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Abstract
The K-Means algorithm is a powerful tool for data analysis, but it faces several challenges when dealing with large multi-

feature data. Centroid initialization and centroid determination are two significant hurdles that can reduce the performance

of the K-Means algorithm. To address these challenges, based on partial-order relations, an enhanced K-Means algorithm,

the multi-feature induced order K-Means algorithm (OWAK-Means) is developed which combines with a novel centroid

initialization based on partial-order relations and a multi-feature induced ordered weighted average (MFIOWA) operator.

By using a weighted iteration method based on partial-order relations, the OWAK-Means algorithm initializes centroids

with greater precision. The MFIOWA operator is designed based on database indexing theory and the Sigmoid weight

function that improves its information filtering ability. These techniques, combined with an ordered weighted distance

metric and the MFIOWA operator, make the OWAK-Means algorithm an effective tool for multi-feature data analysis. In

comparative analysis with the variants of the K-Means algorithm, the OWAK-Means algorithm has significant improve-

ment in the adjusted rand score, normalized mutual information, and purity. Statistical tests, comprehensive evaluation

methods, and sensitivity analysis prove that the OWAK-Means algorithm is effective and reliable.
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1 Introduction

Clustering algorithms are widely used in data mining, pat-

tern recognition, and other related fields (Goicovich et al.

2021; Peng et al. 2022; Fu et al. 2023; Le et al. 2023).

Common clustering algorithms include partition clustering,

hierarchical clustering, density clustering, etc. (Peng et al.

2022). Notably, since being introduced by MacQueen

(1967), the K-Means algorithm has received significant

attention for its simplicity and efficiency. Recently, centroid

initialization and feature weight optimization of the

K-Means algorithm have become a research focus. K-Means

exhibits a strong dependence on the initial centroid vector,

and the conventional random selection of the initial centroid

will lead to unstable clustering results. To this end, the

researchers proposed different improved K-Means algo-

rithms (Arthur and Vassilvitskii 2007; Li and Wu 2012;

Mawati et al. 2014; Zhou et al. 2017; Rashidi et al. 2020; Ay

et al. 2023). For example, Arthur and Vassilvitskii (2007)

developed the K-Means?? algorithm, which determined

the initial centroids by the probabilistic method and accel-

erated the convergence speed. Ay et al. (2023) improved the

stability and convergence efficiency of centroid calculation

under big-data samples by fixing partial initial centroids.

Random selection of the initial centroids is easy to cause: (1)

When the distance between the initial centroids is too large,

the convergence speed of the K-Means algorithm slows

down; (2) When the distance between the initial centroids is

too small, it is not conducive to the calculation of the final

centroids and determination of cluster boundaries during the

clustering process. The random selection method is proved

inadequate for multi-feature data. Moreover, in real life,

partial-order relationship is common in multi-feature data

(Wang et al. 2016). The traditional centroid initialization

method cannot consider the partial-order relation. Therefore,

how to determine the initial centroids of K-Means through

the partial-order relationship between multi-feature data

remains to be studied.
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For multi-feature data clustering, existing research

mainly focuses on the optimization of feature weights and

distance metrics to improve the performance of the

K-Means algorithm (Huang et al. 2005, 2018; Chen et al.

2012; De Amorim and Mirkin 2012). For instance, Huang

et al. (2005), based on a global optimization strategy,

designed a new K-Means algorithm that can automatically

solve feature weights. Similarly, Renato (De Amorim and

Mirkin 2012) employed the Minkowski distance metric to

construct an objective optimization function. These

approaches are based on the weighted feature distance

metrics and construct objective optimization equations to

improve the clustering performance of the K-Means algo-

rithm. In recent years, more and more studies have begun

to improve the K-Means algorithm from the perspective of

multi-feature data fusion (Cheng et al. 2009; Pons-Vives

et al. 2022). Researchers have employed operators such as

the ordered weighted average (OWA) operator (Yager and

Filev 1999) to aggregate data, thereby improving the per-

formance of the K-Means algorithm. For example, based

on the OWA operator, Pons-Vives et al. (2022) introduced

the ordered weighted distance relationship (OWDr) metric

to enhance the K-Means algorithm’s sensitivity to different

features and improve the neglect of differences between

features which is the deficiency of Euclidean distance.

Cheng et al. (2009) combined stepwise regression feature

selection with the OWA operator to reduce multi-dimen-

sional features and enhance the accuracy of K-Means in

classification tasks. Despite these advancements, there

remains an unmet need for research focused on weighted

fusion at the feature level, particularly during the centroid

calculation in clustering processes. At the same time, the

weighted calculation can be further used for data level, that

is, the important difference among cluster members should

be considered in the centroid calculation process, and the

noise data (Askari 2021) that will cause bias should be

screened. The OWA operator family and its weight meth-

ods can solve the above, hence the combination of the

OWA operator and K-Means centroid calculation needs to

be studied.

To enhance the adaptability of the OWA operator in

data fusion, Yager and Filev (1999) developed the induced

ordered weighted average (IOWA) operator. Later, schol-

ars did further research on the selection and acquisition

methods of induced factors (Chiclana et al. 2007; Ma and

Guo 2011; Yi et al. 2018; Ji et al. 2021). Building upon

Yager’s studies (1999), Chiclana et al. (2007) developed

the Consistency-IOWA operator. Ma and Guo (2011) and

Yi et al. (2018) introduced the Density-IOWA operator and

Quantile-IOWA operator, respectively. Ji et al. (2021)

developed Average-IOWA for expert opinions aggregation.

However, these operators mainly rely on single-factor

induction, which can lead to biases and often results in

numerous identical sorting outcomes when applied to big

data. For multi-feature data such as vectors, there is not

only one influencing factor but also the relationship

between factors should be considered. Consequently, sin-

gle-factor-induced sorting falls short of addressing the

complexities of multi-feature data. Inspired by database

indexing theory (Huang and Chen 2000), this paper pro-

posed a new multi-feature-induced order weighted average

(MFIOWA) operator to expand the adaptive range of the

IOWA operator.

However, for the IOWA operator family, feature

weights have always been a highly concerned problem.

Different weight methods can make IOWA operators play

different roles. For example, Yager (1988) obtained OWA

weights through linguistic quantifiers and introduced

Orness and Dispersion measures for weights optimization

(Yager 1993; Yager and Filev 1994). O’Hagan (1988) and

Xu and Da (2003) used the Orness measure to construct an

objective optimization function to solve the weight. How-

ever, in the process of multi-feature data processing,

scholars will screen samples and features by measure

metrics, such as density, variance, Pearson correlation

coefficient, and so on (Naik and Kiran 2021), or identify

the importance of features by sensitivity analysis (Zhang

2019; Asheghi et al. 2020). How to use derived information

to complete the filtering and aggregation of multi-feature

data poses a challenge to IOWA’s weight function. Con-

sidering the excellent characteristics, which are continuous,

smooth, differentiable, and saturated at a certain value, the

Sigmoid function has drawn considerable interest from

researchers (Xu et al. 2021; Dombi and Jónás 2022). For

example, Dombi and Jónás (2022) proposed a generaliza-

tion of the Sigmoid function and used it for logistic

regression and preference modeling. To enable the pro-

posed MFIOWA operator to address data-fusion tasks with

different information filtering requirements, and provide

K-Means with more flexible and powerful data-fusion as

well as noise-resistant tool, the weight method and solution

model based on the Sigmoid function need to be studied.

According to the above investigations, the K-Means

algorithm and IOWA operator as potent tools for data

mining, but the K-Means algorithm combining with IOWA

operator to improve cluster performances are challenges,

the motivation of this paper is as follows.

1. Although multi-feature weighted K-Means have

received high attention from researchers, K-Means

combined with OWA operator have not been devel-

oped based on the induced order relationship between

features.

2. The random selection centroid of K-Means causes

unstable clustering results, and the partial-order
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relationships between features need to be explored to

improve the stability of K-Means.

3. The IOWA only takes the single-factor induction based

on the OWA operator, multi-factor induction of the

OWA operator has not been designed.

In this paper, we develop the OWAK-Means clustering

algorithm which is based on the proposed MFIOWA

operator and centroid initialization method. The major

contributions of this research are as follows.

1. Inspired by the IOWA and database indexing theory

(Yager and Filev 1999; Huang and Chen 2000), the

MFIOWA operator is proposed. A new weight method

is derived for the MFIOWA operator based on the

Sigmoid function, and an objective optimization model

is constructed to solve the feature weights.

2. Inspired by the K-Means algorithm (De Amorim and

Mirkin 2012; Pons-Vives et al. 2022; Ay et al. 2023),

an OWAK-Means algorithm is developed for the

multi-feature clustering which integrates a new cen-

troid initialization method and the MFIOWA operator.

3. The OWAK-Means is compared with variant K-Means

on UCI real-world datasets. Comparison and analysis

results show that the OWAK-Means has obvious

advantages over the other algorithms in clustering

performance.

