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Abstract

In comparison to Fermatean, Pythagorean, and intuitionistic fuzzy sets, (p, ¢) —rung orthopair fuzzy sets have a wider range of
displaying membership grades and can therefore provide more uncertain situations. In this work, the accuracy of (p, g)—rung
orthopair fuzzy numbers is investigated using sine trigonometric functions. First, the (p, ¢)—rung orthopair fuzzy data are
extended to the sine trigonometric operational laws (STOLs). In this study, we suggest a novel (p, ¢)—rung orthopair fuzzy
superiority and inferiority ranking (SIR) approach to address the uncertainty group multiple-attribute decision-making
(MADM) problem. This strategy handles unclear information, incorporates individual perspectives into group viewpoints,
makes conclusions based on many criteria, and ultimately structures a specific decision map. The proposed SIR method utilizes
two kinds of information, the superiority and the inferiority information, to obtain two types of flows, including the superiority
and the inferiority flows. Then, these flows are utilized to rank the set of alternatives partially or completely. Using sine
trigonometric functions and the flexibility of (p, ¢)—rung orthopair fuzzy sets, novel STOLs have been created. Further, we
conduct a case study of the selection of the best journal to demonstrate the feasibility and applicability of the developed
technique. The main contributions of this article are as follows: (1) The aggregation operators for (p, g) —rung orthopair fuzzy
numbers and their characteristics have been studied under sine trigonometric functions. (2) The SIR approach has been
developed under (p, ¢) —rung orthopair fuzzy sets. The proposed technique is explained through a step-by-step Algorithm. (3)
Then, a case study of journal selection is considered to apply the developed technique. (4) The results obtained have been
compared with the ranking obtained through various existing techniques.

Keywords (p,q)— rung orthopair fuzzy set - SIR technique - Sine trigonometric laws - Multi-attribute decision-making

1 Introduction practical applications in a variety of disciplines, including

engineering, humanities, life sciences, physical sciences,
Zadeh (1965) developed the concept of fuzzy set (FS) to  health sciences, and computer science. A lot of work in the
deal with unclear information. Many investigations on the  field of FS theory has been done in Chen and Niou (2011),
generalizations of the FS idea were subsequently con- Chen and Phuong (2017), Chen and Wang (2009). Further
ducted. It is believed to have numerous theoretical and  applications of FSs can be explored in Chen and Chen
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(2001), Chen and Wang (2010), Chen et al. (2009), Chen and
Jian (2017), Shen et al. (2013), Chen and Lin (2005), Chen and
Fang (2005). The intuitionistic fuzzy sets (IFSs) are one of the
intriguing and extensively applicable generalizations of FSs,
according to Atanassov’s definition (Atanassov 1986). “How-
ever, there are several situations when the decision-maker may
specify the membership function (MF) and non-membership
function (NMF) of a certain characteristic in a way that makes
their sum greater than 1. Yager (2014) proposed the concept of
Pythagorean fuzzy set (PES) as a generalization of IFS to deal
with uncertain situations more skillfully. The PFS designs can
be used to explain ambiguous data more precisely and effec-
tively than IFS designs. Ibrahim et al. (2021) described a dif-
ferent type of generalized PFS known as (3, 2)-FS. In addition to
conduct research on FFS, Senapati and Yager (2020) also
incorporated fundamental operations to the FES. Compared to
the (3, 2)-FS, the (3,4)-FS, which (Murad and Ibrahim 2022)
introduced, applied with more ambiguous cases. Yang and Yao
(2021) examined the development of shadowing sets from
Atanassov IFS in the context of the three-way choice. A ¢-
ROFS (Yager 2017) is one of the most helpful generalization of
the FS for dealing with informational uncertainty. Ibrahim and
Alshammari (2022) presented a brand-new FS extension type
called (p, g)—ROFS.

