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Abstract
Time-series prediction involves forecasting future data by analyzing and modeling historical data. The prediction process

involves analyzing and mining various features hidden in the data to predict future data. Compared with one-step fore-

casting, long-term forecasting is urgently needed, which contributes to capturing the overall picture of future trends and

enables discovering prospective ranges and development patterns. This study presents a new long-term forecasting model

named the TIG_FTS_SEL model, which is developed by integrating trend-based information granules (TIGs), fuzzy time

series, and ensemble learning. First, a time series is converted into a series of equal-length trend-based information

granules to capture the fluctuation range and trend information effectively. Then the trend-based information granules are

fuzzified to form fuzzy time series, which contributes to realizing the long-term prediction at a high abstract level.

Furthermore, different models are used to establish an ensemble long-term forecasting approach by introducing a selection

strategy for individual models. The ensemble method performs the prediction tasks using part models with solid prediction

performances while disregarding the remaining models. Finally, the developed model is verified by experiments on

different time-series datasets. The results demonstrate the sound prediction performance and efficiency of the proposed

model.
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1 Introduction

Time-series prediction involves forecasting future data by

analyzing and modeling historical data, which has been

extensively used in various fields, including economics

(Kumar et al. 2022), medicine (Fang et al. 2022), industry

(Liu et al. 2020), and other fields (Granata and Di Nunno

2021; Huang et al. 2022). Time-series prediction can be

performed using different models, the most common

models include classical models and machine learning

methods.

The classical models, such as exponential smoothing

(Brown 1959), AR (Box et al. 1976), MA (Box et al. 1976),

ARIMA (Box et al. 1976), are based on statistical princi-

ples and are widely used for time-series analysis and

forecasting. Implementing these models is relatively

straightforward and can yield precise forecasts for partic-

ular types of time-series data. Machine learning methods,

including the support vector machine (SVM) model

(Vapnik 1995) and the artificial neural network (ANN)

model (McCulloch and Pitts 1943), offer more flexible

ways of handling complex patterns and relationships.

However, both traditional statistical models and machine

learning methods face challenges in handling uncertain

historical data and can provide interpretable semantic

results, particularly in long-term prediction tasks.

Fuzzy logic is a mathematical framework for addressing

data uncertainty by allowing partial membership in multi-

ple categories. Song and Chissom (1993b) introduce the

fuzzy time-series model through the application of fuzzy

logic, which aids in extracting rules from uncertain his-

torical data. The classical fuzzy time-series model consists

of several key steps: dividing the discourse into intervals,

& Lidong Wang

ldwang@dlmu.edu.cn

Yunzhen Liu

1156269494@qq.com

1 School of Science, Dalian Maritime University,

Dalian 116026, China

123

Granular Computing (2024) 9:46
https://doi.org/10.1007/s41066-024-00476-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-024-00476-4&amp;domain=pdf
https://doi.org/10.1007/s41066-024-00476-4


defining the fuzzy sets, establishing fuzzy logic relation-

ships, making inferences and defuzzifying the results.

Several advanced models for fuzzy time-series predic-

tion incorporate the four fundamental steps of the fuzzy

time-series framework. Chen (1996) introduces simple

arithmetic operations to reduce computation overhead

while implementing fuzzy time-series forecasting. Chen

and Tanuwijaya (2011) propose a fuzzy time-series model

that utilizes automatic clustering techniques to divide the

universe of discourse into intervals of varying lengths.

Iqbal et al. (2020) introduce an innovative method for

fuzzy time-series prediction. This method combines fuzzy

clustering and information granules and incorporates a

weighted average approach to handle uncertainty in the

data series. Intelligent optimization algorithms are used to

obtain the optimal interval length, which improves the

prediction accuracy of fuzzy time-series models (Chen and

Chung 2006; Goyal and Bisht 2023; Chen et al. 2019; Chen

and Phuong 2017; Zeng et al. 2019). Wang et al. (2013)

present an advanced approach to enhance the prediction

accuracy and interpretability of the model by utilizing

fuzzy C-means clustering and information granules for

determining unequal-length temporal intervals. Lu et al.

(2015) construct information granules within the amplitude

change space to divide intervals, considering the trend

information and distribution of the time-series data.

Fuzzy logic relationships are extracted based on fuzzing

discourse intervals to form the ‘‘If-Then’’ interpretable se-

mantic rules. The fuzzy rule-based approach is a frequently

used method for data modeling (Cheng et al. 2016; Askari

and Montazerin 2015; Chen and Jian 2017; Gautam et al.

2018). The fuzzy rule model is usually combined with

machine learning techniques to develop new uncertain data

analysis methods. Huarng and Yu (2006) use back propa-

gation neural networks to determine fuzzy relations, and

then form a fuzzy time-series model. Subsequently, fuzzy

relations are determined using a variety of artificial neural

networks, which helps to improve model efficacy. These

neural network models include feed-forward artificial

neural network (FFANN) (Aladag et al. 2009), Pi-Sigma

neural network (Bas et al. 2018), and generalized regres-

sion neural network (GRNN) (Panigrahi and Behera 2018).

Panigrahi and Behera (2020) apply multiple methods,

including long-short term memory (LSTM), support vector

machines (SVM), and deep belief network (DBN) to

determine fuzzy relations.