The subsequent sections of this study are structured as

follows: In Sect. 2, an extensive review is described. Sec-

tion 3 introduces the MFIOWA operator. In Sect. 4, the

OWAK-Means algorithm is elucidated. Section 5 describes

the comparison and analysis of OWAK-Means with other

cluster algorithms. Finally, Sect. 6 summarizes the contri-

butions of our research and discusses potential avenues for

future exploration in this domain.

2 Related work

2.1 IOWA operator

Definition 1 (Yager and Filev 1999) Let a1; a2; . . .; anð Þ be
a set of real numbers, and u1; a1ð Þ; u2; a2ð Þ; . . .; un; anð Þð Þ
be a set of numerical pairs. The IOWA operator with n-

dimension is a mapping: Rn ! R, characterized by an n-

dimensional weight vector W ¼ w1;w2; . . .;wnð ÞT . The

weight vector satisfies wi � 0,
Pn

1wi ¼ 1 i ¼ 1; 2; . . .; nð Þ.
The IOWA operator is shown as Eq. (1).

IOWA u1; a1ð Þ; u2; a2ð Þ; . . .; un; anð Þð Þ ¼
Xn

j¼1

wjcj: ð1Þ

In Eq. (1), cj represents ai which is associated with the j-

th largest induced value ui in the sequence ðu1; u2; . . .; unÞ.
The sequence can be in descending or ascending order,

depending on the sort rule. Notably, the Orness measure of

the IOWA operator, as referenced in Yager’s paper

(1988, 1993), is the same as that of the OWA operator, as

shown in Eq. (2).

OrnessðWÞ ¼ 1

n� 1

Xn

i¼1

n� ið Þwi: ð2Þ

The existing IOWA operator is characterized by a sin-

gle-factor induction. However, real-world scenarios fre-

quently involve a plurality of induced factors. To address

this complexity, the MFIOWA operator is developed in

Sect. 3.1.

2.2 K-Means clustering algorithm

K-Means algorithm can be distilled into a specific objective

optimization function (De Amorim and Mirkin 2012).

Suppose a dataset has N entities, each entity has M attri-

butes. This dataset is represented by the matrix X ¼ xivð Þ,
where xiv denotes the value of the v-th attribute for the i-th

entity i ¼ 1; 2; . . .;N; v ¼ 1; 2; . . .;Mð Þ. The K-Means

algorithm divides the dataset into K clusters and the output

of K-Means is represented by C ¼ fC1;C2; . . .;Ckg, where
the centroid of each cluster is represented by lk = (ckv). The

minimization objective function of the K-Means is articu-

lated in Eq. (3).

D ¼
XK

k¼1

XN

i¼1

XM

v¼1

sikðxiv � ckvÞ2 ð3Þ

where sik is an indicator function that sik ¼ 1 if xi 2 Ck, and

sik ¼ 0 otherwise.

To improve the performances of the K-Means algorithm,

there are several challenges (a) selecting initial centroids,

(b) optimizing feature weight in the context of multi-fea-

ture big data, (c) optimizing centroid calculation based on

multi-feature weights, (d) optimizing distance metric.

Concerning issue (a), a detailed review is scheduled for

Sect. 2.2.1. For issue (c), a comprehensible explanation

will be provided in Sect. 2.2.2. This paper proposed an

initial centroid selecting algorithm to address the issue

(a) based on partial-order relations. For challenges (b) and

(c), a new MFIOWA operator will be employed to filter

interference data and noise data in the data fusion pro-

cessing. Regarding issue (d), this study will employ the

improved OWDr distance metric to calculate the distance

between samples.
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2.2.1 K-Means initial centroid selection method

To address the challenge of selecting centroids in K-Means

clustering, researchers have made significant contributions

(Arthur and Vassilvitskii 2007; Li and Wu 2012; Mawati

et al. 2014; Wang et al. 2016; Zhou et al. 2017; Nainggolan

et al.2019; Khan et al. 2019; Rashidi et al. 2020; Ay et al.

2023). Arthur and Vassilvitskii (2007) proposed the

K-Means?? algorithm, which utilizes a probabilistic

method for computing distances to determine the initial

centroids of K-Means. This method starts from a randomly

chosen point, subsequently selects the farthest point as the

initial centroid, and iteratively identifies K initial centroids,

ensuring substantial distances between each cluster. Arthur

and Vassilvitskii (2007) method has greatly improved the

accuracy and convergence speed of K-Means, but the

random selection of cluster centroid still brings challenges

to the accuracy and stability of the K-Means algorithm.

There are also many studies on centroid selection of clus-

tering. For instance, Li and Wu (2012) employ the Max–

Min distance algorithm to address the dependency of the

K-Means algorithm on the initial centroid selection.

Mawati et al. (2014) integrated a systematic method for

initial centroid determination. This approach iteratively

identifies 0.75 * (n/K) points in closest proximity to each

other through an iterative algorithm and obtains the cen-

troid using an arithmetic mean.

In the context of big data, Steinbach et al. (2000)

introduced the Bisecting K-Means clustering algorithm to

reduce the dependency of the clustering process on the

selection of random points. The Bisecting K-Means algo-

rithm employs a dichotomy to overcome K-Means con-

vergence to the local optimal state to the local optimal state

and reduce similarity computations to improve the overall

execution speed. At the same time, in big data environ-

ments, the K-Means algorithm is also facing new chal-

lenges. Sculley (2010) developed the Mini-Batch K-Means

algorithm, which employs mini-batch optimization meth-

ods to reduce clustering time, thereby improving the

K-Means algorithm’s adaptability to big data scenarios. Ay

et al. (2023) introduced a new hybrid method, which

combined the part-fixed clustering centroid method with

the dynamic determination of the centroid. This method

demonstrated effectiveness in high-dimensional feature

spaces and big-data datasets and overcomes the problem of

initial centroid selection and centroid solution under big

data environment.

These studies have investigated various strategies to

optimize the selection of initial centroids to enhance the

stability and convergence efficiency of the K-Means

algorithm. Nevertheless, in professional domains, the

inherent partial-order relationships of data are often over-

looked. Therefore, this paper proposes setting initial

centroids based on partial-order relationships to address

this gap.

2.2.2 K-Means centroid optimization method

For the high-dimensional and multi-feature clustering

problem, Eq. (3) can satisfy the clustering task when the

feature weights are equal. However, in practical applica-

tion, different features often possess different levels of

importance. Recent researchers have developed K-Means

algorithms for feature weight optimization (de Amorim

2016). For example, Modha and Spangler (2003) intro-

duced the convex K-Means planning algorithm (CK-

Means), based on Eq. (3). The CK-Means is designed to

minimize intra-cluster dispersion while maximizing inter-

cluster dispersion. The weight relationships among features

are linear. Nonetheless, the CK-Means approach may not

be apt for scenarios where feature relationships exhibit

non-linear dependencies.

For the issue of non-linear relationships in feature

weights, recent scholars have primarily focused on the

exponentiation weights (wb) (Makarenkov and Legendre

2001; Frigui and Nasraoui 2004) to refine the interaction

among features. Makarenkov and Legendre (2001) utilized

w2 to improve the K-Means algorithm. Frigui and Nasraoui

(2004) introduced a regularization method to adjust w2.

Inspired by Makarenkov and Legendre (2001), Chan et al.

(2004), and Huang et al. (2005) developed the Weighted K-

Means (WK-Means) algorithm. The WK-Means automat-

ically calculates the weights for each feature during the

clustering process and integrates a step for computing

feature weights in each iteration. The objective optimiza-

tion function of WK-Means is shown in Eq. (4).

D ¼
XK

k¼1

XN

i¼1

XM

v¼1

sikw
b
v ðxiv � ckvÞ2; ð4Þ

where wv ¼ 1P
u2V ðDv=DuÞ1=ðb�1Þ, and Dv ¼

PK
k¼1

PN
i¼1 sikðxiv � ckvÞ2 . In contrast to the approach of

Modha and Spangler (2003), the WK-Means offers a

defense against irrelevant or noisy features and emphasizes

nonlinear relationships between feature weights. However,

the WK-Means compromises the direct correlation

between the scale of feature values and feature weights.

Inspired by Chan et al. (2004), and Huang et al. (2005), De

Amorim and Mirkin (2012) introduced weighted K-Means

based on the Minkowski distance (MWK-Means), the

optimization object function of MWK-Means is presented

in Eq. (5).

D ¼
XK

k¼1

XN

i¼1

XM

v¼1

sikw
b
v ðxiv � ckvÞb ð5Þ
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Equation (5) determines weights using feature scaling

factors. The simplified expression of the MWK-Means

algorithm is as follows:

D ¼
XK

k¼1

XN

i¼1

XM

v¼1

sikjwvxiv � wvckvjb ¼
XK

k¼1

XN

i¼1

dbjxi0 � ci0jb

, where xi0 ¼ ðwvxivÞ. Under the Minkowski distance met-

ric, the MWK-Means algorithm transforms feature weights

into scaling factors within the original K-Means criterion.

