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Abstract
In this research article, the credibility distribution is defined as a Pythagorean fuzzy restriction, which serves as an elastic

constraint on the possible input states of a variable. This definition relates the credibility theory to the theory of Pytha-

gorean fuzzy sets. The current study first defines Cauchy Pythagorean fuzzy numbers and offers a novel method for precise

and analytic determination of the inverse credibility distribution. Examples with various degrees of credibility are shown

numerically and graphically. Afterwards, we focus on the identification of critical paths in project networks. For this

purpose, Pythagorean fuzzy Logic and Multi-Criteria Decision-Making (MCDM) methodologies are combined in a novel

structure that is provided to expand the applications of the project scheduling systems. The development of the Pythagorean

Fuzzy Program Evaluation and Review Technique (PFPERT), however, was motivated by the vagueness of the time and

cost parameters. The primary objective is to find the critical route while considering some decision criteria such as length,

duration, cost, resources, and risk factors. All of the criteria are evaluated mathematically based on Pythagorean fuzzy logic

and integrated using the VIKOR approach to obtain the resulting critical route. To further clarify the potentials and

capabilities of the suggested strategy, the proposed algorithm is successfully examined for a case study related to a

greenhouse construction project.

Keywords Cauchy Pythagorean fuzzy numbers � PERT � Credibility measure � Project management � Multi-criteria method

1 Introduction

The Pythagorean fuzzy PERT approach is an extension of

the classical PERT, incorporating Pythagorean fuzzy

numbers to handle uncertainties and imprecise information

in project management problems. It allows for a more

comprehensive and flexible representation of the uncer-

tainty associated with activity durations and criticality

measurements. This approach is particularly useful when

dealing with multi-criteria decision-making problems in

project management, where there are multiple factors to

consider in determining criticality. Considering various

criteria simultaneously, the work enables project managers

to make more informed and well-balanced decisions when

prioritizing activities and allocating resources. The method

aims to assist project managers in concentrating their

attention on the most time-sensitive tasks and managing

risks by identifying critical activities and quantifying their

criticality ratings. Thus, it offers a powerful tool to handle

uncertainties and complexities in project planning and

execution, ultimately leading to more successful project

outcomes.

Numerous problems are characterized as mathematical

relationships with ambiguous information in several

research domains, including optimal control and operations

research. The Fuzzy Set (FS) theory, established in 1965 by

Zadeh (1965), can be used to represent the imprecision in

such problems. In this theory, several kinds of fuzzy

numbers (FNs) and their arithmetic are required in the

modeling course. In 1975, Zadeh (1975) introduced these

FNs to deal with imprecise numerical quantities. In order to

extend standard algebraic operations to FNs, Dubois and

Prade (1987) proposed a fuzzification principle. The
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extension theory for fuzzy fundamental operations was first

introduced by Zadeh (1975) in 1975. Alternate initializa-

tions for an interval approach were based on the a-cut for
triangular and trapezoidal FNs. This method is simple to

use and has low complexity for routine operations. How-

ever, when there are more terms being multiplied, their

approach could result in greater powers of a. Researchers
have also proposed various defuzzification techniques for

FNs that do not rely on the a-cut in order to avoid these

problems Lee-Kwang and Lee (1999).

Possibility theory was suggested by Zadeh (1978) in

1965. It is believed that the possibility measure is an

effective way to cope with uncertainty, particularly in sit-

uations where there are few data points. Various

researchers have examined possibility theory, including

Dubois and Prade (1987) and Klir (1999). The necessity

measure is the dual component of the possibility measure,

nevertheless, neither the possibility measure nor the

necessity measure are self-dual. Li and Liu (2008) created

the self-dual measure known as the credibility measure,

which is described as the average of possibility and

necessity measures. In brief, credibility measures are used

to estimate the approximate probability that a fuzzy event

will take place. Possibility, necessity, and credibility

measures have practical implications in a wide range of

applications, including risk assessment, decision-making,

safety analysis, system reliability, quality control, expert

systems, and data fusion. By quantifying uncertainty and

degrees of belief, these measures provide valuable insights

and support for making informed and robust decisions in

various domains. In the context of PERT network analysis

in project management, the terms ‘possibility,’ ‘necessity,’

and ‘credibility’ refer to different aspects of the estimated

durations and scheduling of project activities. Possibility,

in PERT analysis, refers to the likelihood or probability

that a particular activity will be completed within a certain

duration. It is often associated with optimistic, most likely,

and pessimistic estimates for each activity. Necessity in

PERT analysis relates to the idea that certain activities

must be completed before others can start. It reflects the

logical dependencies between activities in a project.

Credibility in PERT analysis refers to the degree of con-

fidence or trust in the project duration estimates for each

activity. It helps project managers assess the reliability of

the estimated durations. Activities with low credibility may

require more detailed analysis or additional expert input to

ensure the accuracy of their estimates. A higher level of

credibility instills confidence in the project schedule and

can lead to better decision-making. By considering these

factors within the PERT network, project managers can

develop more robust schedules, identify critical paths, and

effectively manage project risks and uncertainties.

After being used successfully in a number of domains,

FS theory is being extended by numerous academics.

Readers are strongly encouraged to consult the sources

(Chen and Lee (2010), Chen and Wang (1995), Chen and

Wang (2010), Chen et al. (2009), Chen and Jian (2017),

Chen et al. (2019), Liu et al. (2020), Lin et al. (2006),

Meng et al. (2020)) for more comprehensive explanation of

fuzziness in practical applications. The theory of Pytha-

gorean fuzzy set (PFS), introduced by Yager and Abbasov

(2013), Yager (2013) in 2013 as a continuation of intu-

itionistic fuzzy set (IFS) theory, which was originally

developed in 1986 by Atanassov (1983), has caught the

interest of academic researchers over the past decade. Even

if an additional degree of membership has been provided in

IFS to reflect hesitation, this restriction still prevents pairs

from being chosen from a triangular zone. PFS expands the

selection space of eligible pairs while taking into account

the two degrees of membership, i.e., acceptance and

rejection, with the restriction that their square sums must

not be greater than 1. As a result, it is better equipped than

FSs and IFSs to deal with uncertainty in real-world situa-

tions. The importance of Cauchy FNs in FN systems cannot

be denied. The Cauchy FNs are based on an a-stable dis-

tribution, which can be defined by a probability distribution

function. This idea can be used to model many real-life

situations more realistically. Pythagorean fuzzy numbers

(PFNs) are superior to FNs and intuitionistic fuzzy num-

bers (IFNs) in several ways. In fuzzy logic systems, PFNs

allow modeling and mitigation of the impacts of uncer-

tainty. Triangular PFNs were defined by Luqman et al.

(2021) with applications in risk assessments. Akram et al.

(2021) defined LR-type PFNs and applied them to PF

linear programming problems. A robust theory for gener-

alized PFNs was recently established with application to

the hierarchical clustering process by Akram et al.

(2021a, 2023a), Habib et al. (2022). Trapezoidal PFNs

were defined by Akram et al. (2022) and used as network

parameters to assess maximal flow. Readers are encour-

aged to consult Akram and Habib (2023), Habib and

Akram (2024), Nawaz and Akram (2023), Zahid and

Akram (2023) for additional notations and applications.

The practice of project management is expanding as

businesses become quicker and faster because more work is

allocated to groups of individuals. Two of the most influ-

ential information areas in project management are project

time management and project risk management. The Crit-

ical Path Method (CPM) and Program Evaluation and

Review Technique (PERT) are project management tech-

niques used to identify the most critical tasks in a project

and also estimate the minimum amount of time required to

complete the project. These are oriented towards activity. It

is a tool that helps project managers plan, schedule, and

control projects effectively. The term ‘critical’ in the
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context of projects refers to the activities or tasks that have

a significant impact on the overall project duration. These

activities are crucial to the successful completion of the

project within the desired timeframe. Defining project

criticality involves identifying the critical path and critical

success factors, which play a crucial role in project man-

agement. Project managers need to focus on these critical

elements and allocate resources and attention accordingly

to ensure the project’s successful and timely completion.

Regular monitoring, risk management, and contingency

planning are essential to address potential challenges and

uncertainties associated with critical tasks and factors.

Indeed, a critical path is the longest sequence of tasks that

must be completed in a specific order to ensure that the

project is completed on time. PERT is particularly useful

for projects with a high level of uncertainty and com-

plexity, where accurate estimation of activity durations is

challenging. In PERT, each activity is assigned three time

estimates: optimistic, most likely, and pessimistic. These

time estimates represent the best-case, most likely, and

worst-case scenarios for the activity’s duration.

In project management, risk analysis aims to identify,

assess and prioritize several types of risks. These risks can

be categorized into various types, including schedule risks,

cost risks, technical risks, resource risks, market risks,

environmental risks, quality risks and security risks. Project

managers then develop risk response strategies to mitigate,

transfer or accept risks based on their significance and

potential impact on the project’s objectives. FNs play a

significant role in various fields and have several important

applications due to their ability to represent and handle

uncertainties, vagueness and imprecise information. The

application of FNs in project network and risk analysis has

helped project managers and decision-makers to cope with

uncertainties and vagueness, resulting in more reliable and

effective project planning and scheduling. Dealing with

uncertainty in project networks, especially in the context of

risk analysis, presents several specific challenges for

researchers. These challenges can impact the accuracy,

reliability and effectiveness of risk assessment strategies.

Some of the key challenges include limited data avail-

ability, subjectivity and expert opinion, uncertain interde-

pendencies, modeling complexity, etc. Researchers in

project management continually strive to develop innova-

tive methods and approaches to address these challenges.

Literature has a number of attempts to apply FNs to eval-

uate critical path. To summarize, a brief comparison of

previous works is presented in Table 1.

Project risk analysis is a crucial process in project

management which involves identifying, assessing, and

managing potential risks that could impact the successful

completion of a project. It aims to actively address

uncertainties and threats while also capitalizing on

opportunities to improve project outcomes. The ultimate

goal of project risk analysis is to increase the likelihood of

project success by anticipating and managing potential

challenges effectively. Nieto-Morote and Ruz-Vila (2011)

discussed fuzzy approach to construction project risk

assessment. Carr and Tah (2001) illustrated construction

project risk management system and utilized an hierar-

chical risk breakdown structure with fuzzy assessments.

Project teams should be prepared to adapt and adjust their

strategies as new risks emerge or existing risks evolve. In

this regard, Zeng et al. (2009) proposed an application of

fuzzy based decision making technique to construction

project risk assessment. One of the main strategies for

reducing the schedule risk is the PERT. Similar to schedule

risk analysis, PERT also emphasizes the diversity of the

activity periods. Malcolm et al. (1959) initially presented a

statistical approach to take into account the effects of

variability in their renowned study on the PERT. In actu-

ality, a large quantity of information is needed to model an

unknown duration by a probability distribution, however,

in most practical situations, only a small amount of infor-

mation is available regarding the processing time of each

activity of the project. As a result, PF techniques appeared

to be significantly more suitable than those that are only

probabilistic Fargier et al. (2000), Mazlum and Guneri

(2015). In fact, addressing both variability and path inter-

dependencies is made simple by the use of FNs (to model

durations). Using FNs in project network and risk analysis

enhances the accuracy and completeness of the analysis

while providing decision-makers with a comprehensive

view of the project’s uncertainties. This supports effective

risk management, better resource utilization, and informed

decision-making, ultimately increasing the chances of

project success. Early in the 1980 s, the first paper on fuzzy

PERT was released Chanas and Kamburowski (1981).

Later, Chen and Chang (2001) found multiple possible

critical paths using fuzzy PERT. There is a large body of

related research, some approaches can be seen in Agyei

(2015), Dubois et al. (2003).

MCDM is a vital approach used in various fields to

support decision-making processes when multiple criteria

or objectives need to be considered simultaneously. Its

importance stems from the fact that many real-world

decisions are complex and involve multiple conflicting

factors. Opricovic and Tzeng (2004) created an MCDM

technique known as VIKOR method. VIKOR stands for

‘VIekriterijumsko KOmpromisno Rangiranje’ which

translates to ‘multi-criteria compromise ranking. The

VIKOR approach is based on the concept of compromise

programming, in which the decision-maker looks for the

best possible compromise among competing criteria Mis-

hra et al. (2022), Zahid and Akram (2023). Multi-criteria

project management problems are those that involve the
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management of projects with multiple objectives or criteria

to be met. Such problems can arise in many different

contexts, including engineering, construction, software

development, and organizational management. Through a

weighted decision matrix, one can compare various options

or criteria based on their relative importance. In literature,

determination of critical path involving multi-criteria are

short listed. Zammori et al. (2009) discussed a fuzzy multi-

criteria approach for critical path definition. They used

TOPSIS method to define resulting critical path. A few

more researchers Amiri and Golozari (2011), Dorfeshan

et al. (2018) used time, cost, quality and risk criteria and

applied some MCDM methods to select project-critical

path.

Even though fuzzy PERT is a well-established method

for project scheduling and management, there is always

potential for improvement. Because PFSs have naturally

ambiguous membership functions, they have a variety of

benefits over FSs and IFSs. Through IFSs, certain real

networks have been optimized. However, in a number of

real-world instances, the sum of the truthness and falseness

values of time durations may be higher than 1. Moreover,

since the project managers can gain a variety of advantages

from applying several criteria to problem-solving in project

management, therefore, we use PERT with multi-criteria.

Thus, the objective of this work is to offer more room for

grading, and to cope with such kind of data by combining

PFS theory and MCDM techniques to expand the appli-

cations of project scheduling systems.

The main contributions of this study are as follows:

1. The paper focuses on the concept of credibility

distribution within the context of PFNs. A new

definition of credibility for PF variables is presented

in this regard.

2. Cauchy PFNs along with its arithmetic operations and

graphical representation are proposed. To axiomatize

their credibility measure, we concentrate on a few

more distinct forms of PFNs, such as triangular,

trapezoidal, and LR-type PFNs.

3. The paper introduces a novel method for determining

the inverse credibility distribution and proposes a new

ranking technique by extending existing theories or

introducing innovative concepts related to Cauchy

PFNs and their use in project management.

4. To broaden the applicability of project scheduling

systems, the paper likely introduces a mathematical

Table 1 Various project management techniques in existing literature

Authors Project management

technique used

Findings

Soni et al. (2022) Fuzzy project risk

assessment

Constructed Project Risk Assessment based on PERT, CPM and project management with fuzzy

logic

Mirnezami et al.

