0.25, wp, = 0.15, w3 = 0.25, and wy = 0.35 are the
weights of the attributes Cy, C,, C3 and Cy4, respectively,
using the Lg-ROFNs @f;i = <S§if’slﬁ,->’ where @2[ € Qg
k=1,2,3,4,i=1,2,3,4 and j = 1,2, 3, to construct the
DMxs R' = (élli)4><4’ R = (éii)4><4 and R® = (éii)4x4a
respectively, shown as follows:

C C, Cs Cy
&o((ss, 81y (s5,82)  (s5,81)  (54,53)
Rl & |(s4.83) (86,52 (S6.51) (83,53)
G| (say sy (sss2)  (ss.s2) (sansa)|
o \(ss5,52)  (54,83) (s5,50) (53,82)
Ci C Cs Cy
& ((s4,82)  (85,82)  (S5,50)  (53,583)
R= & |(s385) (56,52 (s4,83) (85,500
& |(ss,83)  (S4,84)  (S4,81)  (S4,581)
Zy \(54,53)  (85,83) (S6,52) (54,53)
C C, Cs Cy
& ((ssss1) (86, 82)  (83,55)  (54,583)
B & |(as2) (57,510 (Sa,58)  (55,82)
& |(ss.82)  (84,82)  (S4,53)  (54,52)
o M(s4,51)  (S6,82)  (S5,53)  (53,583)

In the following, we use the proposed MAGDM method to
solve this MAGDM problem, shown as follows:

Step 1:  Since all the attributes C;, C,,C3 and Cy4 are
of benefit type, by using Eq. (10), we get
NDMxs

R' = (0ti)axa = (Qhi)axs = ((sg2,» 891, )axas

R* = (07)axa = (Qi)axs = ((Sof,.asq9§,.>)4x4 and
R = (G)axa = (€)ana = ((Soiiasr0§,>)4x4-
By using Egs. (11) and (12), we obtain the
PIAs ((H)', (¢F)? amd (1) and the NIAs
(£)' () and (C7)* for the DMExs &, &
and &3, respectively, as given in Table 1.

By utilizing Eqgs. (13) and (14), we obtain thg
weighted (K’
between the alternative (, and the PIA ((*)/

Step 2:

Step 3:

correlation  coefficient

and the weighted correlation coefficient (K *)j

between the alternatives  and the NIA ({7)7,
where ¢g=4, j=1,2,3, k=1,2,3,4,
(K) = K, (G, (7)),

(KoY =KL(Ge (C)), (K))' = 0.9480,
(K{)* = 0.8787, (K;i)® =0.9452, (K})' =
0.9688, (K;)* = 0.9308, (K;)* = 0.9620,
(KH)'=0.9405, (K§)* = 0.8739, (Ki)® =
0.8633, (K;)'= 0.9137,(K;)* = 0.9330,
(K;) = 0.9099, (K7)' = 0.9705, (K;)* =
0.9868, (K;)* = 0.9224, (K;)' =
0.9448,(K;)* = 0.9247,(K; ) = 0.8826,
(K;)' =0.9764,(K;)* = 0.9907, (K5 )’ =
0.9827,  (K;)' =0.9907,(K;)* = 0.9314
and (K; ) = 0.9568.

Step 4: By utilizing Egs. (15) and (16), we get the
PWCC (K;') and NWCC (K, ) for each
alternative (;, where k=1,2,3,4, K| =
0.9196,K;” = 0.9519,K;” = 0.8946, K, =
0.9205,K; =  0.9650,K; =0.9212,K; =
0.9837,K, = 0.9585.

Step 5: By using Eq. (17), we get the relative
closeness of coefficient ¢, ¢,, ¢; and ¢, of
the alternative {;, {5, {5 and {4, respectively,
where ¢, = 0.4880, ¢, = 0.5082, 5 =
0.4763 and ¢, = 0.4899.

Step 6:  Because ¢, - >-¢;, where ¢, =

0.4880, ¢, = 0.5082, p; = 0.4763 and
¢4 = 0.4899, the PO of the alternatives (i,
(s, {3 and {4 is “(-4 (1 >{3”. Therefore, {,
is the best alternative among the alternatives
C1s (2, (3 and (4.

Table 2 provides a comparison of the POs of the alter-
natives (;, {,, {3 and {, obtained by the different MAGDM
approaches for Example 3. From Table 2, it is clear that the
proposed MAGDM approach, the Liu and Liu’s MAGDM
approach (Liu and Liu 2019a), and the Liu et al.’s
MAGDM approach (Liu et al. 2022) give the same PO
“O=0=0=07 of {g, &, (3 and (4.