The MWK-Means algorithm performs well in datasets with

additional uniform random noise features, but determining

reasonable parameter b is a challenge. Moreover, in big-

data environments, the burden of calculating feature

weights increases significantly. Compared with the method

proposed by Huang et al. (2005), the method proposed by

De Amorim and Mirkin (2012) is more flexible. While

ensuring that the feature weights are non-linear, the dis-

tance metric is associated with the feature weights. How-

ever, the feature weights calculated by Huang and De

Amorim may not be able to highlight representative fea-

tures well. When the feature dimension increases, the

weight difference between features is not obvious

(Hashemzadeh et al. 2019). Therefore, the weight cluster

algorithm needs to be improved.

Equations (4) and (5) are global feature optimization, so

the computing cost will be high when there is a large

amount of data. To address this problem, Hashemzadeh

et al. (2019) employ weighted features within clusters and

developed a new objective function:

Dk ¼
PN

i¼1

PM
v¼1 u

a
ikw

b
kvðxiv � ckvÞ2. For high-dimensional

sparse big data clustering, Jing et al. (2007) developed a

K-Means algorithm with an entropy weight method and

constructed the objective function:

D ¼
XK

k¼1

XN

i¼1

XM

v¼1

wkvðxiv � ckvÞ2 þ c
XM

v¼1

wkvlogðwkvÞ
" #

Jing’s method used local weighted features within clusters

and entropy penalty terms to improve the algorithm’s

performance. Inspired by Jing et al. (2007), Khan et al.

(2019) introduced a weighted entropy penalty term and

proposed a new objective optimization function.

The core of the above improvement method is to opti-

mize the feature weights based on different weighting

distances. Commonly used distance functions include

Euclidean distance, Manhattan Distance, Chebyshev Dis-

tance, and so on. Euclidean distance is simple to calculate,

Manhattan Distance is more suitable for datasets with

independent features, and Chebyshev Distance has strong

robustness. The Minkowski Distance (De Amorim and

Mirkin 2012) is their generic form, with a lot of flexibility.

Scholars have also improved K-Means from the

perspective of distance metric (Pons-Vives et al. 2022;

Singh and Singh 2023; Savita and Siwch 2024). For

example, Pons-Vives et al. (2022) utilized the OWA

operator to define the ordered weight distance relative

(OWDr) to further advance clustering methodologies. The

distance formula Pons-Vives et al. (2022) proposed is

drða; bÞ ¼ jx� yj=maxðx; yÞ. Subsequently, the optimiza-

tion object function based on OWDr is shown in Eq. (6),

D ¼
XK

k¼1

XN

i¼1

sikOWDrðxiv; ckvÞ: ð6Þ

The OWDr significantly enhances the distinctiveness of

information across varying feature dimensions, which fur-

ther increases the likelihood and speed of convergence.

OWA operator (Yager and Filev 1999) is an aggregation

method that can effectively filter features. And Cheng et al.

(2009) have adopted a stepwise regression feature selection

method, employing the OWA operator for dimensionality

reduction, which has been shown to improve the accuracy

of K-Means in high-complexity and high-dimensional

classification tasks.

Therefore, upon reviewing and analyzing existing liter-

ature, it becomes clear that current K-Means algorithms

with weighted features primarily optimize performance

through a focus on the weighted distance of features. At the

same time, the important difference between data samples

and interference samples in clusters is not taken into

account, so how to screen and weighted aggregate multi-

feature data has important research significance. In con-

trast, this study proposes a novel approach that emphasizes

partial-order relations among different features and the

significance of data samples within clusters. This per-

spective aims to further enhance the performance of the

K-Means algorithm.

3 Multi-feature-induced ordered weighted
averaging operator

3.1 MFIOWA operator based on partial-order
relation

Multi-feature order is one of the key technologies of

database indexing which is often used to sort multi-feature

or high-dimensional complex data (Huang and Chen 2000;

Liang et al. 2021). Multi-feature sorting refers to deter-

mining the order of data based on the importance and

internal rules of multiple features to meet different needs

and scenarios, to achieve more accurate and comprehensive

sorting results.

Data aggregation is critical in production and everyday

life, particularly within big-data contexts. Relying on a
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single feature is often inadequate for sorting tasks in real-

world scenarios. Consider, for instance, there are five stu-

dents’ final grades in a university need to be comprehen-

sively ranked, including five features: Advanced

Mathematics, Python, Computer Networks, Sports, and

Total Score. The score of Sports is classified into three

levels (A, B, C) in descending order. The other features are

numerical, ranging from 0 to 100, where higher values

denote superior performance, as depicted in Table 1.

Employing the Total Score for initial sorting can select

the top student (ID 15), but the priority relationship among

students with IDs 11–14 cannot be distinguished. There-

fore, by further using the Advanced Mathematics feature

for induced sorting, the student with ID 11 can be placed at

the lowest rank, but the students numbered 12, 13, and 14

still cannot be distinguished. Then, rest students are

sequenced by the three features of Python, Computer

Networks, and Sports until all students are sorted, and the

final ranking result is (15, 13, 14, 12, 11).

As can be seen from Table 1, according to the database

retrieval rules, an induced vector containing multiple fea-

tures is formed by (Total Score, Advanced Mathematics,

Python, Computer Networks, and Sports), adhering to the

following relation: Total Score < Advanced Mathematics

< Python < Computer Networks < Sports. In this context,

the rank of student grades can be derived based on the

induced vector. For instance, the data of student 15 is

composed of ((263, 91, 90, 82, C), 263), where (263, 91,

90, 82, C) denotes the induced vector, and 263 represents

the score corresponding to the induced vector. The rank

result of student 15 is 1.

In this case, the sequence of multi features participating

in the ranking is regarded as the induced partial-order

relation. Drawing inspiration from database indexing the-

ory and the IOWA operator, we designed the MFIOWA as

delineated in Definition 2.

Definition 2 Let D ¼ ðUi; aiÞf g be a two-dimensional

dataset where Ui ¼ ui1;ui2;. . .; uim
� �

is an induced vector

corresponding to the real number ai and encompassing m

features. These features uphold a partial-order relationship:

e1<e2<. . .<em. The MFIOWA operator, characterized as a

mapping: Rn ! R, is defined by an n-dimensional weight

vector W ¼ w1;w2; . . .;wnð ÞT , the weight vector satisfies

wi � 0,
Pn

1wi ¼ 1 i ¼ 1; 2; . . .; nð Þ. The MFIOWA operator

is shown as Eq. (7).

MFIOWA U1; a1ð Þ; U2; a2ð Þ; . . .; Un; anð Þð Þ ¼
Xn

j¼1

wjdj

ð7Þ

In Eq. (7), dj is defined as the j-th largest value of ai
after the application of a multi-feature partial order on the

induced vector Ui. The behavior of the MFIOWA operator

is contingent on the composition of Ui: Specifically, when

Ui encompasses a single feature, the MFIOWA operator

simplifies to an IOWA operator, and if Ui is an empty set,

the MFIOWA operator simplifies to an OWA operator. The

sorting rule applied to the feature set e1; e2; . . .; emð Þ
determines the type of multi-feature partial-order induc-

tion. If the feature set is all in ascending order, it is called

ascending multi-feature partial-induced order, and vice

versa, it is called descending multi-feature partial-induced

order. If there are both ascending and descending order

features, it is called mixed multi-feature partial-induced

order. In this paper, ascending multi-feature partial-in-

duced order is used. Compared with the IOWA operator,

the MFIOWA operator considers the effect of multiple

features on data aggregation and the partial-order rela-

tionship between multiple features. MFIOWA operator is

like multi-feature index techniques (Liang et al. 2021). It

utilizes expert-constructed sorting rules to rank and

aggregate target data, with the feature’s partial-order rela-

tionships significantly which will affect the sorting out-

comes. Multi-feature sorting technique (Chen et al. 2022)

offers the flexibility to modify, add, or remove features,

and allows the definition of various feature combinations

and partial-order relationships. So that it could compre-

hensively and accurately meet different sorting require-

ments and adapt to the change in decision-makers

perspectives.

The MFIOWA operator merges the idea of multi-feature

partial induced order with the OWA operator’s ability to

reorder and aggregate data (Yager and Filev 1999)

according to multiple features and their respective partial-

order relationships. MFIOWA operator exhibits attributes

of comprehensiveness, stability, and heterogeneity, and the

Table 1 Final grades of

sophomore students in a

university

ID Advanced Mathematics Python Computer networks Sports Total score Rank

11 88 92 80 A 260 5

12 90 89 81 B 260 4

13 90 90 80 B 260 2

14 90 89 81 A 260 3

15 91 90 82 C 263 1
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aggregated results can more accurately reflect the signifi-

cance of features and the overall situation of samples. At

the same time, MFIOWA expands the application range of

the IOWA operator by overcoming the limitations associ-

ated with a single induced factor in IOWA. Similar to the

IOWA operator, the MFIOWA operator satisfies properties

of monotonicity, commutativity, boundedness, and idem-

potency which are derivable from operational rules.