(2020)

Fuzzy project cash flow

assessment

Proposed an interval type-2 fuzzy approach for multi-scenario project cash flow assessment

based on alternative queuing method and dependency structure matrix

Mazlum and

Guneri (2015)

Fuzzy CPM and PERT Presented CPM, PERT and project management with fuzzy logic with implementation on a

business

Zareei et al.

(2011)

Fuzzy critical path

analysis

Initiated a new approach using analysis of events

Huynh et al.

(2008)

Fuzzy CPM Discussed interactive fuzzy subtraction while describing fuzzy CPM

Chen and Hsueh

(2008)

Fuzzy critical path

analysis

Adopted a simple approach to Fuzzy critical path analysis in project networks

Chen and Huang

(2007)

Fuzzy critical path

analysis

Developed a fuzzy method for measuring criticality in project network

Chen (2007) Fuzzy critical path

analysis

Analyzed critical paths in a project network with fuzzy activity times

Dubois et al.

(2003)

Project risk assessment Modeled flexible constraints vs. coping with incomplete knowledge

Chanas and

Zielinski (2001)

Fuzzy CPM Defined CPM with fuzzy activity times

Kuchta (2001) Fuzzy project risk

assessment

Used fuzzy numbers in project risk (criticality) assessment

Yao and Lin

(2000)

Fuzzy CPM Proposed fuzzy CPM using the FNs’ signed distance rankings
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framework that combines MCDM techniques and the

PF Logic in PERT approach.

5. The paper explores the application of the proposed

approach to multi-criteria decision-making in project

management. Finding the critical route is the main goal

while taking certain decision criteria into account, such

as the length, time, cost, resources, and risk consider-

ations. All of the criteria are mathematically analyzed

based on PF logic and combined using the VIKOR

technique.

6. Additionally, the research provides practical insights

into how the developed framework can be applied to

real-world project management problems. For this

purpose, we examine a case study in project manage-

ment related to greenhouse construction project plan

with multi-criteria. We have applied the suggested

approach to identify the most critical route using PF

data in the project network.

7. The paper demonstrates the superiority of the proposed

solution by showing how it can yield meaningful

insights into route criticality by demonstrating its

effectiveness in real cases.

The current research content is structured in the following

way: Sect. 2 reviews some fundamental ideas and provides

the definitions of a few specific PFNs. In Sect. 3, we define

Cauchy PFNs, their a and b-cuts and arithmetic operations.

Section 4 gives the concept of possibility, necessity and

credibility measures for PFSs. Moreover, the credibility

distribution functions of Cauchy PFNs as well as of other

PFNs are developed along with their graphical interpreta-

tion. We illustrate the defuzzification index based on

expected values of PFNs. Section 5 concerns the ranking

methodology for PFNs. Section 6 presents the project

planning through PFPERT in detail. Section 7 provides

formulas of all decision criteria to measure criticality.

Section 8 discusses VIKOR method for critical route

detection. Section 9 covers the implementation of the

suggested methodology on a case study in project man-

agement related to greenhouse construction project plan.

Section 10 concerns results and discussion related to this

case study. Section 11 describes the advantages of pro-

posed method and its future scope. Conclusions and

upcoming research are covered in the last section.

2 Fundamental concepts

This section reviews the fundamental notions related to

Cauchy distribution; possibility, necessity, and credibility

measures; and several types of PFNs.

2.1 Cauchy distribution

A specific subclass of the a-stable distributions for a ¼ 1 is

the Cauchy distribution. But unlike most a-stable distribu-

tions, it has a probability density function which is math-

ematically stated in Eq. 1.

PCðxÞ ¼
c

pððx� lÞ2 þ c2Þ
; ð1Þ

where the parameters l and c ð[ 0Þ determine the peak

position and the 1
2
width at 1

2
maximum, respectively. Here,

the Cauchy distribution is depicted by the symbol Cðl; cÞ.
The mean, variance, and higher moments are unquantifi-

able, while the mode and median are both l. A few other

probability distributions have a tight relationship with the

Cauchy distribution. The scale factor c determines how

hefty the Cauchy distribution’s tail will be.

2.2 Possibility, necessity and credibility
measures

Consider a fuzzy subset P of universe U which is charac-

terized by a membership function lP; where lPðpÞ indi-

cates the compatibility of p with the concept labeled P. Let

X be a variable belongs to U. Then, the formulas for pos-

sibility (Pos) and necessity (Nec) measures, defined by

Zadeh (1978), are given in Eqs. 2 and 3.

PosfX is Pg � sup
p2P

pXfpg 2 ½0; 1�; ð2Þ

NecfX is Pg �1� sup
p2Pc

pXfpg: ð3Þ

Here, pXfpg is the possibility distribution function of
Q

X

(a possibility distribution associated with variable X).

The more general definition of possibility measure

which extends the previous definition to FSs is expressed in

Eq. 4.

PosfX is Pg � pðPÞ � sup
p2P

lPðpÞ
^

pXðpÞ: ð4Þ

For a fuzzy variable n with membership function l; the
credibility of n 2 b � R; defined by Liu and Liu (2002) in

Eq. 6.

Crfn 2 bg ¼ 1

2
ðPosfn 2 bg þ Necfn 2 bgÞ ð5Þ

¼ 1

2
sup
x2b

lðxÞ þ 1� sup
x2bc

lðxÞ
 !

: ð6Þ

This formula was extended by Mandal et al. (2010) in the

following form given in Eq. 7.
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Crfn 2 bg ¼ q Posfn 2 bg þ ð1� qÞ Necfn 2 bg; 0� q� 1:

ð7Þ

A nonempty set H representing sample space, a setP

showing the power set of H and Cr, which is credibility

measure on P constitute for a credibility space

ðH;PðHÞ;CrÞ: Li and Liu (2008) defined credibility dis-

tribution U for fuzzy variable n (a function from credibility

space ðH;PðHÞ;CrÞ to set of real numbers) as in Eq. 8.

UðxÞ ¼ Crfh 2 H j nðhÞ� xg: ð8Þ

Here, UðxÞ (where U : R ! ½0; 1�) is the credibility that

fuzzy variable n takes a value which is smaller than or

equal to x. Liu proved that U is nondecreasing function on

R in addition with Uð�1Þ ¼ 0 and Uðþ1Þ ¼ 1:

Based on credibility function, the expected value of

fuzzy variable n is also defined by Liu and Liu (2002) and

given in Eq. 9.

E½n� ¼
Z þ1

0

Crfn� rgdr �
Z 0

�1
Crfn� rgdr: ð9Þ

2.3 Pythagorean fuzzy numbers

A PFN ~N ¼ ðn1; n2; l; r; l0; r0ÞLR is defined by Habib et al.

(2022) is an LR-type PFN, if its membership function (MF)

and non-membership function (non-MF) are, respectively,

defined as follow.

l ~NðaÞ ¼
L

n1 � a

l

� �
; a� n1; l[ 0

1; n1 � a� n2

R
a� n2

r

� �
; a� n2; r[ 0

8
>>><

>>>:

;

m ~NðaÞ ¼
L0

n1 � a

l0

� �
; a� n1; l0 [ 0

0; n1 � a� n2

R0 a� n2
r0

� �
; a� n2; r0 [ 0

8
>>><

>>>:

;

such that l ~N
2 þ m ~N

2 � 1; where, l� l0; r� r0; L and R0 are
monotone, continuous, increasing functions; and L0 and R

are monotone, continuous, decreasing functions from

½0:1Þ to [0, 1] such that Lð0Þ ¼ Rð0Þ ¼ 1; lima!1 RðaÞ ¼
lima!1 LðaÞ ¼ 0; L0ð0Þ ¼ R0ð0Þ ¼ 0; lima!1 R0ðaÞ ¼
lima!1 L0ðaÞ ¼ 1: The real interval ½n1; n2� is called set of

mean values of ~N: l and r are left and right spreads of l ~N ; l
0

and r0 are left and right spreads of m ~N ; respectively.

A PFN ~N ¼ h½n1; n2; n3; n4�; n ~N ; g ~Ni defined by Akram

et al. (2022) is said to be trapezoidal if its MF and non-MF

are respectively given as

l ~NðaÞ ¼

a� n1
n2 � n1

n ~N ; n1 � a\n2

n ~N ; n2 � a� n3
n4 � a

n4 � n3
n ~N ; n3\a� n4

0; otherwise

8
>>>>>><

>>>>>>:

;

m ~NðaÞ ¼

n2 � aþ g ~Nða� n1Þ
n2 � n1

; n1 � a\n2

g ~N ; n2 � a� n3

a� n3 þ g ~Nðn4 � aÞ
n4 � n3

; n3\a� n4

1; otherwise

8
>>>>>>><

>>>>>>>:

:

Similarly, a PFN ~N ¼ h½n1; n2; n3�; n ~N ; g ~Ni defined by

Luqman et al. (2021) is said to be triangular if its MF and

non-MF are respectively given as

l ~NðaÞ ¼

a� n1
n2 � n1

n ~N ; n1 � a\n2

n3 � a

n3 � n2
n ~N ; n2 � a� n3

0; otherwise

8
>>><

>>>:

;

m ~NðaÞ ¼

n2 � aþ g ~Nða� n1Þ
n2 � n1

; n1 � a\n2

a� n2 þ g ~Nðn3 � aÞ
n3 � n2

; n2 � a� n3

1; otherwise

8
>>>><

>>>>:

:

The terms n ~N and g ~N are confidence and non-confidence

levels of expert, and indicate the maximum and minimum

values of l ~N and m ~N ; respectively, such that 0� n ~N ; g ~N � 1

satisfying n2~N þ g2~N � 1:

3 Cauchy Pythagorean fuzzy numbers

Cauchy fuzzy number, which is based on probability den-

sity function of Cauchy distribution, is widely used FN in

engineering. In this section, we define Cauchy PFNs, their

a and b-cuts, some arithmetic operations and a ranking

technique based on their credibility distribution.

Definition 1 A PFN ~N ¼ ðp; q1
L; q1

R; q2
L; q2

RÞ is called
a Cauchy PFN, if its MF and non-MF are defined,

respectively, as:
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l ~NðxÞ ¼

1

1þ
� p� x

q1L
�2 ; x� p; q1

L [ 0

1

1þ
� x� p

q1R
�2 ; x[ p; q1

R [ 0

8
>>>>><

>>>>>:

;

m ~NðxÞ ¼

1� 1
�
1þ

� p� x

q2L
�2�2 ; x� p; q2

L [ 0

1� 1
�
1þ

� x� p

q2R
�2�2 ; x[ p; q2

R [ 0

8
>>>>><

>>>>>:

;

such that l ~N
2 þ m ~N

2 � 1: Here, p determines the peak

location, q1
L and q1

R respectively denote the left and right-

hand width of l ~N ; q2
L and q2

R respectively denote the left

and right-hand width of m ~N ; and q1
L � q2

L and q1
R � q2

R:

Definition 2 A Cauchy PFN ~N ¼ ðp; q1
L; q1

R; q2
L; q2

RÞ
is called symmetric (or bell-shaped), if q1

L ¼ q1
R and

q2
L ¼ q2

R:

Example 1 Let ~N ¼ ð11; 5; 6; 7; 9Þ be a Cauchy PFN.

Then, the MF and non-MF of ~N can be defined as:

l ~NðxÞ ¼

1

1þ
� 11� x

5

�2
; x� 11

1

1þ
� x� 11

6

�2
; x[ 11

8
>>>>>><

>>>>>>:

;

m ~NðxÞ ¼

1� 1
�
1þ

� 11� x

7

�2�2
; x� 11

1� 1
�
1þ

� x� 11

9

�2�2
; x[ 11

8
>>>>>><

>>>>>>:

:

It is easy to observe that ~N satisfies the condition

l ~NðxÞ
2 þ m ~NðxÞ

2 � 1: Figure 1 provides graphical repre-

sentation of ~N:

3.1 a-cut and b-cut of Cauchy PFNs

PFNs may be uniquely determined by specifying their a
and b-cuts.

Definition 3 An a-cut set of a Cauchy PFN ~N ¼
ðp; q1

L; q1
R; q2

L; q2
RÞ is contained in R and defined in

Eq. 10.

~Na ¼ fxj l ~NðxÞ� ag ¼ ½L ~NðaÞ;R ~NðaÞ�

¼
�

p� q1
L

ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r

; pþ q1
R

ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r 


;
ð10Þ

where 0\a� 1:

Definition 4 A b -cut set of a Cauchy PFN ~N ¼
ðp; q1

L; q1
R; q2

L; q2
RÞ is contained in R and defined in

Eq. 11.

~Nb ¼fxj m ~NðxÞ� bg ¼ ½L ~NðbÞ;R ~NðbÞ�

¼
�

p� q2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s

; pþ q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s 


;

ð11Þ

where 0� b\1:

Definition 5 An ða; bÞ -cut set of a Cauchy PFN ~N ¼
ðp; q1

L; q1
R; q2

L; q2
RÞ is contained in R and defined in

Eq. 12.

~Na;b ¼fxj l ~NðxÞ� a; m ~NðxÞ� bg
¼
�
½L ~NðaÞ;R ~NðaÞ�; ½L ~NðbÞ;R ~NðbÞ�

�
;

ð12Þ

where 0\a� 1 and 0� b\1 such that a2 þ b2 � 1:

Example 2 Consider a Cauchy PFN ~N ¼ ð11; 5; 6; 7; 9Þ:
Take a ¼ 0:6 and b ¼ 0:8: The a and b-cut sets of Cauchy
PFN ~N are [6.9, 15.9] and [2.4, 22.1], respectively. Fig-

ure 2 describes an example of (0.6, 0.8)-cut set of given

Cauchy PFN.
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Fig. 1 A Cauchy PFN ~N ¼ ðð11; 5; 6; 7; 9Þ
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3.2 Cauchy Pythagorean fuzzy arithmetic

Based on a and b-cuts of Cauchy PFNs we define some

arithmetic operations.