Example 4 Let {,, {,, and {5 be three alternatives, and Cj,
C,, and C; be three attributes, where w; = 0.3, wy, = 0.3,
and w3 = 0.4 are the weights of C, C,, and C3, respec-
tively. The weight of DMExs &, &, and &3 are ¢; = 0.3,
¢, = 0.4 and g3 = 0.3, respectively. The DMExs &, &, and

@ Springer
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Table 2 A comparison of the
POs of the alternatives obtained
by different MAGDM
approaches for Example 3

MAGDM approaches

POs

Liu and Liu’s MAGDM approach (Liu and Liu 2019a)
Liu et al.’s MAGDM approach (Liu et al. 2022)

The proposed MAGDM approach

G000
O=0-0-G
O=0-0-G

&5 evaluate the attribute C; of the alternative (; by using a
Lq-ROFN ¢}, = <s(7£f’s'lﬂf>’ where @}, € Qg), to construct

the DMxs R! = (g};)3,.3, R

= (@ii)3x3 and R® = (ézi%xy

respectively, shown as follows:

(K5)? = 09719, (Ky)’ = 0.9838, (Ki)' =
0.6356, (K5 )* = 0.9257, (K+)? = 0.7300,
(K7)' = 0.6570, (K;)* = 0.9368, (K; ) =
0.9217,(K;)' = 0.9393,(K;)* = 0.9560,
(K;)’ = 0.6098, (K;)' = 0.9920, (K;)* =
0.9937 and (K3 )’ = 0.9349.

By utilizing Eq. (15) and (16), we get the
PWCC (K;!) and NWCC (K, ) for each
alternative (;, where k=1,2,3, K| =
0.8885, K5 = 0.8909,K{ =  0.7800, K| =
0.8483,K, = 0.8471,K; = 0.9756.

By utilizing Eq. (17), we get the relative
closeness of coefficient ¢, ¢,, and ¢ of the
alternative (i, {,, and {3, respectively, where
¢, = 0.5116, ¢, = 0.5126, and ¢; = 0.4443,
Because Do ~3 where
¢, = 0.5116, ¢, = 0.5126, and ¢, = 0.4443,
the PO of the alternatives (;, {5, and (3 is

C C, (6]
- &1 ({s3,84)  (s8,50) ($3,55)
R =5 (<31,S4> (54, 82) <S4,S3>]’ Step 4:
& \(s4,53)  (s2,85)  (S1,55)
(o5 C, Cs
& ((ssisa) (sa.83) (sans1) Step 3:
R = g (<S4,S0> (55, 51) (S4,So>]’
& \(sa,84)  (s3,51)  (s2,81)
Step 6:
C C, (6]
- O ((s4,51)  (S1,86)  (S4,53)
R'= 5 (<S3781> (s3, So0) <S3,Ss>]~
& \(s2,85)  (S6,81)  (S5,581)

In the following, we use the proposed MAGDM method to
solve this MAGDM problem, shown as follows:

Step 1:  Since all the attributes Cy,C, and C; are of

benefit type, using Eq. (10), we get NDMxs
R' = (éllci)3><3 = (Qi)3x3 = ((S();,.asqﬂ))sxa’

R* = (37)3x3 = (€h)3u3 = ((s()i,.’sﬁii>)3><3 and
R = (G)3x3 = (€)303 = ((Seiiasl9g,.>)3x3'

By utilizing Eqgs. (11) and (12), we obtain the
PIAs ((M)', (¢7)%, amd (¢*)® and the NIAs
(&)Y, ()% and (£7)? for the DMExs &4, &,
and &3, respectively, as given in Table 3.

By utilizing Egs. (13) and (14), we obtain the
weighted (K5)’
between the alternative (, and the PIA ({*)/
and the weighted correlation coefficient (K; )’
between the alternatives (; and the NIA ({7)/,

Step 2:

Step 3:

correlation  coefficient

where g¢g=4, j=1,2,3, k=1,2,3,
(K]j)] = K{,V(gh (§+)])’ (Kk_)] = K{\;(Ch
(), (k)" =0.9623, (K)* =

0.9947, (K;{)’ = 0.6731,(K)' = 0.6899,

@ Springer

“Uy>={1>(3”. Therefore, {, is the best alter-
native among the alternatives {;, {», and (3.