Property 1 (Monotonicity) Let Ui; aið Þ and

Ui; ai0ð Þ i ¼ 1; 2; . . .; nð Þ be two vector pairs, where Ui is an

induced vector, and ai and ai0 are two real numbers. For

any i 2 ½1; n�, if ai and ai0 satisfy the condition: ai � ai0,
then Eq. (8) is established.

MFIOWA Ui; aið Þð Þ�MFIOWA Ui; ai0ð Þð Þ ð8Þ

Proof Let dj and dj0 be the j-th largest elements of ai and

ai0 after sorting induced by a multi-feature partial order

j ¼ 1; 2; . . .; nð Þ. Since the induced vector Ui is the same,

the rank results are identical, implying dj ¼ ai and

dj0 ¼ ai0. There are non-negative weights wj satisfying
Pn

1wj ¼ 1 and wj � 0 such that
Pn

1wjdj �
Pn

1wjdj0. Thus,
Eq. (8) holds. h

Property 2 (Commutativity) Let Ui; aið Þ be a vector pair,

and ai be a real number. If Ui0; ai0ð Þ is any arrangement of
Ui; aið Þ i ¼ 1; 2; . . .; nð Þ, then Eq. (9) is established

MFIOWA Ui; aið Þð Þ ¼ MFIOWA Ui0; ai0ð Þð Þ: ð9Þ

Proof Let dj and dj0 be the j-th largest elements of ai and

ai0 after sorting induced by a multi-feature partial order

j ¼ 1; 2; . . .; nð Þ. Because Ui0; ai0ð Þ represent any ordering

of Ui; aið Þ, Ui0; ai0ð Þ share the same ordering results as

Ui; aið Þ. There exist non-negative weights wj satisfying
Pn

1wj ¼ 1 and wj � 0, and for any j, dj ¼ dj0. Therefore,
the following equation can be obtained

MFIOWA Ui; aið Þð Þ ¼
Xn

j¼1
wjdj

¼
Xn

j¼1
wjdj0 ¼ MFIOWA Ui0; ai0ð Þð Þ

.

Equation (9) is proved. h

Property 3 (Boundedness) Let Ui; aið Þ i ¼ 1; 2; . . .; nð Þ be
a vector pair, and ai be a real number. For any i 2 ½1; n�, if
amin ¼ min aið Þ, amax ¼ max aið Þ, then Eq. (10) is

established.

amin �MFIOWA Ui; aið Þð Þ� amax ð10Þ

Proof Because dj is the j-th largest element of ai after

sorting induced by a multi-feature partial order

j ¼ 1; 2; . . .; nð Þ, and dj is a permutation of ai, it follows

that amin � dj � amax. Therefore, the following equation can

be obtained:

Xn

j¼1
wjamin �MFIOWA Ui; aið Þð Þ

¼
Xn

j¼1
wjdj �

Xn

j¼1
wjamax

.

Also, since
Pn

j¼1 wj ¼ 1,
Pn

j¼1 wjamin ¼ amin

Pn
j¼1 wj, and

Pn
j¼1 wjamax ¼ amax

Pn
j¼1 wj, it can be demonstrated that

Eq. (10) holds. h

Property 4 (Idempotency) Let Ui; aið Þ be a vector pair. If

a1 ¼ . . . ¼ an ¼ a, then Eq. (11) is established

MFIOWA Ui; aið Þð Þ ¼ a: ð11Þ

Proof Since
Pn

j¼1 wj ¼ 1 and for any i, ai ¼ a it follows

that
Pn

j¼1 wjaj ¼ a
Pn

j¼1 wj ¼ a. Thus, Eq. (11) holds. h

3.2 Derivation feature weights based on sigmoid
function

The Sigmoid function is distinguished by its unique prop-

erties, such as monotonicity, continuity, differentiability,

and the monotonicity of its inverse function. In addition,

the Sigmoid function is characterized by a value range

confined within [0, 1] (Ying et al. 2021; Sun et al. 2021).

The standard form of the Sigmoid function, expressed as

1=ðe�x þ 1Þ, is notable for its S-shaped curve, which is

symmetrically centered at the point (0, 0.5) (Ying et al.

2021). Inspired by Sun et al. (2021), the Sigmoid function

is used to derive the feature weight of the MFIOWA

operator which involves the parameter k, leading to the

construction of the modified Sigmoid function, denoted as

sigmk, as presented in Eq. (12). The k allows for a modified

curvature of the Sigmoid function, thereby, the modified

Sigmoid function offers a more adaptable tool for weight

allocation in data aggregation.

sigmk rð Þ ¼ 1

e�k r�0:5ð Þ þ 1
; r 2 0; 1½ �; k 2 R ð12Þ

In Eq. (12), while retaining the S-shaped curve of the

traditional Sigmoid function, the sigmk function introduces

a parameter k to modulate the sharpness and direction of

the weight curve. Notably, the sigmk function exhibits

central symmetry, passing through the point (0.5, 0.5). The

parameter k is instrumental in determining the orientation

of the Sigmoid function curve. When k[ 0, the sigmk

function takes on an S shape. Conversely, when k\0, the

sigmk function takes on an inverted S shape. The magni-

tude of kj j is critical in controlling how changes in the input
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influence the slope of the sigmk function curve. A larger kj j
results in more pronounced slope changes, rendering the

curve akin to a step function. Conversely, a smaller kj j
yields more gradual slope changes, closely resembling a

line parallel to the x-axis. In the special case, when k ¼ 0,

the Sigmoid function simplifies to an equal-weight function

curve. Furthermore, when k ¼ n, the Sigmoid function

curve becomes a special instance of the sigmk function

curve. By adjusting k, the sigmk function can accommodate

S-shaped curves with varying curvatures, thereby enhanc-

ing information filtering and processing capabilities. The

flexibility of the Sigmoid function allows the weight

method to be tailored to different application contexts.

Additionally, the sigmk function curve, as defined in

Eq. (12), is centrally symmetric. To better fit real-world

data, and improve the diversity and flexibility of the

MFIOWA weight method, a translation transformation is

introduced into the sigmk function. This modification leads

to the development of the sigmk;h function, as shown in

Eq. (13)

sigmk;h rð Þ ¼ 1

e�k r�0:5�hð Þ þ 1
; r 2 0; 1½ �; k 2 R: ð13Þ

Based on Eq. (12), Eq. (13) further adds h to control the

filtering proportion of sample data. The positive or negative

value of h determines the direction of the curve offset

center. Assuming k is positive, whether h is greater than or

less than 0, the sigmk;h function values are increasing.

Particularly, when k ¼ n and h ¼ 0, the sigmk;h function

degenerates into the standard Sigmoid function. The

magnitude of jhj controls the degree of the curve offset

from the S-shaped curve. Assuming k is positive, when

h[ 0, the larger jhj is, the more the function curve

resembles an exponential function curve, and the range of

the function will increase accordingly. When h\0, the

larger jhj is, the more the function curve tends towards an

equidistant line, and the range of the function will gradu-

ally decrease. h introduces subjective attitudes in weights

and allows the sigmk;h function to be adjusted based on the

judgment of the important group size. The change of h can

control the degree and balance of information filtering.

Thus, sigmk;h function has greater flexibility and

applicability.

Compared to Xu’s weight method built upon normal

distribution (Xu and Da 2003), the weight method using the

sigmk;h function can provide linear and nonlinear feature

weights for requirements of S-shaped distribution. The new

method makes it conducive for the OWA operator family

to filter out important information and emphasize the pro-

portion of important information. Therefore, using the

sigmk;h function can provide the weight vector with

monotonicity, boundedness, and information filtering

capabilities. Inspired by the ideas of Xu and Da (2003), a

weight method for the MFIOWA operator is proposed

based on the sigmk;h function, as shown in Definition 3.

Definition 3 Let WSigmoid ¼ w1;w2; . . .;wnð ÞT be a weight

vector, where wi � 0 and
Pn

1wi ¼ 1. The weight calcula-

tion method of the MFIOWA operator based on the Sig-

moid function is given by Eq. (14)

wi ¼
sigmk;h i

n

� �

Pn
i¼1sigm

k;h i
n

� � ; i ¼ 1; 2; :::; n: ð14Þ

In Eq. (14), the calculation of sigmk;h is as shown in

Eq. (9). To facilitate control of the function shape, the

input is usually normalized to form ði=nÞ, which range is

[0, 1]. If the standard Sigmoid is used directly, when the

input value is between 0 and 1, the output of Eq. (14) will

become a straight line. Therefore, additional parameters are

introduced to improve the Sigmoid function formula to

solve this problem, as shown in Eq. (13). By adjusting the

parameters h and k, Eq. (14) can fit the linear and nonlinear
weight requirements.

When k and h take different values, the sigmk;h function

undergoes dynamic changes with the weight vector.

Therefore, when solving the WSigmoid vector using Eq. (14)

determining the values of k and h adds computing costs,

and in practical applications, considerations need to be

given to metrics such as Orness and Dispersion. However,

for large datasets, the computing cost of Dispersion is

higher than that of the Gini index (Breiman et al. 1984).