Definition 6 Let ~N1 ¼ ðp1; q1
L; q1

R; q2
L; q2

RÞ and ~N2 ¼
ðp2; q01

L; q01
R; q02

L; q02
RÞ be two Cauchy PFNs. Their a and

b-cuts are respectively defined according to Definitions 3

and 4 as follows: ~N1a ¼ ½p1 � q1
L
ffiffiffiffiffiffi
1�a
a

q
; p1 þ q1

R
ffiffiffiffiffiffi
1�a
a

q
�;

~N2a ¼ ½p2 � q
0
1

L
ffiffiffiffiffiffi
1�a
a

q
; p2 þ q

0
1

R
ffiffiffiffiffiffi
1�a
a

q
�; ~N1b ¼ ½p1 �

q2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffi
1�b

p
ffiffiffiffiffiffiffi
1�b

p
r

; p1 þ q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffi
1�b

p
ffiffiffiffiffiffiffi
1�b

p
r

�; ~N2b ¼ ½p2 �

q
0

2

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffi
1�b

p
ffiffiffiffiffiffiffi
1�b

p
r

; p2 þ q
0

2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffi
1�b

p
ffiffiffiffiffiffiffi
1�b

p
r

�: The addition and sub-

traction of Cauchy PFNs ~N1 and ~N2 on the basis of their a
and b-cuts are respectively defined as:

1.

~N1a þ ~N2a ¼
�

ðp1 þ p2Þ � ðq1L þ q
0

1

LÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r

; ðp1 þ p2Þ þ ðq1R þ q
0

1

RÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r 


;

~N1b þ ~N2b ¼
�

ðp1 þ p2Þ � ðq2L þ q
0

2

LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s

; ðp1 þ p2Þ þ ðq2R þ q
0

2

RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s 


:

The MF and non-MF of addition of Cauchy PFNs ~N1

and ~N2 are as follows:

l ~N1þ ~N2
ðxÞ ¼

1

1þ

ðp1 þ p2Þ � x

q1L þ q
0
1

L

�2
; x� p1 þ p2

1

1þ

x� ðp1 þ p2Þ
q1R þ q

0
1

R

�2
; x[ p1 þ p2

8
>>>>>>>><

>>>>>>>>:

;

m ~N1þ ~N2
ðxÞ ¼

1� 1
�

1þ

ðp1 þ p2Þ � x

q2L þ q
0
2

L

�2
2 ; x� p1 þ p2

1� 1
�

1þ

x� ðp1 þ p2Þ
q2R þ q

0
2

R

�2
2 ; x[ p1 þ p2

8
>>>>>>>><

>>>>>>>>:

:

2.

~N1a � ~N2a ¼
�

ðp1 � p2Þ � ðq1L � q
0

1

LÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r

; ðp1 � p2Þ þ ðq1R � q
0

1

RÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
a

r 


;

~N1b þ ~N2b ¼
�

ðp1 � p2Þ � ðq2L � q
0

2

LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s

; ðp1 � p2Þ þ ðq2R � q
0

2

RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

s 


:

The MF and non-MF of addition of Cauchy PFNs ~N1

and ~N2 are as follows:

l ~N1� ~N2
ðxÞ ¼

1

1þ

ðp1 � p2Þ � x

q1L � q
0
1

L

�2
; x� p1 � p2

1

1þ

x� ðp1 � p2Þ
q1R � q

0
1

R

�2
; x[ p1 � p2

8
>>>>>>>><

>>>>>>>>:

;

m ~N1� ~N2
ðxÞ ¼

1� 1
�

1þ

ðp1 � p2Þ � x

q2L � q
0
2

L

�2
2 ; x� p1 � p2

1� 1
�

1þ

x� ðp1 � p2Þ
q2R � q

0
2

R

�2
2 ; x[ p1 � p2

8
>>>>>>>><

>>>>>>>>:

:

4 Possibility, necessity and credibility
measures for Pythagorean fuzzy sets

This section provides the definitions of credibility measure

in comparison with possibility and necessity measures.

Subsequently, we develop the formulas for credibility

distribution and inverse credibility distribution, respec-

tively, for different PFNs.

Definition 7 Let ~N be a PFN with MF l ~N and non-MF m ~N

such that l2~N þ m2~N � 1 and t be a real value. Then, in the PF

event, when the PF variable ~N assumes a value below or

equal to r ( ~N� t), the l-possibility ðPoslÞ and m- possi-

bility ðPosmÞ are defined in Eqs. 13 and 14.
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Poslf ~N � tg ¼ supfl ~NðwÞ ^ l ~NðtÞ j w 2 Rg; ð13Þ

Posmf ~N � tg ¼ supfm ~NðwÞ ^ m ~NðtÞ j w 2 Rg: ð14Þ

Definition 8 Let ~N be a PFN with MF l ~N and non-MF m ~N

such that l2~N þ m2~N � 1 and t be a real value. Then in the PF

event, when the PF variable ~N assumes a value below or

equal to r ( ~N� t), the l-necessity ðNeclÞ and m- necessity
ðNecmÞ are defined in Eqs. 15 and 16.

Neclf ~N � tg ¼Hl � Poslf ~N[ tg; ð15Þ

Necmf ~N � tg ¼Hm � Posmf ~N[ tg; ð16Þ

where, Poslf ~N[ tg ¼ inffl ~NðwÞ _ l ~NðtÞ j w 2 Rg;
Posmf ~N[ tg ¼ inffm ~NðwÞ _ m ~NðtÞ j w 2 Rg and the values

of Hl and Hm depend on the type of PFN.

– For trapezoidal and triangular PFNs, Hl ¼ n ~N and

Hm ¼ 1þ g ~N :

– For Cauchy and LR-type PFNs, Hl ¼ Hm ¼ 1:

Since the necessity and possibility measurements lack

the self-duality characteristic, therefore, to measure a PF

event in decision making system these are not suitable to

use. The credibility measure was suggested as a way to

address this shortcoming. The generalized form of credi-

bility measure is expressed along the following lines.

Definition 9 Let ~N be a PFN with MF l ~N and non-MF m ~N .

Then, in the PF event, when the PF variable ~N assumes a

value below or equal to t ( ~N� t), the generalized l-credi-
bility ðGCrlÞ and generalized m-credibility ðGCrmÞ are

defined in Eqs. 17 and 18.

GCrlf ~N� tg ¼jPoslf ~N � tg þ ð1� jÞNeclf ~N � tg;
ð17Þ

GCrmf ~N� tg ¼jPosmf ~N� tg þ ð1� jÞNecmf ~N� tg;
ð18Þ

where j ð0� j� 1Þ is a parameter which helps to evaluate

the decision body’s overall attitude and is optimistic-pes-

simistic in nature.

– If j ¼ 1; then GCrl ¼ Posl; GCrm ¼ Posm; which

shows that decision-body is optimistic and there is

maximum chance of occurrence of the PF event.

– If j ¼ 0; then GCrl ¼ Necm; GCrm ¼ Necm; which

shows that decision-body is pessimistic and there is

minimum chance of occurrence of the PF event.

– If j ¼ 1
2
; then GCrl ¼ Crl; GCrm ¼ Crm; where, Cr is

credibility measure which shows that the decision

maker adopts compromise attitude.

Equations 19 and 20 provide the definition of credibility

measure of PF event.

Crlf ~N � tg ¼Poslf ~N� tg þ Neclf ~N� tg
2

; ð19Þ

Crmf ~N � tg ¼Posmf ~N � tg þ Necmf ~N� tg
2

: ð20Þ

4.1 Credibility distribution

In this section, we define the credibility distribution func-

tions for different PFNs.

4.1.1 Credibility distribution of trapezoidal PFNs

Let ~N ¼ h½n1; n2; n3; n4� : n ~N ; g ~Ni be a trapezoidal PFN.

The possibility of ~N� t for MF and non-MF, calculated

according to Eqs. 13 and 14, has the following expressions.

Poslf ~N � tg ¼

0; w� n1
w� n1
n2 � n1

n ~N ; n1 �w� n2

n ~N ; w� n2

8
>><

>>:
;

Posmf ~N � tg ¼

1; w� n1
n2 � wþ g ~Nðw� n1Þ

n2 � n1
; n1 �w� n2

g ~N ; w� n2

8
>><

>>:
:

The necessity of ~N� t for MF and non-MF, calculated

according to Eqs. 15 and 16, has the following expressions.

Fig. 2 A (0.6, 0.8)-cut set of Cauchy PFN
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Neclf ~N � tg ¼

0; w� n3
w� n3
n4 � n3

n ~N ; n3 �w� n4

n ~N ; w� n4

8
>><

>>:
;

Necmf ~N � tg ¼

1; w� n3
n4 � wþ g ~Nðw� n3Þ

n4 � n3
; n3 �w� n4

g ~N ; w� n4

8
>><

>>:
:

The credibility distribution for MF and non-MF is con-

structed according to Eqs. 19, 20 and have the following

expressions.

Crlf ~N � tg ¼

0; w\n1
w� n1

2ðn2 � n1Þ
n ~N ; n1 �w\n2

n ~N

2
; n2 �w� n3

wþ n4 � 2n3
2ðn4 � n3Þ

n ~N ; n3\w� n4

n ~N ; w[ n4

8
>>>>>>>>>>><

>>>>>>>>>>>:

;

Crmf ~N � tg ¼

1; w� n1
2n2 � n1 � wþ g ~Nðw� n1Þ

2ðn2 � n1Þ
; n1 �w\n2

1þ g ~N

2
; n2�w� n3

n4 � wþ g ~Nðw� 2n3 þ n4Þ
2ðn4 � n3Þ

; n3\w� n4

g ~N ; w� n4

8
>>>>>>>>>>><

>>>>>>>>>>>:

:

On the basis of above functions, the credibility distribution

of Trapezoidal PFN h½5; 9; 17; 23� : 0:77; 0:59i is displayed
in Fig. 3.

4.1.2 Credibility distribution of triangular PFNs

Let ~N ¼ h½n1; n2; n3� : n ~N ; g ~Ni be a triangular PFN. The

credibility distribution for MF and non-MF is described as

being the average of their possibility and necessity mea-

sures, provided as follows.

Crlf ~N � tg ¼

0; w\n1
w� n1

2ðn2 � n1Þ
n ~N ; n1 �w\n2

wþ n3 � 2n2
2ðn3 � n2Þ

n ~N ; n2 �w\n3

n ~N ; w� n3

8
>>>>>><

>>>>>>:

;

Crmf ~N � tg ¼

1; w\n1
2n2 � n1 � wþ g ~Nðw� n1Þ

2ðn2 � n1Þ
; n1�w\n2

n3 � wþ g ~Nðw� 2n2 þ n3Þ
2ðn3 � n2Þ

; n2�w\n3

g ~N ; w� n3

8
>>>>>>><

>>>>>>>:

:

On the basis of above functions, the credibility distribution

of triangular PFN h½0; 15; 50� : 0:9; 0:3i is displayed in

Fig. 4.

4.1.3 Credibility distribution of LR-Type PFNs

Let ~N ¼ ðn1; n2; l; r; l0; r0ÞLR be an LR-Type PFN with

LðwÞ ¼ 1� ffiffiffiffi
w

p
; RðwÞ ¼ e�w and L0ðwÞ ¼ R0ðwÞ ¼ ffiffiffiffi

w
p

:.

The credibility distribution for MF and non-MF is defined

as average of their possibility and necessity measures,

provided as follows.
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

�(
x)

�−Cr of TrPFN

�−Cr of TrPFN

n4
n3n2n1

�

�

Fig. 3 Credibility distribution of

trapezoidal PFN
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Crlf ~N � tg ¼

0; w\n1 � l

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � w

l

r

; n1 � l�w\n1

1; n1 �w� n2

e
n2�w

r ; w[ n2

8
>>>>><

>>>>>:

;

Crmf ~N � tg ¼

1; w\n1 � l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � w

l0

r

; n1 � l0 �w\n1

0; n1 �w� n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� n2

r0

r

; n2 �w� n2 þ r0

1; w[ n2 þ r0

8
>>>>>>>>><

>>>>>>>>>:

:

Example 3 Let ~N ¼ ð7; 8; 2; 3; 3; 5ÞLR be an LR-type

PFN with LðwÞ ¼ 1� ffiffiffiffi
w

p
; RðwÞ ¼ e�w and L0ðwÞ ¼

R0ðwÞ ¼ ffiffiffiffi
w

p
: Then, the MF and non-MF of ~N has the

following expressions:

l ~NðwÞ ¼

0; w� 5

1�
ffiffiffiffiffiffiffiffiffiffiffiffi
7� w

2

r

; 5�w\7

1; 7�w� 8

e
8�w
3 ; w[ 8

8
>>>>><

>>>>>:

;

m ~NðwÞ ¼

1; w\4
ffiffiffiffiffiffiffiffiffiffiffiffi
7� w

3

r

; 4�w\7

0; 7�w� 8
ffiffiffiffiffiffiffiffiffiffiffiffi
w� 8

5

r

; 8\w� 13

1; w[ 13

8
>>>>>>>>><

>>>>>>>>>:

:

Figure 5 provides the graphical representation of credibil-

ity distribution of LR-Type PFN ~N ¼ ð7; 8; 2; 3; 3; 5ÞLR:

4.1.4 Credibility distribution of Cauchy PFNs

Let ~N ¼ ðp; q1
L; q1

R; q2
L; q2

RÞ be a Cauchy PFN. The

credibility distribution for MF and non-MF is constructed

according to Eqs. 19, 20 and given as follows.

Crlf ~N � tg ¼

1

2þ 2
� p� x

q1L
�2 ; x� p

1� 1

2þ 2
� x� p

q1R
�2 ; x[ p

8
>>>>><

>>>>>:

;

Crmf ~N � tg ¼

1� 1

2
�
1þ

� p� x

q2L
�2�2 ; x� p

1

2
�
1þ

� x� p

q2R
�2�2 ; x[ p

8
>>>>><

>>>>>:

:

Example 4 Let ~N ¼ ð11; 5; 6; 7; 9Þ be a Cauchy PFN.

Then the MF and non-MF of ~N are defined in Example 1.

The graphical representation of credibility distribution of

Cauchy PFN ~N ¼ ð11; 5; 6; 7; 9Þ is displayed in Fig. 6.