The majority of fuzzy time-series models primarily

emphasize one-step forecasting, which strives to achieve

higher accuracy at the numerical level. However, there is

an increasing demand for long-term forecasts. The cumu-

lative error may occur when the one-step prediction model

directly attempts to make long-term predictions. Moreover,

these models rely solely on a single model for determining

fuzzy relations. It is widely acknowledged that prediction

models invariably require parameters and data prepro-

cessing, and different approaches can yield varying out-

comes. Therefore, selecting a suitable model that can

precisely forecast the results of most tasks is challenging.

The combination of prediction models is rooted in the

understanding that no single model can excel across all the

data, but the fusion of multiple models has the potential

power to yield an estimate closely aligned with the actual

data. Thus, an ensemble approach that assigns weights to

individual models is designed from different perspectives

(Hao and Tian 2019; Song and Fu 2020; Kaushik et al.

2020), which can usually improve the prediction results

compared to using a single model, particularly for weak

learners. Several weighted determination methods are

suggested to consider the different performance levels of

various component models (Adhikari and Agrawal 2014;

Maaliw et al. 2021). One of the weighting methods is based

on an in-sample error weight scheme, where each weight is

assigned inversely proportional to the corresponding in-

sample error.

Zadeh (1979) introduces the concept of information

granule, which is now considered a crucial foundation in

granular computing. By granulating time-series data into

information granules, the overall features of the time series

within a specific period can be extracted to characterize the

dynamic change process, rather than emphasizing precise

values at a particular time point. The principle of justifiable

granularity (Pedrycz and Vukovich 2001) is a guideline

that should be adhered to when converting a numerical

time series into a sequence of information granules,

enabling the extraction of valuable information from the

time series and facilitating the interpretability of the

results. Most existing models focus mainly on amplitude

information while neglecting the important trend infor-

mation in time-series data, which is crucial for decision-

making. For time series representation, the trend-based

information granules (TIGs) developed by Guo et al.

(2021) are more representative and informative, encom-

passing time-series amplitude and trend information. It

offers a promising method for the long-term prediction of

time series by treating abstract entities as a whole rather

than numerical entities.

This study develops a new long-term forecasting model

named TIG_FTS_SEL that combines TIGs, fuzzy time

series, and ensemble learning. In the initial stage of the

proposed approach, a given numerical time series is gran-

ulated into smaller units called granules. This allows for

prediction at the granularity level, where each granule

represents a fundamental unit that reflects time-series

variation range and trend information. Then the fuzzy

C-means clustering algorithm is applied to assign the

semantic description for the time series features captured
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by the information granules. Next, fuzzy relations are

determined, and predictions are implemented using a

variety of techniques, encompassing back propagation

neural network (BPNN), SVM, LSTM, DBN, GRNN, and

the fuzzy logic group (FLRG). Finally, an ensemble

scheme based on weighted linear combination techniques

is employed to integrate the forecasts derived from the

individual models. This scheme selects models exhibiting

superior performance by defining a predetermined number

of models. The study’s main contributions are outlined as

follows:

• The proposed TIG_FTS_SEL model implements the

prediction at the granularity level, which can reduce the

cumulative error.

• The proposed TIG_FTS_SEL model adopts an ensem-

ble approach to alleviate potential problems that may

arise from relying solely on a single model, thus

improving the prediction performance.

The organization of this study is as follows: an introduction

to the theoretical foundations that underlie the construction

of TIG and fuzzy time series is presented in Sect. 2. The

entire process of the suggested long-term forecasting

model is provided in Sect. 3. The experimental results of

the proposed TIG_FTS_SEL model and other comparison

models on seven datasets are exhibited in Sect. 4. The

conclusions obtained are described in Sect. 5.

2 Trend-based information granulation
and fuzzy time series

This section discusses the process of creating TIGs, as well

as the concepts related to fuzzy time series.

2.1 Trend-based information granulation

Given a numerical time series x1; x2; . . .; xnf g, we granulate
it by dividing it into q subsequences denoted by

S1; S2; . . .; Sq, and set the corresponding time-domain

windows to T1; T2; . . .; Tq. We illustrate the formation of

TIGs with Si ¼ xi1; xi2; . . .; xinif g as an example, where ni
denotes the size of Si. Using Cramer’s decomposition

theorem as a guide, the sequence Si can be represented as

follows (Guo et al. 2021):

xit ¼ kit þ ci þ uit; t ¼ 1; 2; . . .; ni ð1Þ

where ci is a constant that denotes the intercept of Si, and ki
represents the slope of Si, they can be estimated by

applying the least squares estimation method. Then the

interval information granule Xu
i ¼ ½aui ; bui � is constructed on

the residual error sequence Ui ¼ ui1; ui2; . . .; uinif g using

the principle of justifiable granularity. The construction

process must fulfill two intuitive requirements (Pedrycz

and Vukovich 2001), which are as follows:

1. Coverage: The interval information granule should

contain as many data points as possible. The cardinality of

Xu
i is considered a measure of its coverage, that is,

card uitjuit 2 Xu
i

� �
. In this study, an increasing function f1

of this cardinality is used, and it can be expressed by

f1ðuÞ ¼ u
N, where N is the length of Ui.