Additionally, the Gini index applies to both discrete and

continuous data. Hence, this paper employs Orness and the

Gini index to measure the MFIOWA weights. Let W ¼
w1;w2; . . .;wnð ÞT be a weight vector, and the Gini index of

the weight vector W is given by Eq. (15).

GiniðWÞ ¼
Xn

i¼1

Xn

j¼1;i6¼j
wiwj ¼ 1�

Xn

i¼1
w2
i ð15Þ

It can be easily proved from Eq. (15) that the value

range of the Gini index of the weight vector W is from 0 to

1. The closer the value of the Gini index is to 1, the higher

the uncertainty within the dataset is, and the closer the

value is near 0, the greater the degree of purity is. The Gini

index serves as a valuable tool in evaluating the efficacy of

weight distribution of the MFIOWA operator, and the

relative significance of each sample in the population.

In weight optimization of the OWA operator, the

objective function proposed by O’Hagan offers substantial

insight (O’Hagan 1988). Inspired by O’Hagan, a weight

optimization model of the MFIOWA is introduced that

integrates Orness and the Gini index. The weight objective
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optimization function of the MFIOWA operator is defined

by the Gini index, which operates within the bounds set by

a pre-determined level of Orness, and the weight opti-

mization objective function is encapsulated in the model

(M-1).

Minimize : 1�
Pn

i¼1 w2
i

Subject to :
1

n� 1

Xn

i¼1

n� ið Þwi ¼ a

wi ¼
sigmk;h i

n

� �

Pn
i¼1 sigm

k;h i

n

� �

a 2 0; 1½ �;wi 2 0; 1½ �; i ¼ 1; 2; . . .; n

In the model (M-1), the objective function is to solve the

optimal weights wi that minimize the Gini index for a given

Orness measure, denoted as a. The Orness constraint is

designed to ensure weight vector conforms to human

subjective attitudes and enhances the model’s applicability

in scenarios of human-like decision-making processes. The

model (M-1) of the weight constraint function incorporates

a sigmk;h function, as detailed in Eq. (15). To solve model

(M-1) efficiently, this study employs the Sequential Least

Squares Quadratic Programming (SLSQP) method (Mar-

ques et al. 2021).

In model (M-1), the influence of different a on the

weight vector is shown in Fig. 1. The parameter a is clo-

sely linked to parameters of weight method and weight

measures, and simplifies parameter tuning processes. A

smaller absolute difference ja� 0:5j is, the more balanced

or neutral the subjective attitude is and the closer the curve

is towards a linear representation. In contrast, the larger the

value of ja� 0:5j is, the more pronounced or extremely

subjective the attitude is and the greater the curvature of

the graph is. Consequently, by modulating the a parameter,

it is possible to determine the weight change of the

MFIOWA operator.

4 OWAK-means algorithm based
on MFIOWA operator

Let x be a sample set comprising of n samples, character-

ized by m1-dimensional features. U is an induced set

consisting of n samples of m2-dimensional features. The

features of U can be derived from features of x (such as

density, variance, etc.), or some part features of x. Data set

x and induction set U together form the input set X, and the

feature dimension of X is m meeting m ¼ m1 þ m2. After

the OWAK-Means clustering, k subsets are obtained, rep-

resented as C ¼ fC1;C2; . . .;Ckg. The following will detail
the improvement in centroid initialization, distance metric,

and centroid calculation in the OWAK-Means Algorithm.

4.1 Initialization centroids of OWAK-means
algorithm

In real life, multi-feature data frequently have certain

partial-order relationships (Wang et al. 2016). Random

selection of the initial centroid of K-Means is not good for

centroid calculation and membership assignment, while

fixed selection is unsuitable for datasets with multi-feature

and fails to consider the relationship between features.

Therefore, given the distribution properties of partially

ordered data, experts could evaluate the position of k initial

centroid according to the distribution of observed data, and

give the weight of k � 1 centroid intervals. The initial

centroid selection method for OWAK-Means which con-

siders partial-order relationship, is shown in Definition 4.

Definition 4 Let x10; x20; . . .; xn0f g be an order set, which is
obtained by sorting the original set x1; x2; . . .; xnf g and

satisfies the partial-order relationship. The expert weight

vector is denoted as e1; e2; . . .; ek�1ð ÞT . The computation of

the initial centroid vector l1; l2; . . .; lkð Þ for the OWAK-

Means algorithm, which is based on partial-order rela-

tionships, is shown in Eq. (16) and Eq. (17).

li ¼ xidðiÞ0 ð16Þ

Fig. 1 MFIOWA weight values

at different a levels
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idðiÞ ¼ 1; i ¼ 1

idði� 1Þ þ ei�1ðn� 1Þb c; 2� i� k

�

ð17Þ

In Eq. (16), li is defined as the i-th initial centroid

derived from the partial-order set x
0
1; x

0
2; . . .; x

0
n

� �
. The

function id is an iterative function used to determine the

index position of the i-th initial centroid in a partial-order

set, as elaborated in Eq. (17). As can be seen from

Eq. (17), the initial value of the id function is 1 and the

index position of each ensuing centroid is determined by

adding the current index position to the interval calculated

based on expert-assessed. This interval is calculated as the

product of ðn� 1Þ and expert weights, with the result

rounded down. The selection method of the initial centroid

reflects the experts’ estimation of the difference in index

positions between consecutive centroids. The weights ei are
evaluated considering the partial-order relationships and

distribution characteristics of the dataset and represent the

fraction of the interval between initial centroids relative to

the total number of samples in the set. Thus, the initial

centroid vector is an ordered vector. When

e1 ¼ e2 ¼ . . . ¼ ek�1, the index obtained is equivalent to

the index extracted by the equidistant sampling method.

The initialization centroid method proposed in this paper

adopts a deterministic approach based on index sorting,

which avoids the problem of unstable results caused by the

random selection of initial centroids. On the other hand, the

weights introduced initialization centroid are constructed

based on partial-order density, which has certain subjective

preferences. Consequently, in practical implementations, it

is recommended to engage individuals possessing exten-

sive experience and professional expertise in evaluating

partial-order density, to improve accuracy and reliability.

4.2 OWAK-means clustering algorithm

To improve the performance of the K-Means algorithm, the

proposed OWAK-Means algorithm uses the MFIOWA

operator, which employs the Sigmoid weight method to

find the prime centroid vectors and integrates into Eq. (3)

to calculate the distances between each point and its cen-

troid vector. The OWAK-Means proceeds through itera-

tions until it reaches convergence. Let Cj j ¼ 1; 2; . . .; kð Þ
denote a cluster in the clustering process, and D ¼
ðx1; x2; . . .; xjCjjÞ represents the clustered set. Correspond-

ingly, ðU1;U2; . . .;UjCjjÞ represent the induced set. The

update method for the centroid vector in the OWAK-

Means Algorithm, based on the MFIOWA operator, is

shown in Eq. (18).

l0 ¼ MFIOWA Ui; xið Þj Ui; xið Þ 2 Cj

� �
¼ WT

SX
0 ð18Þ

In Eq. (18), X0 is defined as an array comprising j-th

largest elements xi, which is determined following the

application of multi-feature-induced order using Ui. The

weight vector WT
S is solved by the (M-1) model. In this

context, WT
SX0 represents the vector form of the updated

formula for centroids. The new centroid calculation method

can reduce the influence of sample noise or uneven dis-

tribution by filtering the samples in the cluster with multi-

feature induced factors.

In the K-Means algorithm, the distance function will

significantly affect the performance of clustering results.

Inspired by the OWDr distance metric (Pons-Vives et al.

2022), the squaring distance is introduced in this paper to

enhance the distance difference between different points.

Let x and y be two n-dimension vectors, and

w1;w2; . . .;wnð ÞT be a weight vector meeting wi � 0 and
Pn

i¼1wi ¼ 1. The weighted squaring distance metric is

shown as Eq. (19).

OWD x; yð Þ ¼
Xn

j¼1

wjdrsðx jð Þ; y jð ÞÞ; ð19Þ

where x, y are feature vectors with x ¼ ðx1; x2; . . .; xnÞ,
y ¼ ðy1; y2; . . .; ynÞ, drsðx jð Þ; y jð ÞÞ denotes the j-th distance

element in the distance set fdrsðx1; y1Þ; . . .; drsðxn; ynÞg.
And drs : R� R ! ½0; 1� is the squaring distance given by

Eq. (20).

drsða; bÞ ¼ ða� bÞ2=ðmaxða; bÞÞ2; otherwise

0; a ¼ b ¼ 0

�

: ð20Þ

Observe that the input vectors x and y represent the data

instances involved in the clustering process. Moreover, like

the same as OWDr distance metric, OWD distance is

sensitive to differences in the scales of the variables.

Subsequently, by replacing l0 and OWD distance metric in

Eq. (3), the optimization objective function of OWAK-

Means is presented in Eq. (21).