4.2 Regular Pythagorean fuzzy numbers

If a credibility distribution is monotone and continuous

with respect to r, it is considered to be regular (i.e., l-
credibility distribution is strictly increasing and m-credi-
bility distribution is strictly decreasing) such that

0\Crl;Crm\1 and

lim
r!�1

CrlðtÞ ¼ 0; lim
r!þ1

CrlðtÞ ¼ 1;

lim
r!�1

CrmðtÞ ¼ 1; lim
r!þ1

CrmðtÞ ¼ 0:

Definition 10 A PFN is said to be regular PFN, if its

credibility distribution is regular.

It is easy to observe that triangular PFNs and Cauchy

PFNs in Definitions 4 and 1 are regular, while trapezoidal

PFNs and LR type PFNs in Definitions 3 and 5 are not

regular due to non-strictly monotonic behavior of l and m-
credibility distribution functions.

Regarding the regular PFNs, the idea of the inverse

credibility distribution is created. This idea will be crucial

to the content that follows.

Definition 11 Let ~N be a PFN with regular l and m-
credibility distributions, Crl and Crm; respectively. Then,

their inverse functions Cr�1
l and Cr�1

m are called l-inverse

credibility and m-inverse credibility distributions of ~N;

respectively.
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Fig. 4 Credibility distribution of triangular PFN
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On the open interval (0, 1), the l and m-inverse
credibility distributions are clearly specified. If necessary,

we may expand their domain by

Cr�1
l ð0Þ ¼ lim

a!0
Cr�1

l ðaÞ;Cr�1
l ð1Þ ¼ lim

a!1
Cr�1

l ðaÞ;

Cr�1
m ð0Þ ¼ lim

a!0
Cr�1

m ðaÞ;Cr�1
m ð1Þ ¼ lim

a!1
Cr�1

m ðaÞ:

4.2.1 Inverse credibility distribution of triangular PFNs

The l and m-inverse credibility distribution functions for a

triangular PFN ~N ¼ h½n1; n2; n3�; n ~N ; g ~Ni are defined below.

The graphical representation is provided in Fig. 7.

Cr�1
l ðaÞ ¼

n1 þ
2

n ~N

ðn2 � n1Þa; a\0:5; n ~N ¼ 1

2n2 � n3 þ
2

n ~N

ðn3 � n2Þa; a� 0:5; n ~N ¼ 1

8
>><

>>:
;

Cr�1
m ðaÞ ¼

2n2ða� g ~NÞ þ n3ð1� 2aþ g ~NÞ
1� g ~N

; a\0:5; g ~N ¼ 0

n1ð2a� g ~N � 1Þ þ 2n2ð1� aÞ
1� g ~N

; a� 0:5; g ~N ¼ 0

8
>>><

>>>:

:

4.2.2 Inverse credibility distribution of Cauchy PFNs

The l and m-inverse credibility distribution functions for

Cauchy PFN ~N ¼ ðp; q1
L; q1

R; q2
L; q2

RÞ are defined

below. The graphical representation is provided in Fig. 8.
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Fig. 5 Credibility distribution of

LR-Type PFN
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Cr�1
l ðaÞ ¼

p� q1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
2a

r

; a\0:5

pþ q1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð1� aÞ
2ð1� aÞ

s

; a� 0:5

8
>>>><

>>>>:

;

Cr�1
m ðaÞ ¼

pþ q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffi
2a

p
ffiffiffiffiffi
2a

p

s

; a\0:5

p� q2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

s

; a� 0:5

8
>>>>><

>>>>>:

:

For simplicity, we may consider q1
L ¼ q1

R and q2
L ¼ q2

R:

4.3 Ranking method for Pythagorean fuzzy
numbers

For different PFNs, we now suggest a ranking technique

based on the computation of expected values.
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Fig. 7 Inverse credibility

distribution of triangular PFN
~N ¼ h½0; 15; 50�; 1; 0i
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Fig. 8 Inverse credibility

distribution of Cauchy PFN
~N ¼ ð11; 5; 6; 7; 9Þ
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4.3.1 Expected value based on credibility distribution

Liu and Liu Liu and Liu (2002) proposed the formula to

compute Expected Value (EV) of a fuzzy variable in terms

of credibility distribution. Following this definition, we

provide the formula for EV of PF variables in the following

manner.

Let ~N be a PFN. The EV of ~N for MF and non-MF are

determined, respectively, in Eqs. 21 and 22.

Elð ~NÞ ¼
Z þ1

0

Crlf ~N� tgdr �
Z 0

�1
Crlf ~N� tgdr;

ð21Þ

Emð ~NÞ ¼
Z þ1

0

Crmf ~N � tgdr �
Z 0

�1
Crmf ~N � tgdr: ð22Þ

Definition 12 Let ~N be a PFN. Then, EV of ~N is defined in

Eq. 23.

Eð ~NÞ ¼ Elð ~NÞ þ Emð ~NÞ
2

ð23Þ

4.3.2 Expected value based on inverse credibility
distribution

For regular FNs, Zhou et al. Zhou et al. (2016) defined an

equivalent form of EV. Utilizing their concept, in this

section, inverse credibility distribution is used to provide

an identical form of EV for regular PFNs.

Definition 13 Let ~N be a regular PFN. If the EV of ~N
exists, then we have

Elð ~NÞ ¼
Z 1

0

Cr�1
l ðaÞda; ð24Þ

Emð ~NÞ ¼
Z 1

0

Cr�1
m ðaÞda; ð25Þ

where, Cr�1
l and Cr�1

m are the l and m-inverse credibility

distribution functions of ~N:

Theorem 1 For a regular PFN ~N; if the EV of ~N exists,

then

Eð ~NÞ ¼ 1

2

� Z 1

0

Cr�1
l ðaÞdaþ

Z 1

0

Cr�1
m ðaÞda




;

where, Cr�1
l and Cr�1

m are the l and m-inverse credibility

distribution functions of ~N:

Proof Let ~N be a regular PFN. Suppose that the EV of ~N
exists. Then, by definition of EV of PFN based on credi-

bility distribution, we obtain the following expression:

Eð ~NÞ ¼ 1

2
½Elð ~NÞ þ Emð ~NÞ�;

¼ 1

2

� Z þ1

0

Crlf ~N � tgdr �
Z 0

�1
Crlf ~N� tgdr

þ
Z þ1

0

Crmf ~N� tgdr �
Z 0

�1
Crmf ~N� tgdr




;

¼ 1

2

� Z 1

Crlð0Þ
Cr�1

l ðaÞdaþ
Z Crlð0Þ

0

Cr�1
l ðaÞda

þ
Z 1

Crmð0Þ
Cr�1

m ðaÞdaþ
Z Crmð0Þ

0

Cr�1
m ðaÞda




;

¼ 1

2

� Z Crlð0Þ

0

Cr�1
l ðaÞdaþ

Z 1

Crlð0Þ
Cr�1

l ðaÞda

þ
Z Crmð0Þ

0

Cr�1
m ðaÞdaþ

Z 1

Crmð0Þ
Cr�1

m ðaÞda



;

¼ 1

2

� Z 1

0

Cr�1
l ðaÞdaþ

Z 1

0

Cr�1
m ðaÞda




:

h

Theorem 1 indicates that the EV of a regular PFN is just

the area surrounded by two axes, i.e., a ¼ 0 ðor a ¼ 1Þ and
the curves of l and m-inverse credibility distribution

functions Cr�1
l and Cr�1

m ; respectively. The graphical

illustration of EV of a regular LR-type PFN is displayed in

Fig. 9.

Theorem 2 The EV Eð ~NÞ of a triangular PFN ~N ¼

h½n1; n2; n3� : 1; 0i is
n1 þ 2n2 þ n3

4
:

Proof Let ~N ¼ h½n1; n2; n3� : 1; 0i be a triangular PFN.

According to Definition 13, we obtain the following

expression:

Cr ( r )/α

r/Cr − 1 (α )

Cr μ (0)

Cr ν (0)

0

Cr − 1
μ (α )Cr − 1

ν (α )

1

Fig. 9 The EV of a regular LR-type PFN

36 Page 14 of 34 Granular Computing (2024) 9:36

123



Elð ~NÞ ¼
Z 0:5

0

n1 þ 2ðn2 � n1Þa daþ
Z 1

0:5

2n2 � n3 þ 2ðn3 � n2Þa da;

¼ 1

2
n1 þ

1

4
ðn2 � n1Þ þ

1

2
ð2n2 � n3Þ þ

3

4
ðn3 � n2Þ;

¼ 1

4
ðn1 þ 2n2 þ n3Þ:

Emð ~NÞ ¼
Z 0:5

0

2n2aþ n3ð1� 2aÞ daþ
Z 1

0:5

n1ð2a� 1Þ þ 2n2ð1� aÞ da;

¼ 1

4
n2 þ

1

4
n3 þ n1


�1

4
þ 1

2

�

þ 2n2


1

8

�

;

¼ 1

4
ðn1 þ 2n2 þ n3Þ:

Using Definition 12, we get the result as follows.

Eð ~NÞ ¼ 1

2
ðElð ~NÞ þ Emð ~NÞÞ ¼

1

8
ð2n1 þ 4n2 þ 2n3Þ

¼ 1

4
ðn1 þ 2n2 þ n3Þ:

h

Theorem 3 The EV Eð ~NÞ of a Cauchy PFN ~N ¼
ðp; q1

L; q1
R; q2

L; q2
RÞ is p, where q1

L ¼ q1
R and

q2
L ¼ q2

R:

Proof Let ~N ¼ ðp; q1
L; q1

R; q2
L; q2

RÞ be a Cauchy PFN

such that q1
L ¼ q1

R and q2
L ¼ q2

R: According to Defini-

tion 13, we obtain

Elð ~NÞ ¼
Z 0:5

0

p� q1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
2a

r

daþ
Z 1

0:5

pþ q1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð1� aÞ
2ð1� aÞ

s

da;

¼ 0:5p� q1
L

Z 0:5

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
2a

r

daþ 0:5p

þ q1
R

Z 1

0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð1� aÞ
2ð1� aÞ

s

da;

¼ pþ 1

2
q2

R

Z 0

1

ffiffiffiffiffiffiffiffiffiffi
t

1� t

r

dt

þ 1

2
q2

L

Z 1

0

ffiffiffiffiffiffiffiffiffiffi
t

1� t

r

dt;

¼ p:

Emð ~NÞ ¼
Z 0:5

0

pþ q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffi
2a

p
ffiffiffiffiffi
2a

p

s

da

þ
Z 1

0:5

p� q2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

s

da;

¼ 0:5pþ q2
R

Z 0:5

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffi
2a

p
ffiffiffiffiffi
2a

p

s

daþ 0:5p

� q2
L

Z 1

0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

p

s

da;

¼ p� q2
R

Z 0

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞ

p
dt � q2

L

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞ

p
dt;

¼p:

Using Definition 12, we get the result as follows.

Eð ~NÞ ¼ 1

2
ðElð ~NÞ þ Emð ~NÞÞ ¼

1

2
ðpþ pÞ ¼ p:

h

In literature, the methods for unique linear ordering of

PFNs do not exist. Thus, one of the core issues with PF

theory is the ranking of PFNs. We suggest the following

ranking method which relates the credibility theory to the

theory of PFSs and is based on EVs.

Definition 14 Let ~N1 and ~N2 be two PFNs and Eð ~N1Þ and
Eð ~N1Þ be their EVs, respectively. Then the ranking order

between PFNs is as follows:

(1) If Eð ~N1Þ[Eð ~N2Þ; then ~N1 [ ~N2;

(2) If Eð ~N1Þ\Eð ~N2Þ; then ~N1\ ~N2;

(3) If Eð ~N1Þ ¼ Eð ~N2Þ; then ~N1 	 ~N2:

Seven axioms for ordering fuzzy quantities were devel-

oped by Wang and Kerre Wang and Kerre (2001). Since by

definition, PFNs are a combination of two FNs, the suggested

ranking technique can easily satisfy all seven axioms.

5 Project management: program evaluation
and review technique

The project schedule problem is a dynamic process that

requires constant monitoring and adjustment throughout

the project lifecycle. Project managers need to use effective

project scheduling tools, techniques and methodologies to

create a well-structured and realistic schedule that can be

followed and adapted as the project progresses. A well-

planned and managed schedule is essential for meeting

project deadlines, optimizing resource utilization, and

delivering the project’s intended outcomes successfully.

5.1 Phases of project management

Project management involves a series of phases that help

ensure a project is successfully executed from start to fin-

ish. The phases you mentioned, Planning, Scheduling, and

Control, are indeed essential components of project man-

agement, but it is important to note that project manage-

ment typically involves several other phases and processes

as well. Here is an overview of these three phases and how

they fit into the broader project management framework:

1. Planning Phase:

Objective: Define the project’s goals, scope, and

deliverables.

Key Activities: Identify stakeholders, create a

project charter, outline tasks, allocate resources, esti-

mate costs, and assess risks.
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Outcome: A comprehensive project plan that sets

the direction and foundation for the project.

2. Scheduling Phase:

Objective: Establish a timeline for project activities.

Key Activities: Sequence tasks, assign resources,

estimate task durations, and create a project schedule.

Outcome: A visual representation of when and how

project tasks will be executed, often in the form of

Gantt charts or network diagrams.

3. Control Phase:

Objective: Monitor project progress, manage

changes, and ensure project stays on track.

Key Activities: Compare actual progress to the plan,

address issues, manage risks, maintain quality, and

communicate with stakeholders.

Outcome: A well-controlled project that adheres to

the plan and can make informed adjustments as

needed.

These phases are essential for effective project manage-

ment, ensuring that projects are well-prepared, efficiently

executed, and closely monitored for successful outcomes.

5.2 Risk assessment

The assessment of risks in the planning phase of a project

involves identifying, analyzing, and understanding poten-

tial threats and opportunities that could impact the project’s

objectives, scope, schedule, budget, and overall success.

This process is crucial because it allows project managers

and stakeholders to proactively address risks and develop

strategies to mitigate or exploit them. Here are the key

steps involved in assessing risks during the planning phase:

Risk Identification Identify all possible risks that could

affect the project. Risks can be internal (related to the

project itself) or external (related to external factors like

market conditions or regulatory changes). Encourage input

from team members and stakeholders to ensure a com-

prehensive list.

Risk Analysis Once identified, assess the impact and

likelihood of each risk. This involves evaluating the

potential consequences of a risk event (such as delays, cost

overruns, or quality issues) and the probability of it

occurring. This assessment helps prioritize risks based on

their significance.