Table 4 provides a comparison of the POs of the alter-
natives {;, {, and {3 obtained by the different MAGDM
methods for Example 4. From Table 4, it is clear that the
Liu et al.’s MAGDM approach (Liu et al. 2022) gets the
PO “{; = {,>{3” of the alternatives {;, {, and {3, where it
has the shortcomings that it cannot distinguish the PO of
alternatives {; and {, in this case. Furthermore, it is also
clear that the proposed MAGDM approach and the Liu and
Liu’s MAGDM approach (Liu and Liu 2019a) obtain the
same PO “(,>~{1>{3” of {;, {, and (3. Hence, the proposed
MAGDM approach can overcome the shortcomings of Liu
et al.’s MAGDM approach (Liu et al. 2022) in this case.

Example 5 Let {;, {5, (3, and {4 be four alternatives and
Cy, Cy, C3, and C4 be four attributes where w; = 0.2,
wy = 0.3, w3 = 0.2, and wy = 0.3 are the weights of the
Cy, C, C3, and Cy, respectively. The weight of DMEXxs &,
&, and &3 is ¢; = 0.25, ¢, = 0.35, and ¢3 = 0.4, respec-
tively. The DMExs ¢, &, and &5 evaluate the attribute C; of
the alternative {; using a Lq-ROFN g, = (s%, s%>, where

0 € Qogy k=1,2,3,4; i=1,2,3,4 and j=1,2,3, to
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Table 3 PIA (") and NIA ({” for each DMEx ¢; for Example 4,
where j = 1,2, 3.

Table 5 PIA (") and NIA ({” for each DMEx ¢; for Example 5,
where j = 1,2, 3.

DMEx PIA and NIA G G G DMEx PIAand NIA C G G Cy
< ({*)1 (s4,53) (s8,50) (54,53) i g*)‘ (ss,50) (s3,50) (s6,51) (ss,50)
) (51, 54) (52,55) (s1,55) o) (s1,52) (54,53) (52,53) (52, 54)
& (cH)? (s5,50) (s5,51) (s4,50) & )? (ss,50)  (s8,%0)  (%6,51)  {s8,%0)
((:*)2 (s4,54) (s3,53) (s2,51) C*)Z (s3,55) (54,54) (s4,54) (s4,53)
& ((;”r)z (s4,51) (s8,S0) (s5,51) & C*)z (s5,51) (s3,50) (s5,53) (ss,50)
) (52, 55) (51, 56) (53, 55) )} (S4,53) (54, 2) (83,55) (s3,53)
Table 4 A comparison of the POs of the alternatives obtained by R = (Qii)4><4 B (Qii)4><4 - (<S6’3’, Sﬂ%’>)4X4 and
different MAGDM approaches for Example 4 R = (éii)4><4 = (in)4><4 = (<592,.a Sﬂ§,>)4x4-
MAGDM methods ROs Step 2: By utilizing Eqs. (11) and (12), we obtain the
: : : : PIAs ({M)', (¢7)% amd ({7)® and the NIAs
Liu and Liu’s MAGDM methods (Liu and Liu 2019a) (> >(3 1 ) _\3
Liu et al.’s MAGDM approach (Liu et al. 2022) L=0"G (@) ()% ar,ld (&) fo,r the,DMEXS =2
Proposed MAGDM method Lolints and 53 r.espectlvely, as given in Table 5
Step 3: By utilizing Egs. (13) and (14), we obtain the
weighted  correlation  coefficient  (K;")’
between the alternative {; and the PIA ({*)/
construct the DMxs R' = (gl),.,. R>=(3%),., and and the weighted correlation coefficient (K- )’
R} = (83),,.4. respectively, shown as follows: between the alternatives {; and the NIA ({7),
where ¢g=2, j=1,2,3, k=1,2,3,4,
¢ G G Ca (K) = K, (G, (£9)), (Ke)' = K (G,
&1 ((ss,s0)  (ss,s1)  (s2,83)  (82,53) ), (K" = 0.4568, (K7)? = 0.7657,
Rl= & |(s1.82) (54,82 (S6.51) (83, 50) 3 N 2
& G50 (5,500 (55,92 (sasa)| (K7')" = 0.6953, (Ky)" = 05307, (K)" =
Lo Ms5,82)  (s4,53) (55,52 (83, 82) 0.5445, (K;})’ =0.9824,(K{) = 0.7401,
(Ki)* =0.3540, (Ki)' =0.4186,(K])" =
c c c c 0.3177, (K;)* = 03752,  (K,)’ = 0.5082,
G (s (s (s (s s (K7)' =0.6600, (Ky)" = 04133, (K7)" =
o o [(s3ss) (sss0) (sas) (sass) 0.5843, (K5 ) = 0.5623, (K5 )" = 0.6008,
& |(sses3) (sasa) (says1) (saysi)| (KE)S =0.3674, (K§)1 =-
fo sa,83)  (ss5,53) (56,820 (84, 53) ) (K3—)3 — 0.9623, (K4‘)1 — 0.8402, (K4‘)2 _
0.8935 and (K; )’ = 0.9047.
C, C, C; C, Step 4: By utilizing Egs. (15) and (16), we get the
G ((ss.s1) (sa.82)  (s3.55)  (S8.50) PWCC (K;) and NWCC (Kj) for each
B= & [(s453) (s.50) (s4.84) (s8.50)| alternative (i, where k=1,2,3,4, K| =
& |€s5.52)  (sa,82)  (s4,83)  Cs4,82) 0.6603,K5 = 0.7162,Ky =  0.4764,K; =
G Msas0) - (s6,52)  (s5,83)  (53,83) 0.4140,K; = 0.5434,K, =  0.4978,K; =
In the following, we use the proposed MAGDM method to 0.7889, K; = 0.8846.
solve this MAGDM problem, shown as follows: Step 5: By utilizing Eq. (17), we get the relative