2. Specificity: The length of an interval should be as

specific as possible. The function of the size of the interval,

i.e., mðXu
i Þ ¼ jbui � aui j, is used as an indicator of speci-

ficity. More generally, this study considers a decreasing

function f2 of the length of the interval, which can be

represented by f2ðuÞ ¼ 1� u
range, where

range ¼ jmax Uið Þ �min Uið Þj.
The principle of justifiable granularity emphasizes the

need for a broad scope of coverage while maintaining a

high level of specificity. However, specificity tends to

decrease as coverage increases. To achieve a balance

between these two conflicting aspects, we can rely on an

indicator that considers the product of coverage and

specificity, i.e., f ¼ f1 � f2. Using this indicator, the lower

bound aui and upper bound b
u
i of the information granule Xu

i

can be determined independently as follows:

aui;opt ¼ max
aui � repðUiÞ

Vðaui Þ; ð2Þ

bui;opt ¼ max
bui � repðUiÞ

Vðbui Þ; ð3Þ

where:

Vðaui Þ ¼ f1 card uitjuit 2 ½aui ; repðUiÞ�
� �� �

� f2 jrepðUiÞ � aui j
� �

;

ð4Þ
Vðbui Þ ¼ f1 card uitjuit 2 ½repðUiÞ; bui �

� �� �
� f2 jbui � repðUiÞj

� �
;

ð5Þ

where repðUiÞ takes the mean value of the residual error

sequence Ui. Following this process, an interval informa-

tion granule Xu
i ¼ ½aui ; bui � is constructed for Ui. Then the

TIG can be represented as Gi ¼ Xi; kif g ¼ ci þ Xu
i ; ki

� �
¼

½ci þ aui ; ci þ bui �; ki
� �

¼ ½ai; bi�; kif g.

2.2 Fuzzy time series

Let U ¼ u1; u2; . . .; unf g be the universe of discourse. A

fuzzy set A on U can be represented as

A ¼ lAðu1Þ; lAðu2Þ; � � � ; lAðunÞf g, where lA is the mem-

bership function of the fuzzy set A, lA : U ! 0; 1½ �, lAðuiÞ
denotes the membership degree of ui belonging to the fuzzy

set A, and 1� i� n.

Definition 1 (Song and Chissom 1993b) Let Y(t) be the

universe of discourse and the fuzzy sets defined on it are
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fiðtÞ i ¼ 1; 2; . . .ð Þ. If F(t) consists of f1ðtÞ; f2ðtÞ; . . ., it is
referred to as a fuzzy time series on Y(t).

Definition 2 (Song and Chissom 1993b) Let FðtÞ ¼ Ai and

Fðt � 1Þ ¼ Aj, where Ai and Aj are fuzzy sets. If F(t) can be

determined by Fðt � 1Þ, the relationship is expressed by a

fuzzy logical relationship Ai ! Aj.

Definition 3 (Song and Chissom 1993b) When F(t) is

determined by Fðt � 1Þ;Fðt � 2Þ; . . .;Fðt � nÞ, the rela-

tionship between them can be characterized as the n-th

order fuzzy logical relationship

Fðt � nÞ; . . .;Fðt � 2Þ;Fðt � 1Þ ! FðtÞ.

3 The fuzzy time-series model for long-term
prediction

This section introduces a fuzzy time-series prediction

model that utilizes TIGs, fuzzy time series, and ensemble

learning for long-term forecasting. First, a numerical time

series is transformed into a sequence of equal-length TIGs,

and trend feature datasets, including the intercept dataset,

the fluctuation range dataset, and the slope dataset, are

constructed. Next, each trend feature dataset is fuzzified

using the fuzzy C-means clustering algorithm. Then vari-

ous machine learning methods are applied to the training

dataset to determine fuzzy relations and calculate the pre-

diction error of each model to select several methods with

solid performance. The predicted values obtained by the

selected models are integrated to produce the final pre-

dicted results of the test dataset. The framework of the

proposed approach is presented in Fig. 1. For a given time

series x ¼ x1; x2; . . .; xnf g, the forecasting procedure

includes the following steps:

Step 1: Granulate time series and construct trend feature

datasets

1) Granulate a given numerical time series.

As discussed in Sect. 2.1, a specific time series x is

converted into a collection of TIGs by employing a fixed

time window size T, and a granular time series G ¼
G1;G2; . . .;Gq

� �
is formed, where Gi ¼ ½ai; bi�; kif g, and

q ¼ n=T .

2) Construct trend feature datasets.

Through the information granulation process, trend

features are extracted from the original time series to

construct trend feature datasets. Table 1 presents con-

structed trend feature datasets, including the intercept

dataset, the fluctuation range dataset, and the slope dataset.

The slope ki, which is determined by Eq. (1), represents the

changing trend of Gi. On the other hand, the intercept ai
characterizes the start level of the changing trend of Gi.

The fluctuation range can be calculated by ðbi � aiÞ, indi-
cating the fluctuation level of Gi.

Step 2: Fuzzify each trend feature dataset.

1) Clustering for each trend feature dataset.

Three trend feature datasets are clustered using the fuzzy

C-means clustering algorithm, and clustering prototypes

for each cluster are generated.

2) Divide the universe of discourse of each trend feature

dataset into intervals of unequal length.