Risk Prioritization Rank risks based on their severity

and likelihood. Some risks may have a higher priority due

to their potential impact on the project’s success. This

prioritization helps allocate resources and attention to the

most critical risks.

Risk Response Planning Develop strategies to address

identified risks. There are four primary approaches to

handling risks:

1. Risk Avoidance: Eliminate the risk by changing project

plans or avoiding certain activities.

2. Risk Mitigation: Take actions to reduce the probability

or impact of the risk.

3. Risk Transfer: Shift the risk to another party through

contracts or insurance.

4. Risk Acceptance: Accept the risk as is and have a plan

for how to respond if it occurs.

Contingency Planning Develop contingency plans for

high-priority risks. These plans outline specific actions to

take if a risk event occurs. They ensure that the project

team is prepared to respond effectively and minimize the

negative impact.

Risk Documentation Document all identified risks,

their assessments, prioritization, and planned responses in a

risk register or risk management plan. This document

serves as a reference throughout the project.

Monitoring and Review Regularly review and update

the risk assessment and response plans as the project pro-

gresses. New risks may emerge, and the impact of existing

risks may change. Continuously monitor the project envi-

ronment for potential risks.

5.3 Pythagorean fuzzy program evaluation
and review technique

Pythagorean fuzzy program evaluation and review tech-

nique (PFPERT) is a network-based model which is aimed

to associate in the planning, scheduling and control of

projects. A project is described as a group of connected

tasks, each of which requires time and resources. The main

goal of PFPERT is to offer analytical tools for activity

scheduling while taking into account the uncertainties and

ambiguities of real network models. The project’s activi-

ties, their order of precedence, and their time requirements

are first defined. A network is then used to illustrate the

relationships between the activities in order of precedence.

The third step entails precise calculations to create the

project’s time schedule. In contrast to PFCPM, the

PFPERT relies on activity duration with three assumptions:

1. Optimistic duration: while execution occurs exception-

ally well.

2. Most Likely duration: while execution is performed

under typical conditions.

3. Pessimistic duration: while execution occurs poorly.

5.4 PFPERT network components
and precedence relationships

PFPERT network consists of two major components,

namely events and activities. Events in the network
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diagram represent project milestones, such as the start or

the completion of an activity/task and occur at a particular

instant of time at which some specific part of the project is

to be achieved. While activities in the network diagram

represent project operations/tasks to be conducted. An

activity is a distinct task that needs to be performed as a

part of project. Network models use the following two

types of precedence network to show precedence require-

ments of the activities in the project.

1. Activity-on-Node (AON): In AON diagrams, project

activities are represented as nodes and the logical

relationships between activities are shown using arrows

that connect the nodes. In AON diagrams, the critical

path is the longest path from the project’s start node to

the finish node. Activities on the critical path have zero

float, meaning any delay in these activities will delay

the project’s overall completion.

2. Activity-on-Arc (AOA): In AOA diagrams, activities

are represented by arrows, and events represent specific

points in time when activities start or finish. Arrows

connect events to illustrate task dependencies. In AOA

diagrams, the critical path is the longest path from the

project’s start event to the finish event. Activities on

the critical path have zero float.

Both AON and AOA serve the fundamental purpose of

helping project managers plan and schedule tasks, identify

critical paths, and ensure project success by managing

dependencies and resources effectively. In this paper, only

AOA network diagrams will be used.

5.4.1 Rules for activity-on-Arc network construction

An arc indicating the direction of project status is used to

depict each project activity. The network’s nodes define the

precedence relationships between the various activities. It

is convenient to number the nodes in ascending order in the

direction of progress in the project. Following three rules

are required to construct the network.

Rule 1: One and only one arc is used to indicate every

activity.

Rule 2: There must be two unique end nodes for every

activity.

Rule 3: Some initial objectives must be addressed in

order to preserve the proper precedence relationships in the

network:

(i) Which activity immediately precede the latest

activity?

(ii) Which one follow the latest activity?

(ii) Which one occur concurrently with the latest

activity?

The flowchart in Fig. 10 helps to determine the construc-

tion steps of the network with PFNs describing the prece-

dence relationship among different activities.

Thus to provide unique end nodes between two con-

current activities and to ensure the correct precedences

among the activities of a project, the use of some additional

activities is required. An activity which is used to represent

two concurrent activities is called dummy activity. A

dummy activity consumes no time or resources according

to definition. The use of dummy activity rectifies the sit-

uation mentioned in Rule 3 of network construction.

Dummy activities can be inserted in more than one way to

keep the concurrence of two nodes and to offer unique end

nodes for two activities. Figure 11 displays the inserting

method of a dummy activity to ensure the unique charac-

terization of concurrent activities.

5.5 Algorithm’s overview

The project network needs to be thoroughly investigated

before the risk criteria are examined (that will be utilized to

determine the actual critical route). The duration of every

project task is described according to this scope using tri-

angular PFNs. A triangular PFN will be indicated as ~N ¼
h½n1; n2; n3� : n ~N ; g ~Ni in the text that follows, where n2
defines the peak’s location, n1 and n2 stands, respectively,

for the left and right-hand width of both l ~N and m ~N : Tri-

angular PFNs seem to be an excellent choice, because they

provide a reasonable settlement between precision and

computation time. In fact, they can depict a clear and

concise representation of the expert opinions.

5.5.1 Description of probabilistic time duration

The three-time estimations used in PERT can be defined in

a similar way to the parameters used in probability distri-

butions to represent uncertainty. In PFPERT, each activity

is assigned by a PFN. The three time estimates can be

defined using ða; bÞ-cut approach. Experts (i.e., the indi-

viduals responsible for the performance of each activity)

are sought to provide this three time estimations in the

following manner:

1. Most likely duration n2 at ða; bÞ-cut with

ða; bÞ ¼ ðn ~N ; g ~NÞ;
2. Pessimistic durations n

0

1 at ða; bÞ-cut with

ða; bÞ ¼ ð0þ �; 1� �Þ;
3. Optimistic durations n

0
3 at ða; bÞ-cut with

ða; bÞ ¼ ð0þ �; 1� �Þ;
where �[ 0: In a nutshell, n

0
1 and n

0
3 describe an interval as

belonging to the collection of potential durations if and

only if its points possess a l-possibility more than 0þ �
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and m-possibility less than 1� �, whereas n2 is indisputably

a member of the set. Figure 12 depicts this assumption

graphically, which shows that the MF decreases gradually

from n ~N to 0 and non-MF increases gradually from g ~N to

1, as x moves from n2 to n3: Due to this fact, the optimistic

duration is considered at n
0

3 Thus, the execution goes

extremely well at n
0

3: Similarly, the execution goes extre-

mely poor at n
0

1: Therefore, the pessimistic duration is

considered at n
0
1; which is obtained at ð0þ �; 1� �Þ-level

cut. Moreover, the most likely duration is considered at n2;

which can be obtained at ðn ~N ; g ~NÞ-level cut. Thus the most

likely duration n2 falls in the range from n
0

1 to n
0

3: In this

way, these estimates provide a way to handle imprecise

information and model the variability associated with

project activities.

As a special case, we consider a triangular PFN with

maximum degree of satisfaction and minimum degree of

dissatisfaction, i.e., ~N ¼ h½n1; n2; n3�; 1; 0i: For this case,
the most likely duration n2 is considered at ða; bÞ-cut with
ða; bÞ ¼ ðn ~N ; g ~NÞ; the pessimistic and optimistic durations

n
0

1 and n
0

3 at ða; bÞ ¼ ð0:1; 0:9Þ-level cut.
The optimistic duration denotes the amount of time

required if no issues arise and if the resources work dili-

gently to achieve the desired duration. The predicted

duration, in a similar vein, denotes the amount of period

under analysis that an activity would usually require under

ordinary circumstances. The pessimistic time frame also

accounts for the safety to manage uncertainty of the

activity (i.e., the issues that may arise after an activity has

been initiated) and the effects of diversion or interruption

that resources generally experience in their organizational

context. Although these key occurrences will later be taken

into consideration as additional decision criteria for the

identification of the actual critical route, they should not be

Use of Dummy Activity
with zero PF duration

Start

Given: Activities of
a project network

Arcs: Activities, Nodes: At which
some activities end and other begin

Does each
activity indicate a

unique arc?

Does each activity
contain two unique

end nodes?

Preserve proper
precedence relationships

Is there any
activity that immediately

precede the latest?

Is there any
activity that follow the

Latest activity?

Is there any
activity that concurrently

occur with latest?

Project network is
constructed

End

Fig. 10 Flowchart for construction of a project network
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included in the pessimistic duration as they will be kept in

mind as decision criteria in the future.

5.6 Methodology

The primal PF network analysis can be carried out after the

durations have been computed by swapping out algebraic

operations for their PF generalization. Additionally, the

project completion time and the length of the routes will be

the only metrics computed by the PERT’s forward phase

that are part of the risk criteria used to establish the actual

critical route. However, the float of sub-critical activities

will only be utilized as a scale factor and not as a specific

risk criterion, therefore, the backward step is actually

conducted to calculate it. This fact, along with the fact that

the forward step is perfectly accurate in the simple version

of the PFPERT, clearly gives additional support for

replacing the crisp operations with their PF equivalents.

We define a Pythagorean fuzzy event (PFE) as a

moment in time at which some activities end and others

begin in order to do the required computations. Such a PFE

is analogous to a node in the network with Pythagorean

fuzzy parameters. Let e be a PFE. We define some

occurrences of e relative to the beginning and ending dates

of the whole project in Table 2.

5.6.1 Pythagorean fuzzy forward pass (PFFP)

The calculations proceed recursively from node 1 to end

node n.

First Step: Set Fe ¼ h½0; 0; 0�; 1; 0i; showing that the

project begins at time 0.

jth Step: Given a network with nodes e1; e2; . . .; en: Let Ii
be the set of nodes that are joined directly with node j

through incoming activities ðei; ejÞ: The earliest recorded

occurrence of events ei (represented by nodes) in the set Ii
have already been calculated. Thus, the earliest recorded

occurrence of event ej can be calculated according to

Eq. 26.

Fej ¼ max
i2Ii

fFei þ Dijg: ð26Þ

The PFFP is completed when Fen has been calculated at

node n. By definition, Fej shows the lengthiest route (du-

ration) to node ej:

5.6.2 Pythagorean fuzzy backward pass (PFBP)

Upon the termination of the PFFP, the PFBP calculations

recede recursively from node n to end node 1.

First Step: Set Ben ¼ Fen ; showing that at the end node,

the earliest and latest recorded occurrences are equal.

jth Step: Given a network with nodes e1; e2; . . .; en: Let

Oi be the set of nodes that are joined directly with node j

through outgoing activities ðej; eiÞ: The latest recorded

occurrence of events ei (represented by nodes) in the set Oi

have already been calculated. Thus, the latest recorded

occurrence of event ej can be calculated according to

Eq. 27.

Bej ¼ min
i2Oi

fBei � Djig: ð27Þ

The PFBP is complete when Be1 has been calculated at

node 1. At this stage, Fe1 ¼ Be1 ¼ 0:

According to calculations made earlier, an activity is

found to be critical if it meets the following three criteria:

Fei ¼ Bei ; Fej ¼ Bej and Fej � Fei ¼ Bej � Bei ¼ Dij: These

three requirements shows that the duration must closely fit

inside the given time frame, and the earliest and latest
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Fig. 11 Method of inserting dummy activity
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ηÑ

n1 n1 n3 n3n2
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Fig. 12 Duration estimates for activities in terms of triangular PFNs
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recorded occurrences of end nodes must be equal. There-

fore, a non-critical activity is one that does not fulfil any of

these three requirements. By definition, a network’s critical

activities must create an uninterrupted route that covers the

entire network from beginning to end.

The following relationships are employed throughout

the work in order to ensure the triangular behavior of the

arithmetic operations as well as the maximum and mini-

mum of the set of triangular PFNs.

Definition 15 Let ~N1 ¼ h½a1; b1; c1�; f ~N1
; g ~N1

i and ~N2 ¼
h½a2; b2; c2�; f ~N2

; g ~N2
i be two triangular PFNs and j be any

real number. Then

1. ~N1 
 ~N2 ¼ h½a1 þ a2; b1 þ b2; c1 þ c2�;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2~N1

þ f2~N2
� f2~N1

f2~N2

q
; g ~N1

g ~N2
i:

2. ~N1 � ~N2 ¼ h½A;B;C�;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2~N1

þ f2~N2
� f2~N1

f2~N2

q
; g ~N1

g ~N2
i;

where

A ¼minfa1 � a2; b1 � b2; c1 � c2g;
B ¼minfmaxfa1 � a2; b1 � b2g;maxfb1 � b2; c1 � c2gg;
C ¼maxfa1 � a2; b1 � b2; c1 � c2g:

3. ~N1 � ~N2 ¼ h½a1a2; b1b2; c1c2�; f ~N1
f ~N2

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2~N1

þ g2~N2
� g2~N1

g2~N2

q
i:

4. ~N1ø ~N2 ¼ h½A;B;C�; f ~N1
f ~N2

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2~N1

þ g2~N2
� g2~N1

g2~N2

q
i;

where

A ¼min
a1
a2

;
b1
b2

;
c1
c2

� �

;

B ¼min max
a1
a2

;
b1
b2

� �

;max
b1
b2

;
c1
c2

� �� �

;

C ¼max
a1
a2

;
b1
b2

;
c1
c2

� �

;

provided 0 62 ½a2; b2; c2�:
5. ~N1 _ ~N2 ¼ h½maxfa1; a2g;maxfb1; b2g;maxfc1; c2g�;

minff ~N1
; f ~N2

g; maxfg ~N1
; g ~N2

gi:
6. ~N1 ^ ~N2 ¼ h½minfa1; a2g;minfb1; b2g;minfc1; c2g�;

minff ~N1
; f ~N2

g; maxfg ~N1
; g ~N2

gi:

5.7 Decision criteria to measure criticality

Measuring criticality involves assessing the importance or

significance of a decision in a given context. The criteria

used to determine criticality may vary depending on the

specific domain or industry. Integrating risk analysis into

the decision-making process using MCDM helps project

managers make informed choices that consider both the

uncertainties associated with the project and the diverse

criteria that impact project success. This integration

enhances project planning, risk mitigation and overall

project outcomes. Following facts describe that how these

concepts intersect within the realm of project management:

– Risk analysis and the MCDM approach can be

integrated by considering risk factors as one of the

criteria in the decision-making process. For instance,

project managers can assign weights to risk-related

criteria based on their potential impact on project

success.