Step 1:

Since all the attributes C;, C,,C3 and Cy4 are
of benefit type, using Eq. (10), we get NDMxs

51
R' = (Gi)axs = (Qi)aws = ((sg2,» 891, )axas

closeness of coefficient ¢, ¢,, ¢5, and ¢, of
the alternative {;, {5, {3, and {4, respectively,
where ¢ = 0.5486, p, = 0.5899, ¢ =
0.3765, and ¢, = 0.3188.

@ Springer
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Table 6 A comparison of the

POs of the alternatives obtained V- ODM approaches

POs

by different MAGDM
approaches for Example 5

Liu and Liu’s MAGDM approach (Liu and Liu 2019a)
Liu et al.’s MAGDM approach (Liu et al. 2022)
The proposed MAGDM approach

G =064
O-0-0G-0
L0060

Step 6:  Because Q=P =Py where
¢, = 0.5486, ¢, = 0.5899, ¢; = 0.3765, and
¢, = 0.3188, the ranking order of the alter-
natives (y, {5, (3, and (4 is “O=0=03-0,7.
Therefore, {, is the best alternative among the

alternatives (i, {», {3, and (4.

Table 6 provides a comparison of the POs of the alter-
natives (i, {», (3, and {4 obtained by the different MAGDM
approaches for Example5. From Table 6, it is clear that the
MAGDM approach by Liu and Liu (2019a) gets the PO
“l = (030" of the alternatives (;, (5, {3 a,nd {4, it
has the shortcomings that it cannot distinguish the PO of
alternatives {; and {, in this case. Furthermore, it is also
clear that the proposed MAGDM approach and the Liu
et al.”s MAGDM method (Liu et al. 2022) obtain the same
PO “(>-(>03-04” of {1,{5,{5 and (4. Hence, the pro-
posed MAGDM approach can overcome the limitations of
Liu and Liu’s MAGDM approach (Liu and Liu 2019a) in
this case.

5 Conclusion

In this paper, we have developed a multiattribute group
decision making (MAGDM) approach based on the pro-
posed weighted correlation coefficient of linguistic g-rung
orthopair fuzzy sets (Lq-ROFSs) and the TOPSIS method
under linguistic q-rung orthopair fuzzy numbers (Lg-
ROFNs) environment. For this, first, we have proposed the
correlation coefficient and weighted correlation coefficient
of Lg-ROFSs, which measure the strength of the relation-
ship between two Lq-ROFSs. We have also provided the
various properties of the proposed correlation coefficient
and weighted correlation coefficient of Lq-ROFSs. Fur-
thermore, we have developed the MAGDM approach under
the Lq-ROFNs environment, which is based on the TOPSIS
method and the proposed weighted correlation coefficient
of Lg-ROFSs. We have also solved the different MAGDM
problems by utilizing the proposed MAGDM approach to
illustrate the applicability and practicality of the proposed
MAGDM approach. The results of Example 3, Example 4,
and Example 5 show that the proposed MAGDM approach
can overcome the shortcomings of the Liu and Liu’s

@ Springer

MAGDM approach (Liu and Liu 2019a) and Liu et al.’s
MAGDM approach (Liu et al. 2022), where they cannot
distinguish the preference orders of alternatives in some
situations. The proposed MAGDM approach provides a
valuable tools for tackling MAGDM problems in the
context of Lg-ROFNs.
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