The clustering prototypes are sorted from smallest to

largest for each trend feature dataset. Let Vi and Viþ1 be

two adjacent clustering prototypes, defining the lower

bound interval Li and upper bound interval Ui of the i-th

interval as follows:

interval Ui ¼
Vi þ Viþ1

2
; ð6Þ

interval Liþ1 ¼interval Ui: ð7Þ

Equations (6) and (7) are not applicable for determining

the lower bound interval L1 of the first interval and the

upper bound interval Uc of the last interval. Hence, these

values are computed in the following form:

interval L1 ¼V1 � interval U1 � V1ð Þ; ð8Þ

interval Uc ¼Vc þ Vc � interval Lcð Þ; ð9Þ

where c is the number of clusters. Following the above-

mentioned calculation procedure, the interval of unequal

length is obtained. The midpoint interval Mi of the i-th

interval is determined based on its lower bound interval Li

and upper bound interval Ui:

interval Mi ¼
interval Li þ interval Ui

2
: ð10Þ

3) Define the fuzzy sets on the universe of discourse of

each trend feature dataset.

Linguistic terms can be defined on a set of obtained

intervals u1; u2; . . .; ur and can be represented in the fol-

lowing form using fuzzy sets Ai:

Ai ¼ fi1=u1 þ fi2=u2 þ . . .þ fir=ur; ð11Þ

where fij 2 0; 1½ � is the membership degree of the interval

uj belonging to the fuzzy set Ai, which is defined as

follows:

fij ¼
1 j ¼ i

0:5 j ¼ i� 1 or; j ¼ iþ 1

0 otherwise:

8
><

>:
ð12Þ

Thus, each interval is associated with all fuzzy sets at

different membership degrees. In this way, fuzzy sets on

the intercept dataset, the fluctuation range dataset, and the

slope dataset can be defined, respectively.
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4) Fuzzify the element of each trend feature dataset.

If an element belongs to the interval ui, it is fuzzified

into the fuzzy set Ai. At this point, the fuzzification of

parameters is achieved.

Step 3: Extract fuzzy relations.

After fuzzification of the three trend feature datasets, it

is necessary to determine fuzzy relations. In this study,

fuzzy relations are determined using BPNN (Rumelhart

et al. 1986), SVM (Vapnik 1995), LSTM (Hochreiter and

Schmidhuber 1997), DBN (Hinton et al. 2006), GRNN

Fig. 1 The framework of the proposed TIG_FTS_SEL model

Table 1 Trend feature datasets

TIG Intercept Fluctuation range Slope

G1 a1 b1 � a1 k1

G2 a2 b1 � a2 k2

G3 a3 b3 � a3 k3

... ... ... ...

Gq aq bq � aq kq
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(Specht et al. 1991), and FLRG (Song and Chissom 1993a),

and the corresponding models are referred to as

TIG_FTS_BPNN, TIG_FTS_SVM, TIG_FTS_LSTM,

TIG_FTS_DBN, TIG_FTS_GRNN, and TIG_FTS_RULE,

respectively. The index number i of the fuzzy set Ai is

taken as the input and output of the models. For instance,

consider three observations of A5;A4;A1½ �, where the input

values of A5;A4½ � are 5 and 4, and the target value of A1 is

1. In this step, min–max normalization is performed on the

fuzzified data to constrain its values within the range

between zero and one. The normalized value of an element

in the fuzzified data can be calculated by dividing the

difference between the element and the minimum value of

the fuzzified data by the difference between the maximum

and minimum values of the fuzzified data.

Step 4: Select individual models and defuzzfied.

The trained models are selected based on their perfor-

mance on the training set. The predicted index number is

obtained by de-normalizing the model’s output, and it is

subsequently rounded to the nearest integer. The midpoint

of the interval that corresponds to the predicted index

number is defined as the defuzzified prediction. When the

index number exceeds the number of intervals, the mid-

point of the final interval is employed as the defuzzified

prediction. When the index number is less than one, the

midpoint of the first interval is applied as the defuzzified

prediction. The model’s defuzzified prediction provides

predictions of the trend variations, which are used to esti-

mate the prediction of the actual data. Assuming that the

trend features of the ðN þ 1Þ-th granule are predicted, this

granule can be translated into specific predictions by:

ŷNþ1 L ¼ k�Nþ1 � t þ a�Nþ1; ð13Þ

ŷNþ1 U ¼ ŷNþ1 Lþ ðb� aÞ�Nþ1; ð14Þ

where t 2 1; T½ �, T represents the length of equal-length

granulation, a�Nþ1 denotes the predicted beginning level of

the N þ 1ð Þ-th granule, ðb� aÞ�Nþ1 indicates the predicted

fluctuation range of the N þ 1ð Þ-th granule, k�Nþ1 signifies

the predicted changing trend of the N þ 1ð Þ-th granule,

ŷNþ1 L represents the lower bound of the prediction and

ŷNþ1 U represents the upper bound of the prediction. To

evaluate the prediction performance, the final prediction is

calculated as follows:

ŷNþ1 ¼ ŷNþ1 Lþ ŷNþ1 U
� �

=2: ð15Þ

In this way, predictions on the training set can be obtained

from individual model. To assess the efficacy of individual

model on the training set, the root mean square error

(RMSE) is utilized as an evaluation indicator. The models

are then ranked according to their RMSE values, where

lower values signify higher rankings. Based on these

rankings, several models with high rankings are selected to

make predictions on the test set.