– When evaluating project alternatives using MCDM, the

impact of risks, as quantified through risk analysis, can

be factored into the decision model. This ensures that

risk management is an integral part of project decision-

making.

– Sensitivity analysis within MCDM can also help to

assess how variations in risk scenarios affect the

selection of the best project alternative, providing

insights into the robustness of project plans.

It is required to determine all feasible alternatives and the

decision criteria to differentiate them in order to utilize

MCDM. Here, the alternatives align with the project’s

routes, and the potential risk criteria include duration of

route, criticality of route, cost of predicted route, criticality

of common resources and external risk factors. These

decision criteria are introduced in the manner that follows.

5.7.1 Duration of route

A critical route is often identified using the duration and

variability of the route. The duration of a route in a project

network is a fundamental decision criterion used in project

Table 2 Passes of PF critical

route computation
Passes Determination Notation

PF Forward pass Earliest recorded occurrence of PFE e Fe

PF Backward pass Latest recorded occurrence of PFE e Be

- Time duration of activity ðei; ejÞ Dij
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management. It refers to the time required to complete a

particular sequence of interconnected tasks from the pro-

ject’s start to its end, without considering task dependen-

cies. Because Cauchy PFNs can easily represent a dual

information about both expects, their evaluation is simple

and can be obtained by simply summing up (in PF sense)

the durations of the tasks that correspond to a route. Thus

the length of route can be calculated according to Eq. 28.

Djr ¼
X

ij2r
Dij ¼

��X

ij2r
n1ðijÞ;

X

ij2r
n2ðijÞ;

X

ij2r
n3ðijÞ




; 1; 0

�

;

ð28Þ

where Dij is the time taken to complete an activity on the

rth route as a triangular PFN.

5.7.2 Criticality of route

In project schedule analysis, considering resources is a

critical aspect of ensuring that the project plan is realistic,

feasible, and executable. Resources refer to the people,

equipment, materials, and other assets required to perform

project activities. Resource management involves evaluat-

ing the availability, allocation, and utilization of resources

to meet project objectives efficiently.

The criticality of a route in project networks is a crucial

decision criterion in project management. It focuses on task

dependencies and sequencing within a specific route,

emphasizing the impact of delays on the overall project

schedule. In other words, a critical route is the longest

sequence of dependent activities that must be completed in

the shortest possible time to ensure the project’s timely

completion. Given that the majority of the paths have the

potential to be critical, another parameter is required to

assess how much each path contributes to the project fin-

ishing time. Let Lenjr ¼ ðn1ðrÞ; n2ðrÞ; n3ðrÞÞ be the rth-route

length and PtF ¼ ðn1tF ; n2ðtFÞ; n3ðtFÞÞ be the project’s fin-

ishing time in terms of triangular PFN. The Criticality of

rth-route is typically defined in Eqs. 29 and 30.

l� Crr ¼PoslfDjr is PtFg ¼ supflLenjrðwÞ ^ lPtF
ðwÞ j w 2 Rg;

ð29Þ
m� Crr ¼PosmfDjr is PtFg ¼ supfmLenjrðwÞ ^ mPtF

ðwÞ j w 2 Rg:

ð30Þ

However, it appears preferable to specify the route criti-

cality ðRCÞ as a PFN as well, since the actual critical route

would be defined using MCDM on PFN. Equation 31 can

be used to accomplish this.

RCr ¼ Djr ø PtF ; ð31Þ

where the division operation ø can be calculated according

to Definition 15.

5.7.3 Cost of predicted route

Another crucial element to take into account is the cost of

the predicted route. Predicting the cost associated with this

critical path provides valuable insights for decision-making

in project networks. It is possible to adequately describe

the total expense of each task eij using triangular PFNs.

The project’s execution team is therefore asked for the

values at levels a1 and a2 in terms of triangular PFNs

ðn1
0

ðijÞ; n2ðijÞ; n3
0

ðijÞÞ for each activity in order to calculate the

corresponding PF costs Cij ¼ ðn1ðijÞ; n2ðijÞ; n3ðijÞÞ: Thus to

evaluate the cost of rth-route, Eq. 32 can be used.

RC ¼
X

ij2r
Cij ¼

�X

ij2r
n1ðijÞ;

X

ij2r
n2ðijÞ;

X

ij2r
n3ðijÞ

�

; 1; 0

�

:

ð32Þ

5.7.4 Criticality of common resources

Criticality of common resources concentrates on resource

allocation and constraints that may affect multiple tasks or

routes in the project. Prior to an effective schedule being

created for a project that is resource-constrained, resources

must be leveled. The effect of resource sharing across

many project contexts is our current concern, rather than

resource sharing within tasks of the same project. There are

persistent pressures on almost any firm to meet major new

opportunities, and new projects may begin at any time. As

a result, it happens frequently that a project activity is not

finished before new projects need reconfiguring priorities.

Under these circumstances, common resources try to han-

dle multiple projects at once, which has the impact of

making them lose focus, cause delays, and produce orga-

nizational issues. In fact, the impacts of common resources

on project completion time are too complicated to be

adequately captured by a standard quantitative expression.

Nonetheless, it appears to be able to identify the resources

that are very likely to become essential if new initiatives

are launched or certain priorities are altered.

Once the resources have been identified, the project

manager can assess their criticality subjectively (using his

domain of expertise). If more experts are consulted, the

common resource criticality (Res) of the generic r-th

resource can then be easily determined by mean of the

fuzzy average of all their evaluations. Judgments can then

be transformed into triangular PFNs using a set of lin-

guistic variables. Equation 33 provides the formula to

calculate resource criticality.

ResCr ¼
1

m

X

m

PFLVK ¼ 1

m

�X

m

n1;
X

m

n2;
X

m

n3

�

; 1; 0

�

:

ð33Þ
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where m is the number of experts and the k-th PFLV is a

triangular PFN PFLVk ¼ hðn1k; n2k; n3kÞ; 1; 0i:
By considering the criticality of common resources,

project managers can make well-informed decisions to

optimize resource utilization, mitigate risks, and ensure

timely project completion. It allows for better resource

planning, allocation, and coordination, which are vital

aspects of successful project management.

5.7.5 External risk factors

External risk factors are factors that lie outside the direct

control of the project team but can significantly impact the

project’s success. These risk factors are often associated

with the external environment in which the project oper-

ates. Evaluating external risk factors as decision criteria for

project networks is crucial because it helps project man-

agers understand potential threats and uncertainties that can

affect the project. A number of factors, such as logistical or

transportation issues, equipment breakdowns, unreliable

suppliers, and unfavorable environmental conditions, might

affect the length of a project in a normal setting. However,

the project manager is unable to fully affect it (i.e., external

risks factors).

It can be challenging to fully identify and define external

risks. Consequently, a method based on PFLVs can be

utilized to quantify their potential consequences. In this

scenario, the experts are requested to provide a subjective

assessment of the risk due to external factors (REF) for

each task of the project. To acquire the final evaluation of

the external risk of each k-th path, these evaluations must

be transformed into PFLVs and then aggregated according

to Eq. 34.

Risk ¼
X

ij2r
REFij ð34Þ

For the case when more experts are consulted, the external

risk factor of k-th route can be obtained by taking fuzzy

average of all the assessments provided.

Quantitative risk analysis techniques are required for a

more comprehensive risk assessment. Risks related to the

project’s scope and quality, resource constraints or

resource-driven risks, external risks, such as changes in

regulations, market conditions, or natural disasters, and

critical path risks that can have significant implications for

the project’s success, are all the types of risks that can be

analyzed.

6 Critical route detection using VIKOR
method

The Program Evaluation and Review Technique (PERT) is

a project management tool used to schedule, organize and

coordinate tasks within a project. In this section, PERT is

designed for Pythagorean fuzzy case to help project man-

agers to identify the PF critical route, or the sequence of

tasks that must be completed on time in order for the

project to be completed on schedule, where the time

duration are in terms of PFNs. This technique involves

creating a network diagram that visually represents the

relationships/dependencies between tasks in the project.

Each task is assigned a duration as well as cost in terms of

PFNs, which is used to calculate the most critical route. It

also uses three time estimates for each task: the optimistic

time, the most likely time, and the pessimistic time, which

have been defined/considered involving a-cuts at specific

levels. These estimates are used to calculate the expected

duration of each task and the overall project duration.

Using an MCDM approach, the predefined indexes can be

aggregated to determine the criticality ranking of routes.

The VIKOR method is based on compromise program-

ming, which is a mathematical optimization technique that

seeks to find the best solution that balances conflicting

objectives. The VIKOR method considers both the maxi-

mum group utility and the minimum individual regret to

rank alternatives. There is a lot of literature on PF VIKOR,

and some interesting applications can be seen in Mishra

et al. (2022), Zahid and Akram (2023).

The PF VIKOR method allows decision-makers to

express their preferences using linguistic terms, which

makes it easier to handle imprecise and uncertain infor-

mation and to provide a more accurate and realistic ranking

of alternatives. In the context of critical path detection, the

alternatives represent different paths or sequences of tasks

in a project, and the criteria represent various project

constraints, such as time, cost, resource availability and

risk factors.

The proposed method uses the following steps to

aggregate the decision criteria for each alternative and to

obtain the compromise ranking of routes in the project

network.

Step 1 Define the decision matrix and normalize it. The

weight coefficients which reflect the importance of each

criterion in the decision-making process can be normalized

by dividing each criteria weight with the sum of all criteria

weights.

Step 2 Determine the best f �j and worst f�j values for

each decision criteria according to the formulas given in

Eqs. 35 and 36.
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f �j ¼max
k

fkj; ð35Þ

f�j ¼min
k

fkj; ð36Þ

where fkj denotes the values of corresponding criteria Cj for

all k.

Step 3 Compute the utility value ðSkÞ and regret value

ðRkÞ: The utility value represents the overall performance

of an alternative in comparison to the other alternatives.

The regret value represents the difference between the best

and worst performance for each criterion. The Sk and Rk

values are calculated using the relations provided in

Eqs. 37 and 38.

Sk ¼
Xm

j¼1

wj

jf �j � fkjj
jf �j � f�j j; ð37Þ

Rk ¼max
j

wj

jf �j � fkjj
jf �j � f�j j; ð38Þ

where wj are the weight of criteria indicating their relative

importance.

Step 4 Compute the VIKOR score ðQkÞ for each alter-

native by the formula given in Eq. 39.

Qk ¼ v
Sk � S�

S� � S� þ ð1� vÞRk �R�

R� �R�; ð39Þ

where S� ¼ mink Sk; S� ¼ maxk Sk; R� ¼ minj Rj and

R� ¼ maxj Rj: v 2 0; 1 stands for how heavily the

majority of criteria were considered in the overall strategy.

Step 5 The alternatives ðai; i ¼ 1; . . .; nÞ are arranged in

ascending order by ordering the values of Sk; Rk and Qk:

As a result, we get three ranking lists based on the values

Sk; Rk and Qk; which are then used to suggest the com-

promise solution of alternatives.

Step 6 The alternative a1 has a compromise solution

that, if it meets both of the following two criteria, is ranked

highest by the measure Qk (minimum score).

A. Qða2Þ �Qða1Þ�DQ; where a2 is the second-placed

alternative in ordering list Q and DQ ¼ 1
n�1

; where n is

the total number of alternatives.

B. The alternative a1 must also be the best-ranked

alternative by S and R:

A set of compromise solutions is derived if any one of the

aforementioned conditions is not met.

– The options a1 and a2 make up the set of compromise

solutions if only criterion B is not met.

– The alternatives a1; a2; . . .an are included in the

compromise solution set if only the condition A is not

met; an is produced by the relation QðanÞ �
Qða1Þ\DQ for maximum value of n.

For some decision criteria, the project completion time are

too complicated to be adequately captured by some stan-

dard quantitative expressions. These are reported in lin-

guistic terms. We define triangular PFNs, described in

Fig. 13, that correspond to the linguistic values from the

term set ‘‘Extremely Poor (EP), Poor (P), Slightly Poor

(SP), Average (A), Slightly Good (SG), Good (G), Extre-

mely Good(EG)’’.

7 An automated greenhouse construction
project

The application of project scheduling for the analysis of the

development of an automated greenhouse is shown in order

to better explain the suggested methodology. This study,

which is adapted from Monjezi et al. (2012), was carried

out in Iran. The data were collected from variety of sour-

ces, such as reports and statistics of agricultural organiza-

tion, by Monjezi et al. Monjezi et al. (2012).

A greenhouse is a great way to extend the growing

season and protect the plants from harsh weather condi-

tions. A greenhouse construction project includes some

main activities like, planing ahead, consideration of cli-

mate, selection of right materials, utilization of proper

ventilation, incorporation of automation and taking safety

precautions. Minor construction activities are also needed

to provide the infrastructure for greenhouse development

and to stabilize the ground. A list of particular tasks which

are helpful in planing and executing the greenhouse con-

struction project is provided in Table 3. The input data is

converted into triangular PFNs in Table 3 based on the

research conducted by Monjezi et al. Monjezi et al. (2012).

All the information needed for the analysis is included in

the table (dependencies, durations and costs). Fig. 14

depicts the resulting activity on arcs of the project network.

7.1 Results and discussion

The critical path represents the longest sequence of

dependent activities that determines the minimum duration

to complete the entire project. Activities that are not on the

critical path have some scheduling flexibility and can be

delayed without affecting the overall project completion

time. To schedule the project plan tasks, we use PFPERT to

provide visual representation of the above data. PFPERT

visualizes PF critical paths on three estimates of time and

to map out the progress of a project. The duration and costs

of activities, which are provided in terms of triangular

PFNs, are given in Table 3. The network diagram of

greenhouse construction project defines a clear and

appropriate order of project activities. Figure 14
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emphasizes the connections and pathways between tasks to

guarantee the proper execution of the project.

7.1.1 Detailed steps of proposed method

In this section, in order to fully comprehend the proposed

strategy, the steps of the proposed method are thoroughly

covered in this section.