D ¼
Xk

j¼1

Xn

i¼1

Xm1

v¼1

sijwvdrsðxiv; ðWT
SjX

0
jÞvÞ; ð21Þ

where drs is shown as Eq. (20). In Eq. (21), the l0jv ¼
ðWT

SjX
0
jÞv represents the v-th feature values of the j-th

centroid. xiv denotes the v-th feature value of the i-th

sample in the sample set. The OWAK-Means algorithm, as

outlined in Table 2, initiates with the construction of the

input set X with two subsets: the sample set x, containing

m1 features, and the induced set U encompassing m2 fea-

tures. This paper selects the sample features from the

original datasets, and the induced features are obtained by

calculating based on multi-density levels. The process of

calculating multi-level density is as follows. First, calculate

the mean point of sample set x and obtain the distance
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between the farthest point and the mean point as the

baseline distance (base). Secondly, given the truncation

rate r and the number of levels m2, the critical distances

for different density levels are calculated with the formula:

ðr � base � 1=m2; :::; r � base � l=m2Þ, where l 2 ½1;m2�. Last,
with each point as the center, a circle with the radius of l-th

critical distance r � base � l=m2 is constructed, and the

number of sample points existing in the circle is calculated

as the density of the point under the l-th critical distance.

The data of multi-density features are constructed into

induced set U. The number of points around each point

within different critical distances as the induced set for that

point is calculated. In the experiment in Sect. 5, the values

of r and m2 are fixed after, where r ¼ 0:1 and m2 ¼ 5.

Following this, a multi-feature sorting is applied to x, and

the initial centroid vector lj is computed based on the

ordered set and expert-assigned weights. Cluster Cj is ini-

tially established as an empty set. The algorithm then

assigns each sample point to its corresponding cluster

based on the OWD distance metric between lj and xj.

Utilizing the MFIOWA operator, which incorporates both

clustering and induced features of the cluster members, a

new centroid vector lj0 is determined. The necessity of

updating the centroid vector is evaluated by comparing the

OWD distance between lj0 and lj: The iterative process of

updating centroids continues until the objective function

reaches its minimum value.

The introduction of MFIOWA increases the character-

istics that can be used for clustering tasks. The sample data

set is used to calculate the distance and determine

Table 2 OWAK-means algorithm

Description of OWAK-Means Algorithm 

Input: Let = { = = 1,2,..., 1} be the sample set, ( 1, 2,…, ―1) be the expert weight vector and  be the 

number of clusters.  is a weight parameter of the MFIOWA operator.

1: Construct the m-dimension input set  with the sample set = { } and the density-based induced set = { }, 

where  contains 1 dimensions of features,  contains 2 dimensions of features, and = 1 + 2. 

2: Apply multi-feature sorting to { i} to obtain the ordered set { ′}, and use Eq. (16) and Eq. (17) to select the initial 

centroid vectors = .

3: Repeat

4: Set = ∅ for the cluster corresponding to the centroid vector  ( ∈ ).

5: for =  do

6: Calculate the OWD distance between  and  for ∈  using Eqs. (19) and (20).

7: Determine the cluster label for ( , ): = ∈[1, ] , based on the nearest centroid vector .

8: Assign the sample data ( , ) to the corresponding cluster = ∪ {( , )}.

9: end for

10: for =  do

11:
Set 

1

| |
   into the (M−1) model to solve for the weight vector .

Substitute  into Eq. (18) to compute the new centroid vector: ′ = < > ∈ }).

12: if ′ ≠  then update   ′ ,

else keep the current centroid vector  unchanged.

end if

13: end for

14: Until the objective function in Eq. (21) is minimized or all centroid vectors remain unchanged.

Output: The partition of clusters is = { 1, 2,…, }, where ∩ ≠ = ∅ and = ∪ =1 .
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memberships, while the induced set is used to filter inter-

ference and noise data. Multi-feature-induced order rules

support the sorting of continuous data and discrete data,

and support custom sorting rules for non-numerical data so

that non-continuous features participate in the iterative

process of clustering centroid. MFIOWA influences the

updating process of cluster centroid through feature

induction and order-weighted aggregation, so that there is a

certain preference in determining cluster centroid, and the

degree of preference is determined by the parameter a of

the Sigmoid weight model (M-1). In the algorithm pro-

posed in this paper, this preference is expressed in the

retention of data points with a certain degree of density.

Utilizing the weight method from the (M-1) model, the

parameter a can be manipulated to alter the direction, form,

and equilibrium of the weight curve. As delineated in

Sect. 3.2, an a\0:5 imparts a pessimistic bias through WT
S

filtering information from lower rankings. Consequently,

the calculation results of MFIOWA exhibit an upward bias

relative to the WA operator, leading to a consistent positive

bias in each cluster centroid calculation. In contrast, when

a[ 0:5, WT
S adopts an optimistic bias, emphasizing lower

positioned information. This results in the MFIOWA’s

calculations being downwardly biased compared to the

WA operator, thereby introducing a negative bias in the

centroid calculations. The application of the S-shaped

weight method within the MFIOWA operator framework

enables sophisticated filtering and screening of data during

the iterative centroid vector update process, in conjunction

with induced features. The a parameter affords subjective

control over the cluster centroids, ensuring that each iter-

ation strategically adjusts centroid calculations, thus

enhancing the overall clustering performance and accuracy.

We will analyze the relationship between parameters and

the OWAK-Means algorithm in Sect. 5.

The OWAK-Means distinct from the conventional K-

Means algorithm, the proposed OWAK-Means algorithm

necessitates the input of expert weights ðe1; e2; . . .; ek�1Þ
and a subjective attitude parameter a. The expert weights

ðe1; e2; . . .; ek�1Þ ensure the rationality of the initial centroid
positions in OWAK-Means. Given the Orness measure a,
the optimal weights for the MFIOWA operator can be

determined, thereby inducing the optimization of centroids

in OWAK-Means. This additional input expedites centroid

convergence during the iterative clustering process, cul-

minating in final clustering outcomes reflecting subjective

judgment and objective data patterns.

5 OWAK-means algorithm implementation

5.1 Datasets and evaluation indicators

The experimental study employed eight real-world datasets

from the UCI, Wine, Iris, Drug, Obesity, Customer Seg-

ment, Heart, Balance, and User. The basic characteristics

of these datasets are succinctly summarized in Table 3,

which includes information on the sample size, the number

of feature dimensions, and the number of target categories

for classification. Notably, the Customer Segment dataset,

with sample sizes of 8068, is a multi-sample dataset. Fur-

thermore, the Wine and Heart datasets have 13 features.

The scope of classification within these datasets is diverse,

encompassing categories ranging from 2-class to 5-class.

To assess the performances of the clustering algorithm,

three metrics are employed: adjusted rand score (ARS)

(Khan et al. 2019), Normalized Mutual Information (NMI),

and purity (PUR) (Huang et al. 2021). The ARS ranges

from - 1 to 1, where values approaching 1 signify superior

clustering performance. The NMI spans from 0 to 1, with

values nearing 1 indicating more precise clustering out-

comes, while values closer to 0 suggest results akin to

random clustering. Lastly, a greater value in PUR is

indicative of more effective clustering performance.

5.2 Analysis of implementation result

The proposed OWAK-Means algorithm is compared with

seven clustering algorithms: K-Means (MacQueen 1967),

K-Means? ? (Arthur and Vassilvitskii 2007), Mini Batch

K-Means (Sculley 2010), Bisecting K-Means (Steinbach

et al. 2000), WK-Means (Chen et al. 2012), MWK-Means

(De Amorim and Mirkin 2012), and K-Means (OWDr)

(Pons-Vives et al. 2022). In the implementation phase, the

OWAK-Means uniquely partitioned the multi-feature data

of each dataset into sample sets and induced sets. In con-

trast, the other clustering algorithms utilized only attribute

Table 3 Basic characteristics of the datasets

Item Dataset Samples Features Class

1 Wine 178 13 3

2 Iris 150 4 3

3 Drug 200 5 5

4 Obesity 108 5 4

5 Customer segment 8068 9 4

6 Heart 270 13 2

7 Balance 625 4 3

8 User 258 5 4
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sets for the clustering process. To ensure the reliability of

the experimental results and prevent accidental results from

being seen as final, each algorithm is subjected to 50

iterations of experimentation. The average of multiple

experiments is used as the result. To effectively assess the

performance of these methodologies, the Technique for

Order of Preference by Similarity to the Ideal Solution

(TOPSIS) based on the entropy weight method is used to

generate a comprehensive score and ranking based on the

mean results. Assuming a scenario with n objects, each

characterized by m attributes, the TOPSIS method,

underpinned by the entropy weight method, entails the

following procedural steps: (1) Standardization to procure

a matrix, denoted as Z ¼ fzijg. (2) Computation of infor-

mation entropy for each indicator: ej ¼ �
Pn

i¼1
pijln pijð Þ

ln nð Þ ,

where pij ¼ zij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 zij
p

. And obtain the weight for each

indicator: Wj ¼ ð1� ejÞ=
Pm

j¼1ð1� ejÞ

 �

. (3) Calculate

the distance to the positive ideal solution:

Dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 WjðZþ

j � zijÞ2
q

, and the distance to the neg-

ative ideal solution: D�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 WjðZ�

j � zijÞ2
q

, where

the positive and negative ideals are defined as Zþ ¼ fZþ
j ¼

maxðzijÞg and Z� ¼ fZ�
j ¼ minðzijÞg, respectively. (4)

Calculate the comprehensive score as

Si ¼ D�
i =ðDþ

i þ D
�
i Þ. Where i 2 ½1; n�; j 2 ½1;m�.