Step 5: Ensemble predictions.

By combining the prediction results of several compo-

nent models, the ensemble method improves the overall

performance and mitigates the risk associated with model

selection. A frequently employed ensemble technique

based on a parallel strategy entails aggregating the pre-

diction outcomes of multiple models that forecast time-

series data. Let y ¼ ½y1; y2; . . .; yn� represent the test data,

and ŷi ¼ ½ŷi1; ŷi2; . . .; ŷin� denote the corresponding predic-

tion outcome generated by the i-th model computed by

Eqs. (13)–(15). The predictions of the models are linearly

weighted as follows:

ŷk ¼ w1ŷ
1
k þ w2ŷ

2
k þ . . .þ wpŷ

p
k ¼

Xp

u¼1

wuŷ
u
k : ð16Þ

Here, p represents the number of selected models, ŷuk is the

predicted output of each model for the k-th test data, and wu

represents the importance assigned to each model, which is

calculated as follows:

wi ¼
w0
iPp

u¼1 w
0
u

; ð17Þ

w0
i ¼

1

RMSEðiÞ ; ð18Þ

where RMSEðiÞ represents the prediction error of the i-th

model on the training set. To guarantee that models with

relatively minor errors on the training set acquire more

weight and vice versa, weight is assigned in inverse pro-

portion to the models’ errors. The proposed TIG_

FTS_SEL model’s predictions come true through the pre-

viously described process.

Step 6: Examine the performance of the TIG_FTS_SEL

model.

We use the root mean square error (RMSE), mean

absolute percentage error (MAPE), and mean absolute

error (MAE) to examine the performance of the proposed

TIG_FTS_SEL model, and they are calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

t¼1

ðŷ� ytÞ2
vuut ; ð19Þ

MAPE ¼ 1

L

XL

t¼1

jŷ� ytj
yt

� 100; ð20Þ

MAE ¼ 1

L

XL

t¼1

jŷ� ytj; ð21Þ

where L denotes the number of predicted data, and ŷ and yt
represent the predicted and actual values, respectively.
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4 Experiments

In this section, the experiments are conducted to examine

the performance of the proposed TIG_FTS_SEL model.

The experiments are performed on different time-series

datasets, including Mackey–Glass time series, Melbourne

temperature time series (MT time series), Zuerich monthly

sunspot numbers, the minimum daily temperature of

Cowichan Lake Forestry of British Columbia (daily tem-

perature time series), standard’s and Poor’s 500 (stock

index time series), monthly mean total sunspot time series,

and historical levels of Lake Erie time series. In addition,

the proposed model is compared with two types of models:

numerical time-series prediction models (AR (Box et al.

1976), MA (Box et al. 1976), ARIMA (Box et al. 1976),

NARnet (Benmouiza and Cheknane 2013), linear SVR

(Hsia and Lin 2020)) and granular time-series models

(LFIGFIS (Yang et al. 2017), IFIGFIS (Yang et al. 2017),

TFIGFIS (Yang et al. 2017), Dong and Pedrycz’s model

(2008), Wang et al.’s model (2015), Feng et al.’s model

(2021)). Furthermore, the proposed TIG_FTS_SEL model

is compared with the individual component model and the

traditional ensemble method based on the involved com-

ponent models (TIG_FTS_EL). Based on empirical evi-

dence, the performance of the ensemble model tends to

reach a state of saturation after employing approximately

four or five individual methods (Makridakis and Winkler

1983). This suggests that the prediction performance of the

ensemble model remains relatively stable as the number of

component models increases. In this work, we take four

approaches from different component models and merge

them, discarding the other approaches.

4.1 Experiment on Mackey–Glass time series

The following delay differential equation yields the

Mackey–Glass time series, which is a classic description of

chaotic systems:

YðtÞ
dt

¼ 0:2Yðt � sÞ
1þ Y10ðt � sÞ � 0:1YðtÞ: ð22Þ

Let YðtÞ ¼ 0, s ¼ 1:7, and a chaotic time series with

1201 values is obtained, as shown in Fig. 2. For the pur-

pose of comparison, the time window length T is set to 13,

which converts the time series into 92 information granules

and a granular time series G ¼ G1;G2; . . .;G92f g is

obtained. The experimental test set consists of the final 3

information granules, whereas the first 89 information

granules are used as the training set. Further, the trend

feature datasets are constructed following the procedure

described in Sect. 3, as shown in Table 2. Using the fuzzy

C-means algorithm, the unequal-length interval of each

trend feature dataset is obtained by Eqs. (6)–(9). Further-

more, the fuzzy sets Ai, Bi, and Ci (i ¼ 1; 2; . . .; 13) for the

intercept dataset, the fluctuation range dataset, and the

slope datasets are defined using Eqs. (11) and (12). At the

same time, linguistic terms are assigned to every defined

fuzzy set to describe each trend feature dataset. The cor-

responding linguistic descriptions for trend feature datasets

are presented in Table 3. In this study, fuzzy relations are

determined using BPNN, SVM, LSTM, GRNN, DBN, and

FLRG, where the input and output of the models are the

index number of the fuzzy set. To ensure the fairness of the

comparison experiment, all models are assigned the same

lag value of 2, indicating that they have the same order.