Step 1: Construction of Network The network outlining

the precedence relationships between the various activities

is shown in Fig. 14. According to proposed method, the

nodes of the network are corresponding to the PFEs ðeiÞ:
Thus, there are 45 PFEs ðei; i ¼ 1; 2; . . .; 45Þ:

Observe that in Fig. 14, the red colored arrows show the

critical activities and determine the critical route in the

greenhouse construction project. These activities are con-

sidered critical because they have a significant impact on

the project’s timeline, budget or quality, and help project

managers to determine the optimal sequence of activities.

To provide unique end nodes between two concurrent

activities and to ensure the correct precedences among the

activities of the case study, the use of some additional

activities is required. Thus, the dummy activities (dotted

lines) are created to guarantee proper precedences among

the activities of greenhouse construction project. The

duration of the dummy activity is usually zero PFN, i.e.,

h½0; 0; 0�; 1; 0i; as it does not represent any real work or

time. The nodes are numbered in ascending order in the

direction of progress in the greenhouse construction

project.

Step 2: Computations of PF Forward and Backward

Passes: In this step, we perform particular computations to

conveniently apply the proposed method to greenhouse

construction project. It is easy to observe that the earliest

recorded occurrence of PFE ei; calculated using Eq. 26, is

responsible for the computation of PFFP. Similarly, the

latest recorded occurrence of PFEs, calculated using

Eq. 27, are responsible for the computation of PFBP.

In forward pass calculations, we start by taking Fe1 ¼ 0

and proceed recursively to PFE e45: While in backward

pass calculations, we start by taking Be45 ¼ Fe45 and recede

recursively to PFE e1: Table 4 provides the computational

details of forward and backward passes in PF critical path

evaluations.

Step 3: Calculations of Decision Criteria for each Route

Project management with multi criteria involves using a set

of criteria to evaluate the project’s performance against

multiple objectives. The present study discusses the fol-

lowing five criteria: route length, route criticality, route

cost, resource criticality and risk factors. The calculation

details of these criteria for the Route A is provided below:

Consider the Route A : 1 ! 2 ! 3 ! 5 ! 6 ! 7 !
8 ! 10 ! 23 ! 44 ! 45:

Route Duration The length of the Route A can be

calculated according to Eq. 28, where

1, 2, 3, 5, 6, 7, 8, 10, 23, 44, 45 represents the events in

the project network which involve the activities

1, 2, 4, 5, 6, 8, 21 and 34. Thus the durations of all these

activities have been added to obtain the required result.

DjA ¼h½11; 14; 17�; 1; 0i þ h½6; 7; 8�; 1; 0i þ h½0; 0; 0�; 1; 0i
þ h½10; 40; 70�; 1; 0i þ h½1; 7; 12�; 1; 0i
þ h½3; 7; 11�; 1; 0i þ h½40; 45; 50�; 1; 0i þ h½6; 7; 8�; 1; 0i
þ h½0; 0; 0�; 1; 0i þ h½5; 5; 6�; 1; 0i;

¼h½114; 180; 145�; 1; 0i:

Route Criticality From the calculations of forward and

backward passes, we have obtained the project’s finishing

time h½122; 201; 279�; 1; 0i: The results of Criteria 1 yield

the Ath-route length h½114; 180; 145�; 1; 0i: The criticality

of Ath-route ðRCrAÞ as a PFN can be calculated using

Eq. 31 by utilizing the division operation of triangular

PFNs.

RCrA ¼DjA ø PtF ;

¼h½114; 180; 145�; 1; 0i ø h½122; 201; 279�; 1; 0i;
¼h½0:88; 0:89; 0:93�; 1; 0i:

Cost of Predicted Route To evaluate the cost of Ath-route,

we use Eq. 32. Thus, the costs of all the activities

Fig. 13 Pythagorean fuzzy

linguistic terms for decision

criteria
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Table 3 Input details to measure criticality in automated greenhouse construction project

Activity ID Predecessors Duration ðDijÞ in days Cost ðCijÞ in dollars

Start S – h½0; 0; 0�; 1; 0i h½0; 0; 0�; 1; 0i
Land availability 1 S h½11; 14; 17�; 1; 0i h½4:5; 4:73; 4:8�; 1; 0i
Examination of soil and water 2 1 h½6; 7; 8�; 1; 0i h½0; 0:024; 0:03�; 1; 0i
Creating maps and plans 3 1 h½30; 45; 60�; 1; 0i h½0:3; 0:38; 0:4�; 1; 0i
Obtaining a permit for a greenhouse 4 2,3 h½10; 40; 70�; 1; 0i h½0:02; 0:024; 0:035�; 1; 0i
Excavating and leveling the ground 5 4 h½1; 7; 12�; 1; 0i h½0:02; 0:024; 0:03�; 1; 0i
Construction of fencing and walls 6 5 h½3; 7; 11�; 1; 0i h½1:2; 1:28; 1:3�; 1; 0i
Building for storing raw materials 7 6 h½28; 30; 32�; 1; 0i h½0:6; 0:66; 0:7�; 1; 0i
Greenhouse construction 8 6 h½40; 45; 50�; 1; 0i h½33; 33:54; 34�; 1; 0i
Building for office affairs 9 6 h½20; 30; 40�; 1; 0i h½0:05; 0:071; 0:09�; 1; 0i
Building security 10 6 h½20; 25; 30�; 1; 0i h½0:3; 0:33; 0:4�; 1; 0i
A structure housing the engine room 11 6 h½29; 30; 31�; 1; 0i h½0:6; 0:66; 0:7�; 1; 0i
Road and line layout 12 7,8,9,10,11 h½10; 14; 18�; 1; 0i h½1:2; 1:56; 1:7�; 1; 0i
Electricity generation 13 12 h½13; 15; 17�; 1; 0i h½1:1; 1:6; 2�; 1; 0i
A power source 14 13 h½0; 5; 10�; 1; 0i h½0:2; 0:40; 0:60�; 1; 0i
Supply of water 15 12 h½1; 7; 13�; 1; 0i h½0:3; 1:42; 1:5�; 1; 0i
Supply of gas 16 12 h½7; 7; 7�; 1; 0i h½0:1; 0:16; 0:2�; 1; 0i
Cost of telephone membership 17 12 h½3; 5; 7�; 1; 0i h½0:04; 0:047; 0:05�; 1; 0i
Fuel tank 18 11 h½2; 7; 12�; 1; 0i h½0:04; 0:059; 0:06�; 1; 0i
Water storage 19 15 h½3; 7; 11�; 1; 0i h½1:4; 1:48; 1:5�; 1; 0i
Places that provide heating 20 8 h½0; 7; 14�; 1; 0i h½3; 3:19; 3:50�; 1; 0i
Cooling facilities 21 8 h½6; 7; 8�; 1; 0i h½2:2; 2:48; 2:7�; 1; 0i
Weighing gadget 22 7 h½0; 1; 1�; 1; 0i h½0:05; 0:14; 0:2�; 1; 0i
Fire engine 23 7,9 h½1; 2; 3�; 1; 0i h½0:002; 0:0047; 0:006�; 1; 0i
Power supply for greenhouse 24 13 h½3; 4; 5�; 1; 0i h½0:7; 0:94; 1:1�; 1; 0i
Nozzle systems for spraying and fogging 25 8 h½6; 7; 8�; 1; 0i h½2:2; 2:48; 2:5�; 1; 0i
Humidistat and thermometer 26 8 h½1; 3; 5�; 1; 0i h½0:05; 0:071; 0:09�; 1; 0i
System for synthesizing CO2 27 8 h½4; 5; 6�; 1; 0i h½0:1; 0:28; 0:4�; 1; 0i
Greenhouse’s roof 28 8 h½3; 5; 7�; 1; 0i h½4:5; 4:97; 5:2�; 1; 0i
Greenhouse surveillance panels 29 20,21,24,26 h½1; 5; 9�; 1; 0i h½2; 2:10; 2:2�; 1; 0i
Irrigating tools for greenhouses 30 8 h½2; 5; 8�; 1; 0i h½1; 1:01; 1:03�; 1; 0i
Office furniture 31 9 h½0; 2; 4�; 1; 0i h½0:1; 0:35; 0:6�; 1; 0i
Gardening implements 32 7 h½3; 3; 3�; 1; 0i h½0:2; 0:27; 0:3�; 1; 0i
Supplying fungicides and pesticides 33 7 h½0; 1; 2�; 1; 0i h½0:4; 0:45; 0:5�; 1; 0i
Agricultural manure supply and inorganic fertilizers 34 7 h½5; 5; 6�; 1; 0i h½0:2; 0:26; 0:3�; 1; 0i
Supplying plastic containers and boxes 35 7 h½0; 1; 3�; 1; 0i h½4; 4:68; 5�; 1; 0i
Supply of seeds 36 7 h½1; 1; 1�; 1; 0i h½0:1; 0:42; 0:8�; 1; 0i
Supplying gasoline and diesel 37 18 h½1; 2; 3�; 1; 0i h½0:5; 0:77; 0:9�; 1; 0i
Supply of oil 38 7 h½0; 2; 4�; 1; 0i h½0:01; 0:035; 0:05�; 1; 0i
Obtaining a production and usage permit 39 12,18,19,20,21 h½13; 15; 17�; 1; 0i h½0:02; 0:024; 0:03�; 1; 0i
End E 39 h½0; 0; 0�; 1; 0i h½0; 0; 0�; 1; 0i
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1, 2, 4, 5, 6, 8, 21 and 34, involved in Route A, have

been added to obtain the required result.

RCA ¼h½4:5; 4:73; 4:8�; 1; 0i þ h½0; 0:024; 0:3�; 1; 0i
þ h½0; 0; 0�; 1; 0i þ h½0:02; 0:024; 0:035�; 1; 0i
þ h½0:02; 0:024; 0:035�; 1; 0i
þ h½1:2; 1:28; 1:3�; 1; 0i
þ h½33; 33:54; 34�; 1; 0i þ h½2:2; 2:48; 2:7�; 1; 0i
þ h½0; 0; 0�; 1; 0i þ h½0:2; 0:26; 0:3�; 1; 0i;

¼h½41:26; 42:46; 43:32�; 1; 0i:

Criticality of Common Resources Since this factor is too

complicated to be adequately captured by a standard

quantitative expression, the expert provides their evalua-

tion as a PF linguistic term i.e., Slightly Poor (SP) ¼
h½6; 8; 10�; 1; 0i: For the case when more experts are con-

sulted, the criticality of common resources of the A-th route

can be obtained by using Eq. 33, i.e., taking fuzzy average

of all the assessments provided.

External Risk Factors Since identification of external

risks is challenging, therefore, PF linguistic terms can be

utilized to quantify their potential consequences. Thus, the

expert provides a subjective assessment of the risk due to

external factors for A-th route of the project i.e., Average

(A) ¼ h½9; 11; 13�; 1; 0i: For the case when more experts

are consulted, the external risk factor of A-th route can be

obtained by taking fuzzy average of all the assessments

provided.

Calculations for all other routes can be carried out in

similar manner. Table 5 provides the resultant values of all

five criteria corresponding to each path of the network.

Step 4: Ranking of Routes using VIKOR Technique To

ensure that the green house construction project meets all

of its objectives and delivers the desired benefits within

specified time period, we use VIKOR method to identify

the worst path. For this, first we assign weights to each

criterion in terms of PFNs based on their relative impor-

tance (see Table 15). A scale of 0 to 1 is used. We define

PFNs, described in Fig. 15, that correspond to the linguistic

values from the term set

‘‘Extremely Low (EL), Low (L), Slightly Low (SL), Ave-

rage (A), Slightly High (SH),

High (H), Extremely High (EH)’’.

To discuss the criticality ranking of routes of the project

network, all the decision criteria are aggregated using

VIKOR method. The framework for determining the

greenhouse construction project strategy is sketched in

Fig. 16.

Activity

Critical Activity

Event

End
045

Start
01

Fig. 14 Automated greenhouse construction project network
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VIKOR evaluates each route of the network based on

five decision criteria and calculates a score for each route.

The route with the least score (worst path) is then selected

as the real critical path. The calculation details of VIKOR

method are provided below.

The decision problem, the alternatives and the criteria

are clearly defined above. We have assigned the weights to

each criterion in Table 5 based on their relative importance

according to Fig. 15. The criteria weights are normalized to

ensure that each criterion is on the same scale. This is done

by dividing each criterion value by the sum of all criteria

value of that criterion. Normalized criteria weights are

defuzzified and given in Table 6.

S (best) and R (worst) values for each route and each

criterion are calculated according to Eqs. 37 and 38. This is

done by finding the maximum and minimum values for

each criterion across all alternatives by Eqs. 35 and 36. The

results are given in Table 7). Results are shown in Table 8.

Next, the VIKOR score ðQÞ is calculated for each route

of the network according to Eq. 39 using weight of strategy

v ¼ 0:5: The results are given in Table 8). For calculations

of Q; we obtain S� ¼ 0:02; S� ¼ 0:8333 and

R� ¼ 0:02; R� ¼ 0:28:

Ranking the routes, sorting by the values S; R and Q;

are done. The results are three ranking lists shown in

Table 9.

Final ranking of the routes of the greenhouse construc-

tion project network are based on their VIKOR scores ðQÞ:
These scores are calculated using a weighted compromise

solution approach that takes into account both the best and

worst performances of each route on each criterion. The

route with the least score is selected as the best critical

route. Hence, Route E, i.e., 1 ! 2 ! 3 ! 5 ! 6 ! 7 !
8 ! 10 ! 35 ! 36 ! 41 ! 43 ! 44 ! 45 is the actual

critical route which is highlighted in red color in green-

house construction project network.

8 Comparative analysis

In this section, we conduct a comparative assessment

between our proposed approach and the fuzzy PERT

method introduced by Zammori et al. Zammori et al.