Comprehensive performance comparison results of dif-

ferent K-Means algorithms are given in Table 4, where

italic represents the best method for a given dataset and a

certain metric. And the Friedman test and Nemenyi test

(Ma et al. 2022) results are conducted, as shown in Table 5

and Fig. 2. Stability performance analysis is given in Fig. 3

which details variance based on uncertainty assessment

(Abbaszadeh Shahri et al. 2022) for ARS, NMI, and PUR.

An Outlier comparison of ARS, NMI, and PUR is given in

Fig. 4. Z-Score methodology is used to evaluate the outlier,

and the outlier threshold is established at 2. If the Z-Score

of ARS, NMI, and PUR exceeds 2, the evaluating index is

classified as an outlier. Robustness analysis is given in

Fig. 5 which shows the performance of each algorithm

under noise.

From Table 4, it can be revealed that the OWAK-Means

algorithm exhibits superior overall performance. Detailed

observations are as followed. (1) For the ARS metric,

OWAK-Means is better than the second-best clustering

algorithm on the Wine, Iris, Drug, Customer Segment,

Heart, Balance, and User datasets, exhibiting improve-

ments of 0.0159 (1.9487%), 0.1258 (16.5589%), 0.0036

(4.9557%), 0.0051 (4.6460%), 0.1535 (100.7730%),

0.0047 (3.3107%), 0.1732 (69.5556%), respectively. (2)

Regarding the NMI metric, OWAK-Means outperforms on

the Wine, Iris, Drug, Obesity, Customer Segment, Heart,

Balance, and User datasets, and closely approaches the

optimal results on the Drug dataset. (3) For PUR metric,

OWAK-Means ranks highest on all datasets and shows

improvements over the second-best clustering algorithm of

0.0055 (0.5868%), 0.0629 (7.0155%), 0.0167 (3.2221%),

0.0096 (1.4254%), 0.0151 (3.4579%), 0.0800 (11.4650%),

0.0121 (1.8379%), 0.0029 (0.4927%), respectively. (4) In

terms of TOPSIS comprehensive evaluating result,

OWAK-Means consistently ranks first, surpassing

K-Means, K-Means??, Mini Batch K-Means, Bisecting

K-Means, WK-Means, MWK-Means, and K-Means

(OWDr) algorithms.

To further evaluate whether the OWAK-Means has

significant advantages over other algorithms, the Friedman

test and Nemenyi test are used to evaluate whether the

ranks of the methods significantly differ or not. The

Friedman test statistics value FF and the corresponding

critical values for each evaluation criterion are shown in

Table 5. In Table 5, k is the number of comparing methods

and N is the number of datasets. Taking a significance level

of u ¼ 0:05, the null hypothesis that the compared meth-

ods perform equally is rejected for all evaluation criteria.

The Nemenyi test further investigates whether each of

the methods performs equally well against the others. The

performance of the two methods significantly differs if the

difference in their average is over the critical difference

CD ¼ qu

ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6N

q
. qu is 3.0310 and the CD is calculated as

3.7122 (k = 8, N = 8) for u ¼ 0:05. The CDs are outlined

in Fig. 2. The compared methods with average ranks

within a CD to that of OWAK-Means are covered by a red

line. In other words, uncovered methods thus have a sig-

nificantly worse performance than OWAK-Means.

By looking at ARS, for example, the average rank for

OWAK-Means is 1.25 and the critical value is 4.281 after

adding the CD. Given that the average ranks of K-Means,

K-Means??, Mini Batch K-Means, Bisecting K-Means,

WK-Means, and MWK-Means, are than 4.281, they are

classified as worse methods in this case. However, there is

no statistical evidence to assert that OWAK-Means out-

performs the rest of the compared methods under ARS. The

same applies to NMI and PUR.

From Fig. 3, it can be revealed that the OWAK-Means

algorithm demonstrates a stable result and lower uncer-

tainty, with the smallest mean standard deviation when the

OWAK-Means algorithm compared to K-Means,

K-Means??, Mini Batch K-Means, Bisecting K-Means,

WK-Means, MWK-Means, and K-Means (OWDr) algo-

rithms. This observation suggests that OWAK-Means

superior stability and reliability during the clustering

process.
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Table 4 Performance comparison of variant K-Means clustering algorithms (50 experiments)

Datasets Algorithms Evaluation metrics TOPSIS score TOPSIS rank

ARS NMI PUR

Wine Proposed method 0.8309 0.8229 0.9438 1.0000 1

K-Means (MacQueen 1967) 0.3711 0.4288 0.7022 0.0451 5

K-Means?? (Arthur and Vassilvitskii 2007) 0.3711 0.4288 0.7022 0.0451 5

Mini Batch K-Means (Sculley 2010) 0.3645 0.4289 0.6930 0.0384 6

Bisecting K-Means (Steinbach et al. 2000) 0.3873 0.3971 0.7183 0.0654 3

WK-Means (Chen et al. 2012) 0.3636 0.4255 0.6958 0.0350 7

MWK-Means (De Amorim and Mirkin 2012) 0.3709 0.4305 0.7026 0.0472 4

K-Means (OWDr) (Pons-Vives et al. 2022) 0.8150 0.8150 0.9383 0.9734 2

Iris Proposed method 0.8857 0.8642 0.9600 1.0000 1

K-Means (MacQueen 1967) 0.7302 0.7582 0.8933 0.4470 5

K-Means?? (Arthur and Vassilvitskii 2007) 0.7302 0.7582 0.8933 0.4470 5

Mini Batch K-Means (Sculley 2010) 0.7378 0.7553 0.8971 0.4546 4

Bisecting K-Means (Steinbach et al. 2000) 0.6772 0.6892 0.8713 0.2258 6

WK-Means (Chen et al. 2012) 0.7401 0.7703 0.8901 0.4832 3

MWK-Means (De Amorim and Mirkin 2012) 0.6160 0.6972 0.8052 0.0301 7

K-Means (OWDr) (Pons-Vives et al. 2022) 0.7599 0.7912 0.8797 0.5424 2

Drug Proposed method 0.0757 0.2319 0.5350 0.9939 1

K-Means (MacQueen 1967) 0.0579 0.2309 0.5038 0.6060 4

K-Means?? (Arthur and Vassilvitskii 2007) 0.0601 0.2329 0.5054 0.6328 3

Mini Batch K-Means (Sculley 2010) 0.0487 0.1865 0.5008 0.4081 5

Bisecting K-Means (Steinbach et al. 2000) 0.0299 0.1417 0.4843 0.0159 7

WK-Means (Chen et al. 2012) 0.0285 0.1434 0.4842 0.0097 8

MWK-Means (De Amorim and Mirkin 2012) 0.0401 0.1813 0.4904 0.2716 6

K-Means (OWDr) (Pons-Vives et al. 2022) 0.0721 0.1944 0.5183 0.7020 2

Obesity Proposed method 0.2952 0.4637 0.6852 0.9253 1

K-Means (MacQueen 1967) 0.3150 0.4059 0.6750 0.7580 3

K-Means?? (Arthur and Vassilvitskii 2007) 0.3133 0.4076 0.6756 0.7645 2

Mini Batch K-Means (Sculley 2010) 0.2695 0.3724 0.6239 0.3807 5

Bisecting K-Means (Steinbach et al. 2000) 0.2496 0.3306 0.6057 0.2015 7

WK-Means (Chen et al. 2012) 0.2946 0.4064 0.6483 0.6228 4

MWK-Means (De Amorim and Mirkin 2012) 0.2672 0.3603 0.6239 0.3513 6

K-Means (OWDr) (Pons-Vives et al. 2022) 0.1944 0.3688 0.5991 0.1529 8

Customer

Segment

Proposed method 0.1141 0.1141 0.4504 1.0000 1

K-Means (MacQueen 1967) 0.1042 0.0943 0.4219 0.5125 6

K-Means?? (Arthur and Vassilvitskii 2007) 0.1048 0.0944 0.4217 0.5162 5

Mini Batch K-Means (Sculley 2010) 0.1018 0.0932 0.4188 0.4578 7

Bisecting K-Means (Steinbach et al. 2000) 0.1090 0.0959 0.4207 0.5519 3

WK-Means (Chen et al. 2012) 0.0834 0.0752 0.4014 0.0000 8

MWK-Means (De Amorim and Mirkin 2012) 0.1062 0.0949 0.4200 0.5175 4

K-Means (OWDr) (Pons-Vives et al. 2022) 0.1064 0.0985 0.4354 0.6753 2

Heart Proposed method 0.3059 0.2313 0.7778 1.0000 1

K-Means (MacQueen 1967) 0.0302 0.0199 0.5925 0.0064 7

K-Means?? (Arthur and Vassilvitskii 2007) 0.0302 0.0199 0.5926 0.0067 6

Mini Batch K-Means (Sculley 2010) 0.0338 0.0229 0.5970 0.0238 5

Bisecting K-Means (Steinbach et al. 2000) 0.0289 0.0191 0.5907 0.0000 8

WK-Means (Chen et al. 2012) 0.0684 0.0477 0.6284 0.1595 3

MWK-Means (De Amorim and Mirkin 2012) 0.0436 0.0309 0.6081 0.0681 4
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From Fig. 4, it can be indicated that among the eight