0 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2 Mackey–Glass time series

Table 2 Trend feature datasets of the Mackey–Glass time series

TIG Intercept Fluctuation range Slope

G1 1.1570 0.0662 �0:0686

G2 0.0504 0.1402 0.0433

G3 0.8127 0.0257 �0:0120

... ... ... ...

G89 0.7317 0.0358 0.0373

Table 3 Linguistic values

TIG Intercept Fluctuation range Slope

G1 A11 B10 C1

G2 A1 B13 C13

G3 A5 B3 C5

... ... ... ...

G89 A4 B4 C12
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The fitting errors of the individual models on the training

set are determined using the RMSE as an evaluation indi-

cator. The models’ performances on this dataset are ranked

according to the fitting error, as presented in Table 4. The

top four models that are selected for combination include

the TIG_FTS_GRNN, TIG_FTS_SVM, TIG_FTS_LSTM,

and TIG_FTS_DBN models.

Each of the four selected models is utilized for pre-

dicting the test data, and their prediction results are com-

bined using a linearly weighted ensemble approach. For the

prediction by a single model, TIG_ FTS_ GRNN is

selected as an example to illustrate the prediction of test

data x1159 ð1159 ¼ 89� 13þ 2Þ. The TIG_FTS_GRNN

model predicts the index numbers for each parameter of

G90 as 12, 6, and 8. The obtained defuzzification results are

1.2345, 0.0438, and 0.0050, representing the trend char-

acteristics of G90. The predictions of the lower and upper

bounds of x1159 are obtained as follows:

x̂1159 L ¼0:0050� 2þ 1:2345 ¼ 1:2445;

x̂1159 U ¼x̂1159 Lþ 0:0438 ¼ 1:2883:

To evaluate the performance of the model, the final pre-

diction of the TIG_ FTS_ GRNN model for x1159 is cal-

culated as follows:

x̂11159 ¼ x̂1159 Lþ x̂1159 Uð Þ=2

¼ 1:2445þ 1:2883ð Þ=2

¼1:2664:

Similarly, the predictions x̂21159, x̂
3
1159, and x̂41159 of x1159 are

obtained using the TIG_FTS_SVM, TIG_ FTS_LSTM, and

TIG_FTS_DBN models.

Finally, the weighted linear ensemble method is used to

combine the four models, and weight is assigned to each

model according to its performance on the training set,

which is calculated as follows:

Table 4 Ranking results of

different models
Method Rank

TIG_FTS_BPNN 5

TIG_FTS_SVM 2

TIG_FTS_RULE 6

TIG_FTS_LSTM 3

TIG_FTS_GRNN 1

TIG_FTS_DBN 4

Fig. 3 Comparison between actual and predicted values

Table 5 RMSE, MAPE, and

MAE comparisons for Mackey–

Glass time series

Methods RMSE MAPE MAE

LFIGFIS (Yang et al. 2017) 0.0622 6.1067 0.0516

IFIGFIS (Yang et al. 2017) 0.1132 10.5025 0.0882

TFIGFIS (Yang et al. 2017) 0.1241 12.3763 0.1001

NARnet (Benmouiza and Cheknane 2013) 0.2280 22.4482 0.1756

AR (Box et al. 1976) 0.2771 26.1058 0.2230

Linear SVR (Hsia and Lin 2020) 0.3717 38.5961 0.3269

TIG_FTS_BPNN 0.0969 10.8549 0.0780

TIG_FTS_SVM 0.0994 11.5768 0.0859

TIG_FTS_RULE 0.0974 9.4247 0.0725

TIG_FTS_LSTM 0.0850 10.1496 0.0703

TIG_FTS_GRNN 0.0880 10.1755 0.0696

TIG_FTS_DBN 0.0918 11.1766 0.0290

TIG_FTS_EL 0.0582 6.0966 0.0423

TIG_FTS_SEL 0.0531 5.6749 0.0413
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w ¼ w1;w2;w3;w4½ �

¼ w0
1P4

i¼1 w
0
i

;
w0
2P4

i¼1 w
0
i

;
w0
3P4

i¼1 w
0
i

;
w0
4P4

i¼1 w
0
i

" #

¼ 0:3034; 0:2459; 0:2335; 0:2172½ �;

where

w0 ¼ w0
1;w

0
2;w

0
3;w

0
4

� �

¼ 1

0:0693
;

1

0:0856
;

1

0:0901
;

1

0:0969

	 


¼ 14:4300; 11:6822; 11:0988; 10:3199½ �:

The final prediction x̂1159 of x1159 obtained by the ensemble

method is calculated as follows:

ŷ1159 ¼ w1x̂
1
1159 þ w2x̂

2
1159 þ w3x̂

3
1159 þ w4x̂

4
1159 ¼ 1:2136:

Predictions of the other test data can be obtained by

conducting the aforementioned procedures. The compar-

ison of the prediction results of the TIG_FTS_SEL model

and the actual data is presented in Fig. 3, where it can be

seen that the trend of the predicted values aligns with that

of the actual data. In addition, the TIG_FTS_SEL model is

compared with the traditional linear ensemble model

involving all component models (TIG_FTS_EL), granular

models, and numerical models, as well as component

models, including TIG_FTS_BPNN, TIG_FTS_SVM,

TIG_FTS_LSTM, TIG_FTS_GRNN, TIG_FTS_DBN, and

TIG_FTS_RULE. The models’ performances are evaluated

using RMSE, MAPE, and MAE. In Table 5, the prediction

performances of the TIG_FTS_SEL model and comparison

models on this dataset are presented. It is generally

Table 6 RMSE, MAPE, and

MAE comparisons for MT time

series

Methods RMSE MAPE MAE

LFIGFIS (Yang et al. 2017) 4.0175 15.3606 3.1819

IFIGFIS (Yang et al. 2017) 4.4525 17.4581 3.4980

TFIGFIS (Yang et al. 2017) 4.5914 16.2509 3.4525

NARnet (Benmouiza and Cheknane 2013) 6.9910 36.2732 6.1815

AR (Box et al. 1976) 13.0316 53.7938 11.4057

Linear SVR (Hsia and Lin 2020) 19.5443 82.1745 18.3119

TIG_FTS_BPNN 4.2622 16.1335 3.1499

TIG_FTS_SVM 4.2293 16.1408 3.1144

TIG_FTS_RULE 5.7965 24.4047 4.5573

TIG_FTS_LSTM 4.4619 15.5374 3.1724

TIG_FTS_GRNN 4.2293 16.1408 3.1144

TIG_FTS_DBN 4.5424 15.3726 3.1785

TIG_FTS_EL 4.3560 15.3599 3.1101

TIG_FTS_SEL 4.2228 15.4663 3.0507

Table 7 RMSE, MAPE, and

MAE comparisons for Zuerich

monthly sunspot numbers time

series

Methods RMSE MAPE MAE

LFIGFIS (Yang et al. 2017) 33.7351 132.9506 25.9583

IFIGFIS (Yang et al. 2017) 40.6512 241.4182 32.0404

TFIGFIS (Yang et al. 2017) 43.8859 317.4153 35.8767

NARnet (Benmouiza and Cheknane 2013) 61.1764 305.4631 53.9146

AR (Box et al. 1976) 56.3509 177.5745 47.4319

Linear SVR (Hsia and Lin 2020) 91.8851 191.0395 74.6757

TIG_FTS_BPNN 32.5604 33.0844 26.6579

TIG_FTS_SVM 30.8467 38.1216 26.8845

TIG_FTS_RULE 45.2856 49.1418 36.0895

TIG_FTS_LSTM 30.8257 36.8834 26.8241

TIG_FTS_GRNN 30.4531 37.0047 26.4539

TIG_FTS_DBN 30.8257 36.8834 26.8241

TIG_FTS_EL 31.3345 31.7139 25.7735

TIG_FTS_SEL 30.2872 33.6894 25.7340
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believed that the smaller the values of RMSE, MAPE, and

MAE are, the better the performance of the prediction

model is. Based on the results presented in Table 5, the

TIG_FTS_SEL model exhibits the lowest RMSE, MAPE,

and MAE values among all the models. This suggests that

the TIG_FTS_SEL model outperforms the other models in

terms of prediction effectiveness. In general, both the

proposed selection-based ensemble model (TIG_FTS_-

SEL) and the traditional ensemble model based on the

involved component models (TIG_FTS_EL) exhibit supe-

rior performance compared to the individual models. In

addition, the proposed TIG_FTS_SEL model contributes to

improving the prediction performance of the TIG_FTS_EL

model. This can be explained by the fact that not all models

yield accurate predictions for a specific time series. Thus,

the ensemble long-term forecasting approach with a

selection strategy might make the model perform better in

making predictions.