Table 4 Passes of PF critical path computations

Forward pass Backward pass

ei Fei ei Fei ei Bei ei Bei

1 h½0; 0; 0�; 1; 0i 24 h½96; 161; 225�; 1; 0i 45 h½122; 201; 279�; 1; 0i 22 h½109; 186; 262�; 1; 0i
2 h½11; 14; 17�; 1; 0i 25 h½101; 165; 228�; 1; 0i 44 h½109; 186; 262�; 1; 0i 21 h½83; 144; 203�; 1; 0i
3 h½17; 21; 25�; 1; 0i 26 h½99; 163; 226�; 1; 0i 43 h½109; 186; 262�; 1; 0i 20 h½86; 146; 205�; 1; 0i
4 h½41; 59; 77�; 1; 0i 27 h½98; 163; 227�; 1; 0i 42 h½112; 179; 145�; 1; 0i 19 h½83; 144; 204�; 1; 0i
5 h½41; 59; 77�; 1; 0i 28 h½97; 163; 228�; 1; 0i 41 h½106; 179; 251�; 1; 0i 18 h½83; 148; 208�; 1; 0i
6 h½51; 99; 147�; 1; 0i 29 h½101; 165; 234�; 1; 0i 40 h½108; 177; 245�; 1; 0i 17 h½83; 144; 205�; 1; 0i
7 h½52; 106; 159�; 1; 0i 30 h½86; 150; 213�; 1; 0i 39 h½118; 192; 265�; 1; 0i 16 h½83; 144; 203�; 1; 0i
8 h½55; 113; 170�; 1; 0i 31 h½75; 145; 214�; 1; 0i 38 h½121; 191; 260�; 1; 0i 15 h½83; 145; 206�; 1; 0i
9 h½83; 143; 202�; 1; 0i 32 h½84; 145; 213�; 1; 0i 37 h½118; 187; 255�; 1; 0i 14 h½83; 143; 210�; 1; 0i
10 h½95; 158; 220�; 1; 0i 33 h½87; 152; 216�; 1; 0i 36 h½105; 172; 238�; 1; 0i 13 h½95; 158; 220�; 1; 0i
11 h½75; 143; 210�; 1; 0i 34 h½102; 170; 243�; 1; 0i 35 h½195; 158; 220�; 1; 0i 12 h½95; 158; 220�; 1; 0i
12 h½75; 138; 200�; 1; 0i 35 h½95; 158; 220�; 1; 0i 34 h½102; 170; 243�; 1; 0i 11 h½95; 158; 220�; 1; 0i
13 h½84; 143; 201�; 1; 0i 36 h½105; 172; 238�; 1; 0i 33 h½87; 152; 216�; 1; 0i 10 h½95; 158; 220�; 1; 0i
14 h½83; 143; 210�; 1; 0i 37 h½118; 187; 255�; 1; 0i 32 h½84; 145; 213�; 1; 0i 9 h½95; 158; 220�; 1; 0i
15 h½83; 145; 206; 1; 0i] 38 h½121; 191; 260�; 1; 0i 31 h½75; 145; 214�; 1; 0i 8 h½55; 113; 170�; 1; 0i
16 h½84; 144; 203�; 1; 0i 39 h½118; 192; 265�; 1; 0i 30 h½109; 186; 262�; 1; 0i 7 h½52; 106; 159�; 1; 0i
17 h½83; 144; 205�; 1; 0i 40 h½108; 177; 145�; 1; 0i 29 h½101; 165; 234�; 1; 0i 6 h½51; 99; 147�; 1; 0i
18 h½88; 148; 208�; 1; 0i 41 h½106; 179; 251�; 1; 0i 28 h½97; 163; 228�; 1; 0i 5 h½41; 59; 77�; 1; 0i
19 h½83; 144; 204�; 1; 0i 42 h½112; 179; 145�; 1; 0i 27 h½98; 163; 227�; 1; 0i 4 h½41; 59; 77�; 1; 0i
20 h½86; 146; 205�; 1; 0i 43 h½109; 186; 262�; 1; 0i 26 h½99; 163; 226�; 1; 0i 3 h½41; 59; 77�; 1; 0i
21 h½83; 144; 203�; 1; 0i 44 h½109; 186; 262�; 1; 0i 25 h½101; 165; 228�; 1; 0i 2 h½11; 14; 17�; 1; 0i
22 h½95; 165; 234�; 1; 0i 45 h½122; 201; 279�; 1; 0i 24 h½101; 165; 234�; 1; 0i 1 h½0; 0; 0�; 1; 0i
23 h½101; 165; 228�; 1; 0i – 23 h½109; 186; 262�; 1; 0i –
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(2009). Our methodology is employed in the context of a

project network designed for establishing a road connec-

tion between two urban centers, as depicted in Zammori

et al. (2009). To authenticate the efficacy of our imple-

mentation, we compare the outcomes obtained.

Consider a project network, illustrated in Fig. 17,

comprising 22 activities. We assume that the durations and

costs associated with the network’s activities are repre-

sented as fuzzy numbers (FNs), as delineated in Table 10.

Utilizing our approach, we identify the critical path com-

mencing with Activity 1 and concluding with Activity 22.

The determination of respective durations necessitates the

process of defuzzifying the FNs assigned to the project’s

activities.

The comparative analysis reveals identical critical paths,

as detailed in Table 11. This case study confirms that the

decision outcomes established by Zammori et al. Zammori

et al. (2009) align with our proposed approach, endorses

the authenticity of our method.

To ascertain the criticality ranking of paths in the road

connection project network, the fuzzy TOPSIS procedure is

utilized for aggregating risk criteria. This process involves

the creation of a weighted decision matrix by evaluating

seven risk criteria for each of the ten paths. The positive

ideal and negative ideal solutions are then derived from the

matrix values. By computing the Euclidean distance for

each alternative or path from both the positive ideal and

negative ideal solutions, a vector is produced to indicate

the relative closeness rating. The path with the lowest score

is identified as the optimal critical route, with Path 5 rep-

resented as 1 ! 2 ! 5 ! 6 ! 8 ! 9 ! 10 ! 22 ! 23:

The comparison of decision outcomes between the pro-

posed method and that of Zammori et al. Zammori et al.

(2009) is elaborated upon in Table 12.

Fig. 15 Pythagorean fuzzy linguistic terms for relative importance

Fig. 16 Framework for

determining the most critical

route in greenhouse

construction project network

Table 7 f �j and f�j values of criteria functions

Route Route Route Resource Risk

Length Criticality Cost Criticality Factors

f �j 201 1 44.46 20 20

f�j 127 0.63 6.82 2 2

Table 6 Normalized criteria weights

Route Route Route Resource Risk

Length Criticality Cost Criticality Factors

0.24 0.28 0.2 0.16 0.12

Table 8 S; R and Q values for each route

S R Q S R Q

A 0.3819 0.16 0.4917 N 0.759 0.2497 0.8961

B 0.5633 0.2195 0.7177 O 0.4704 0.1765 0.5779

C 0.2047 0.0832 0.2351 P 0.8127 0.2195 0.871

D 0.6004 0.227 0.7549 Q 0.5975 0.1919 0.6856

E 0.02 0.02 0 R 0.7664 0.2724 0.9443

F 0.4089 0.1438 0.4772 S 0.3736 0.1778 0.5208

G 0.2938 0.1 0.3222 T 0.5484 0.1968 0.6648

H 0.4627 0.1968 0.6122 U 0.5666 0.1933 0.6693

I 0.5978 0.1981 0.6977 V 0.8221 0.2497 0.9348

J 0.8333 0.28 1 W 0.4634 0.1901 0.5997

K 0.4171 0.1747 0.5416 X 0.8257 0.2497 0.9371

L 0.7586 0.1968 0.7941 Y 0.4638 0.1747 0.5703

M 0.6234 0.1901 0.6981 Z 0.6955 0.227 0.8134
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The innovation of the presented work resides in its

capacity to deliver enhanced accuracy and dependability in

project scheduling, especially in the presence of multiple

criteria with uncertain conditions. This empowers project

managers to effectively pinpoint critical activities and

allocate resources with greater precision, ultimately mini-

mizing the risk of delays. Moreover, it provides a trans-

parent approach to decision-making that is based on

objective criteria. This helps to increase transparency and

accountability, ensuring that decisions are made based on a

consistent set of criteria. Moreover, it helps to identify and

evaluate the risks associated with various decision alter-

natives. This allows managers to mitigate risks and reduce

the likelihood of unexpected outcomes.

9 Conclusions and future scope

Project management involves supervising a team’s activi-

ties to achieve all project objectives within specified con-

straints. PERT has been extensively utilized in the

management of challenging projects by incorporating three

estimates for time parameters. The presented approach is

an extremely useful tool for incorporating PF parameters

into mathematical models to address uncertainties. We

have largely focused on the credibility theory for PFSs.

Finding the best solutions, when dealing with ambiguous

facts, necessitates thorough consideration of the ideas of

possibility, necessity, and credibility measures. Moreover,

the idea of Cauchy PFNs is presented, and it can be used to

realistically simulate a wide range of real-world scenarios.

The current research has shown that a more realistic

extension can be achieved by incorporating PFNs as scales

for both time and cost in the assessment of activities. Thus,

a novel PFPERT approach is proposed to measure criti-

cality with multi-criteria in project management problems.

PFPERT can be used, for instance, to assess and balance

the various requirements for a project that has numerous

goals, such as finishing it on schedule, within budgetary

constraints, and to a specific quality level. The proposed

methodology has been implemented in a greenhouse con-

struction project plan, demonstrating its practicality and

user-friendliness. Notably, it does not necessitate explicit

knowledge of membership functions for PF activity peri-

ods. Therefore, this novel concept proves to be an effective

and robust tool for efficiently managing complex projects

within uncertain environments. Using this technique, pro-

ject managers are able to spot any delays in the project

timeline and make necessary adjustments.

Following points outline the potential contributions and

implications of the study for future research and practical

applications.

1. The suggested method can be applied to fields like

engineering, developing software, and construction

where complicated projects may entail several tasks,

dependencies, and requirements.

Table 9 Ranking of routes by

S; R and Q
1 2 3 4 5 6 7 8 9 10 11 12 13

By S E C G S A F K H W Y O T B

By R E C G F A K,Y O S M,W Q U T,L,H I

By Q E C G F A S K Y O W H T U

14 15 16 17 18 19 20 21 22 23 24 25 26

By S U Q I D M Z L N R P V X J

By R B,P D,Z X,V,N R J – – – – – – – –

By Q Q I M B D L Z P N V X R J

Fig. 17 Realization of road

connection project network

(adapted from Zammori et al.

(2009))
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2. It is an effective tool that supports project managers in

streamlining projects in uncertain situations and mak-

ing the best use of their resources.

3. Critical activities in a project may include the design

and testing of a product, the development of a software

application, or the construction of a building.

4. In business processes, critical activities might entail

finding and training staff, finishing financial reports, or

completing customer orders.

5. In project analysis, multi-criteria analysis is frequently

used to evaluate the viability and potential impact of

various project solutions. Project managers can make

sure that their conclusions are supported by a thorough

Table 10 Input details to

determine real critical path
Activity ID Predecessors Duration ðDijÞ Cost ðCijÞ

Construction site installation CS ½�� [12, 15, 17] [7, 9, 11]

Escarpment stabilization ES [CS] [23, 25, 28] [145, 150, 153]

Minor works 1st tract MW(I) [CS] [23, 24, 25] [87, 95, 104]

Cutting road 1st tract CR(I) [ES] [27, 30, 31] [229, 234, 240]

Embanked road 1st tract ER(I) [MW(I)] [30, 32, 33] [317, 323, 327]

Minor works 2nd tract MW(II) [MW(I)] [8, 9, 11] [28, 31, 37]

Finishing activities 1st tract FA(I) [CR,ER(I)] [21, 24, 25] [73, 77, 80]

Road planking 1st tract RP(I) [CR,ER(I)] [20, 22, 26] [275, 280, 285]

Embanked road 2ndtract ER(II) [MW(II),ER(I)] [22, 24, 25] [198, 205, 215]

Finishing activities 2nd tract FA(II) [FA(I), ER(II)] [16, 17, 19] [36, 43, 47]

Road planking 2nd tract RP(II) [RP(I), ER(II)] [3, 5, 6] [145, 151, 157]

1st Viaduct foundations VF(I) [IC] [34, 35, 39] [357, 363, 370]

Piling installation 1st tract PI(I) [VF(I)] [19, 22, 23] [334, 340, 345]

Crossbeam installation 1st tract CI(I) [PI(I)] [12, 15, 18] [124, 127, 133]

1st Viaduct finishing activities VFA(I) [CI(I)] [7, 10, 12] [77, 83, 88]

Delay D(I) [CS] [34, 35, 39] ½��
2nd Viaduct foundations VF(II) [D] [18, 19, 21] [267, 270, 275]

Piling installation 2nd tract PI(II) [VF(II)] [12, 13, 14] [145, 152, 156]

Crossbeam installation 2nd tract CI(II) [PI(II)] [7, 8, 11] [67, 74, 78]

2nd Viaduct finishing activities VFA(II) [CI(II)] [3, 4, 6] [35, 38, 43]

Road asphalting RA [RP(II),VFA(I),VFA(II)] [12, 15, 17] [278, 285, 294]

Construction site closure CSC [FA(II),RA] [9, 12, 14] [5, 7, 8]

Table 11 List of Paths

Nodes Nodes

Path 1 1� 2� 3� 7� 10� 22� 23 Path 6 1� 2� 5� 6� 8� 9� 11� 21� 22� 23

Path 2 1� 2� 3� 7� 11� 21� 22� 23 Path 7 1� 2� 5� 8� 9� 10� 22� 23

Path 3 1� 2� 5� 6� 7� 11� 21� 22� 23 Path 8 1� 2� 5� 8� 9� 11� 21� 22� 23

Path 4 1� 2� 5� 6� 8� 9� 10� 22� 23 Path 9 1� 2� 4� 12� 13� 14� 15� 20� 21� 22� 23

Path 5 1� 2� 5� 6� 8� 9� 10� 22� 23 Path 10 1� 2� 4� 12� 13� 14� 15� 22� 21� 22� 23

Table 12 Comparison of optimal results

1 2 3 4 5 6 7 8 9 10

Proposed method Path 5 Path 9 Path 6 Path 3 Path 2 Path 4 Path 10 Path 1 Path 8 Path 7

Zammori et al. Zammori et al. (2009) Path 5 Path 9 Path 6 Path 3 Path 2 Path 4 Path 10 Path 1 Path 8 Path 7
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analysis of every relevant factor by employing this

decision-making process, which can result in more

effective and fruitful projects.
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