datasets, the OWAK-Means algorithm records the lowest

number of outlier results across the evaluation metrics. In

comparison, the rest algorithms show a higher prevalence

of outlier value results, especially in Drug, Obesity, Bal-

ance, and User datasets, where OWAK-Means registers

fewer outliers than the other seven algorithms. This dis-

parity is particularly pronounced in multi-featured and

large-sample datasets such as Obesity, Customer Segment,

and Heart datasets. These results show that the OWAK-

Means algorithm has better stability and reliability.

From Fig. 5, after randomly increasing 5% uniform

noise to simulate extreme values and outliers, OWAK-

Means algorithm remained advantages in ARS, NMI, and

PUR metrics. It shows that the OWAK-Means algorithm

has better robustness under the influence of noise. For ARS

metric, the OWAK-Means algorithm is significantly better

than the second-best algorithm in the Wine, Drug, and User

datasets, exhibiting improvement of 0.1164 (19.09%),

0.0534 (64.48%) and 0.1036 (32.98%), respectively. As for

the NMI metric, OWAK-Means outperforms on eight

datasets. For PUR metric, except User and Customer

Segment datasets, OWAK-Means ranks top and shows

improvements over the second-best algorithm. The noise

will affect the determination of centroids, which deviates

from the real centroid. OWAK-Means filters noise by

Table 4 continued

Datasets Algorithms Evaluation metrics TOPSIS score TOPSIS rank

ARS NMI PUR

K-Means (OWDr) (Pons-Vives et al. 2022) 0.1523 0.2060 0.6978 0.6192 2

Balance Proposed method 0.1466 0.1592 0.6720 1.0000 1

K-Means (MacQueen 1967) 0.1419 0.1229 0.6599 0.6619 2

K-Means ? ? (Arthur and Vassilvitskii 2007) 0.1321 0.1143 0.6522 0.5288 5

Mini Batch K-Means (Sculley 2010) 0.1267 0.1112 0.6438 0.4345 7

Bisecting K-Means (Steinbach et al. 2000) 0.0985 0.0888 0.6214 0.0000 8

WK-Means (Chen et al. 2012) 0.1312 0.1109 0.6507 0.4970 6

MWK-Means (De Amorim and Mirkin 2012) 0.1386 0.1208 0.6578 0.6265 4

K-Means (OWDr) (Pons-Vives et al. 2022) 0.1405 0.1226 0.6588 0.6505 3

User Proposed method 0.4222 0.5201 0.6008 1.0000 1

K-Means (MacQueen 1967) 0.1806 0.2478 0.5805 0.2514 3

K-Means?? (Arthur and Vassilvitskii 2007) 0.1840 0.2563 0.5731 0.2045 5

Mini Batch K-Means (Sculley 2010) 0.1846 0.2560 0.5560 0.0854 6

Bisecting K-Means (Steinbach et al. 2000) 0.2095 0.2908 0.5725 0.2508 4

WK-Means (Chen et al. 2012) 0.2490 0.3413 0.5978 0.4829 2

MWK-Means (De Amorim and Mirkin 2012) 0.1868 0.2579 0.5522 0.0812 7

K-Means (OWDr) (Pons-Vives et al. 2022) 0.1749 0.2126 0.5539 0.0167 8

Table 5 Summary of the Friedman Statistics FF (k = 8, N = 8) and

the critical value

Evaluation criteria FF Critical value (u ¼ 0:05)

ARS 19.8090 14.0671

NMI 25.1582

PUR 26.3572

Fig. 2 Nemenyi test of variant K-Means algorithms
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MFIOWA operator and Sigmoid weights according to

density metric, thus it can be well adapted to the noise,

especially in dealing with noise at cluster edges. These

results show that the OWAK-Means algorithm has better

robustness.

Through comparative analysis, the proposed OWAK-

Means algorithm has better comprehensive performance,

stability, and robustness. But there are some limitations and

difficulties. Multiple subjective parameters are involved in

OWAK-Means, which increases the cost of decision-

making for experts. In the part of centroid initialization, the

OWAK-Means clustering algorithm based on expert

weight and partial-order relationship has high stability, but

it also brings the problem that may fall into a local optimal

solution. In MFIOWA, this paper takes multi density levels

as the induced factors to explore dense-induced in-cluster

sample filtering and centroid calculation. The value of the

critical distance and the number of density levels used to

calculate multi-density has a great impact on MFIOWA,

and this part is not related to the data distribution and

integrated into the algorithm. In this experiment, the fea-

ture weight optimization was not carried out, and the

Fig. 3 Stability comparison of variant K-Means algorithms on eight datasets

Fig. 4 Outliers comparison of variant K-Means algorithms
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feature weights of the OWD distance metric were set as

equal weights. The OWAK-Means algorithm proposed in

this paper still has a large space for improvement, and we

will continue to explore it in future research.

5.3 Sensitivity analysis of OWAK-Means
algorithm

To further explore the impact of the parameter settings of

MFIOWA’s weighting method on clustering results, this

study conducted a sensitivity analysis on the parameter a.
Multiple experiments were conducted on OWAK-Means at

different a levels, and the results were averaged to avoid

the occurrence of random outcomes, as shown in Fig. 6. In

OWAK-Means, the multi-feature-induced order rule of

MFIOWA is in ascending multi-feature partial order. As

mentioned in Sect. 3.2, the weight values exhibit an

ascending order, indicating that OWAK-Means places

more emphasis on high-density samples. Conversely, for

OWAK-Means focusing on low-density samples, the

weight values exhibit a descending order. As shown in

Fig. 6, different data samples have different data distribu-

tions and densities, and the optimal parameter values are

also different. The datasets Wine, Iris, and Customer

Segment show minor variations. Obesity, Balance, and

Heart datasets exhibit obvious optimal regions, indicating

that the datasets have uneven sample distributions. The

result of the User dataset shows a clear monotonicity,

suggesting that high-density samples better reflect the

concentration of data. From Fig. 6, it can be observed that

the changing trends of all indicators are consistent, with

many optimal solutions concentrated in the ranges of 0.3 to

0.5 and 0.5 to 0.7. This suggests that appropriately filtering

intra-cluster members can effectively enhance the accu-

racy, feasibility, and reliability of the clustering algorithm.

However, the relationship between the selection of density-

induced features and the characteristics of the dataset is not

well-reflected, and this is a focus for future research.

6 Conclusion

This paper introduces the OWAK-Means algorithm, which

incorporates a new initial centroid optimization method

and the newly proposed MFIOWA operator. The initial

centroid optimization method is designed based on partial-

order relationships of multiple features. The MFIOWA

operator, developed from the existing IOWA operator,

integrates concepts from database index theory and multi-

feature induced order. Furthermore, we construct an

objective optimization model based on the Gini index and

Orness measure to determine the feature weights for the

MFIOWA operator using a modified Sigmoid function.

This approach reduces tuning costs while enhancing flex-

ibility and variability.

Fig. 5 Robustness comparison of variant K-Means algorithms
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Comparative analysis with state-of-the-art clustering

algorithms reveals that OWAK-Means outperforms in

critical metrics such as ARS, NMI, and PUR on eight real-

world datasets from the UCI repository. Comprehensive

evaluation using the TOPSIS method consistently ranks

OWAK-Means as the top performer. Significance through

the Friedman and Nemenyi tests and stability assessment

based on variance and outlier further affirm OWAK-

Means’ superiority over other K-Means algorithm variants.

Additionally, the comparative experiment with adding

noise shows that OWAK-Means has better robustness

depending on the information filtering ability from the

MFIOWA operator and Sigmoid weights. Therefore, the

proposed OWAK-Means algorithm demonstrates superior

performance in key metrics such as the ARS, NMI, and

PUR, along with robustness and stability.

While experimental validation on eight multi-feature

UCI datasets confirms OWAK-Means’ high performance,

future research will further explore OWAK-Means’

adaptability across a broader spectrum of datasets and

examine the performance of clustering algorithms under

different dataset distribution scenarios. The integration of

centroid initialization, feature weight optimization method,

and automatic selection of cluster k based on the IOWA

operator will be further studied.
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