4.2 Experiment on MT time series

The dataset utilized in this experiment comprises a tem-

poral sequence of maximum daily temperatures in Mel-

bourne, Australia, spanning from 1981 to 1990, including

3650 data points. In this experiment, the time-series data

are divided into 40 time-domain windows, each of which

Table 10 RMSE comparisons for monthly mean total sunspot time

series

Methods RMSE

AR (Box et al. 1976) 63.6328

MA (Box et al. 1976) 68.4253

ARIMA (Box et al. 1976) 99.3976

NARnet (Box et al. 2013) 68.6114

Feng et al.’s model (2021) 52.0902

TIG_FTS_BPNN 29.2143

TIG_FTS_SVM 20.9874

TIG_FTS_RULE 16.7313

TIG_FTS_LSTM 22.7097

TIG_FTS_GRNN 22.1148

TIG_FTS_DBN 20.9873

TIG_FTS_EL 16.5135

TIG_FTS_SEL 15.7458

Table 8 RMSE comparisons for daily temperature time series

Methods RMSE

AR (Box et al. 1976) 5.081

Dong and Pedrycz’s model (1) (2008) 3.584

Dong and Pedrycz’s model (2) (2008) 3.473

Wang et al.’s model (2015) 3.469

TIG_FTS_BPNN 3.427

TIG_FTS_SVM 2.846

TIG_FTS_RULE 2.348

TIG_FTS_LSTM 3.045

TIG_FTS_GRNN 3.289

TIG_FTS_DBN 3.289

TIG_FTS_EL 2.963

TIG_FTS_SEL 2.844

Table 9 MAPE comparisons for stock index time series

Methods MAPE

ABFO based model (Majhi et al. 2009) 2.409

BFO based model (Majhi et al. 2009) 2.531

PSO based model (Majhi et al. 2009) 2.385

GA based model (Majhi et al. 2009) 2.617

Wang et al.’s model (2015) 2.437

TIG_FTS_BPNN 3.699

TIG_FTS_SVM 1.903

TIG_FTS_RULE 4.280

TIG_FTS_LSTM 2.939

TIG_FTS_GRNN 3.976

TIG_FTS_DBN 1.695

TIG_FTS_EL 0.824

TIG_FTS_SEL 0.714

Table 11 RMSE comparisons for historical levels of Lake Erie time

series

Methods RMSE

AR (Box et al. 1976) 0.3191

MA (Box et al.1976) 0.3346

ARIMA (Box et al.1976) 0.2727

NARnet (Benmouiza and Cheknane 2013) 0.3006

Feng et al.’s model (2021) 0.2591

TIG_FTS_BPNN 0.2212

TIG_FTS_SVM 0.2125

TIG_FTS_RULE 0.2255

TIG_FTS_LSTM 0.2087

TIG_FTS_GRNN 0.2706

TIG_FTS_DBN 0.2206

TIG_FTS_EL 0.2004

TIG_FTS_SEL 0.1999
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contains 91 data points. The training set covers the previ-

ous 38 temporal windows for prediction purposes, while

the last 2 are reserved for testing. The model order is fixed

at two throughout the experiment. Table 6 shows the pre-

diction errors in terms of RMSE, MAPE, and MAE

obtained by the TIG_FTS_SEL model and comparative

models on the test samples. As shown in Table 6, the

TIG_FTS_SEL model outperforms all component models

except for the component model TIG_FTS_DBN, which

has a lower MAPE. Compared to the related numerical and

granular models, the TIG_FTS_SEL model exhibits supe-

rior performance in terms of MAE and is second only to the

LFIGFIS model in terms of RMSE and MAPE. Although

the TIG_FTS_EL model demonstrates sound prediction

performance in terms of MAPE, the TIG_FTS_SEL model

outperforms it when evaluating the results using RMSE and

MAE.

4.3 Experiment on Zuerich monthly sunspot
numbers time series

The Zurich monthly sunspot numbers time series covers

2820 data points spanning from 1749 to 1983. Setting the

time-domain window size to a fixed length of 33 results in

the generation of 84 information granules. The initial 79

information granules are utilized as the training set for

predicting the subsequent 2 information granules. Table 7

presents the evaluation indicator values of the

TIG_FTS_SEL model and the other comparison models.

The table shows that the TIG_FTS_SEL model has the

smallest evaluation indicator values, except when MAPE is

used as an evaluation indicator. In that case, the

TIG_FTS_SEL model is second to the traditional ensemble

model based on all component models (TIG_FTS_EL) and

the component model TIG_FTS_BPNN. This suggests that

the TIG_FTS_SEL model has the highest prediction

performance.

4.4 Experimental summary

Supplementary experiments are conducted on four distinct

time-series datasets, including daily temperature time ser-

ies (minimum daily temperature of Cowichan Lake For-

estry of British Columbia recorded from April 1, 1979 to

May 30, 1996), stock index time series (Standard’s and

Poor’s 500 (S &P 500) time series from January 3, 1994 to

October 23, 2006), monthly mean total sunspot time series

(spanning from January 1749 to December 2019), and

historical levels of Lake Erie time series (spanning from

January 1860 to September 2016). The performances of the

TIG_FTS_SEL model, along with those of the other

comparative models, in predicting these datasets are shown

in Tables 8, 9, 10 and 11. Regarding the RMSE and MAPE

values on these datasets, both the proposed method and the

conventional method within the ensemble framework

exhibit superior performance compared to their corre-

sponding component models. Also, the proposed

TIG_FTS_SEL method, based on the ranking selection

model, enhances the prediction performance of the tradi-

tional ensemble method (TIG_FTS_EL) that relies on all

component models. In addition, compared to the existing

granular models and numerical models, the proposed

TIG_FTS_SEL model achieves sound evaluation indicator

values.

5 Conclusion

This study proposes a long-term forecasting method named

TIG_FTS_SEL, which is based on trend information

granules, fuzzy time series, and ensemble learning. In the

proposed method, the time series is initially granulated to

extract the valuable information inherent in the original

time series effectively, enabling prediction at the granular

level and reducing accumulative errors. Then the trend

features captured by information granules are used to

construct the trend feature datasets, which are further

fuzzified by applying the fuzzy C-means clustering algo-

rithm to enable linguistic descriptions of these features. In

addition, the proposed model uses different methods to

determine fuzzy relations, and constructs an ensemble

model for predictive purposes. Instead of merging all

models, the ensemble model just incorporates those that

outperform on the training set. Generally, this method

exhibits superior performance on datasets compared to its

component models and the ensemble method based on all

component models, mitigating the potential drawbacks of

relying on a single model. Through comparison experi-

ments with other granular models and numerical models on

seven available time-series datasets, the validity of the

proposed model is confirmed.
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