A method known as multiple-attribute decision-making
(MADM) places a lot of emphasis on the greatest possible
solutions. To manage the complexity and challenges of
MADM situations, many helpful mathematical tools, such
as SS and FSS, were improved. According to Xu (2007),
many AOs under IF data have been proposed. Different
geometric hybrid weighted operators were introduced in an
IFS context by Xu and Yager (2006). Yager and Abbasov
(2013); Yager (2014) first discussed the notions of
“weighted averaging and ordered weighted averaging”
operators over PFS. Senapati and Yager (2019) defined the
FFWPA operator over FFS and then went into great detail
into its characteristics. Using a brand-new MAGDM
method, Shahzadi and Akram (2021) presented a technique
for choosing an antivirus mask in an FF soft environment.
Shahzadi et al. (2022) selected an IMS using the MOORA
approach and FF data. A brand-new “MULTIMOORA”
technique was presented as a solution to MADM problems
in Rani and Mishra’s (2021) investigation of Einstein
operators under FF environmental. Garg et al. (2020)
combined the advantageous traits of the FFSs with the
Yager operators to produce a number of AOs. Additionally,
Akram et al. (2022a, 2022b, 2023d) presented new classes
of “linguistic FF Hamy mean operators” and implemen-
tations of the COPRAS method under FFSs. Some PF
Hamacher power AOs were created by Wei (2019).

Hadi et al. (2021) established novel FFS procedures and
outlined their core operations using “Hamacher t-con-orm
and t-norm”. The authors put forth FF Hamacher AOs,
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which were brought about through FFS and Hamacher
operations. A variety of AOs, including FF Hamacher
interactive averaging and geometric operators, were pro-
vided by Shahzadi et al. (2021a, 2021b) and employed in
the MADM issues to evaluate the options that were given.
Three authors have made significant contributions to the
field of Hamacher AOs: Donyatalab et al. (2020), Akram
et al. (2022a, 2022b, 2023d), and Jan et al. (2021). Verma
(2021) introduced four more order-divergence measures
between two IFSs to address MAGDM difficulties where
the attribute weights are either fully unknown or only
partially known. To assess and prioritize the hazards
associated with self-driving automobiles, Bakioglu and
Atahan (2021) applied three different MADM techniques
in a PF environment: PF-TOPSIS, PF-VIKOR, and IVPF-
AHP” for weight determination. Deng and Wang (2021)
defined two novel distance measuring techniques for FSs.
Garg (2020) elaborated the ST operators as a result of g-
ROFS. The ST Fermatean fuzzy AOs were first presented
by Akram et al. (2023a, 2023b, 2023c). “ITARA-VIKOR”
approach is used by Khan et al. (2023) to elaborate the DM
for 2-tuple linguistic g-RPFSs. In the context of 2-tuple
linguistic FFSs, distinct MAGDM were described by
Akram et al. (2023a, 2023b, 2023c). Two novel logarith-
mic and exponentially based order-o divergence metrics
between g—ROFSs were created by Verma (2020). (Liu
et al. 2022; Akram et al. 2021; Rani et al. 2022) explore
numerous additional DM strategies. The idea of bidirec-
tional approximate reasoning and pattern analysis under the
FF similarity metric is elaborated by Al-Qudah and Ganie
(2023). Akram et al. (2023a, 2023b, 2023c) proposed an
FF multi-objective transportation model utilizing an DEA
framework. Moreover, Sarwar et al. (2023) discussed the
properties and effects of d—approximations of complex
fuzzy sets under rough information. They also illustrated
the feasibility of a developed model through a pragmatic
application. For further study, readers can see the articles
given by Lugman and Shahzadi (2023a, 2023b) and Peng
(2023).

The SIR approach is an abstraction of the famed PRO-
METHEE technique. The supremacy components and
submission of numerous choices, from which SIR drifts are
produced, are evaluated using this method’s use of supe-
riority and inferiority information, which also serves to
reflect the behavior of decision-makers toward each crite-
rion. The subject was initially raised by Xu (2001). “Chai
and Liu (2010) submitted the IF-SIR approach to address
MCGDM issues. The SIR approach was first used using PF
data by Peng and Yang (2015). Zhu et al. (2021) suggested
the SIR approach for ¢g-ROFS. Selvaraj and Jeonghwan
(2022) made the initial discovery of the SIR approach for
interval type 2-hesitant fuzzy set.
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The main characteristics of (p,q)—ROFS serve as our
inspiration for providing specific AOs and SIR technique
for (p, q)—ROFS. These motives are described as follows:

— Sine trigonometric functions and their outcomes are
more efficient and flexible when compared to basic
operators and their outcomes. To handle the (p,q)—

ROF data, however, there is no literature on the Sine
trigonometric operators under (p, g)—ROFS.

— There are a number of noteworthy sine trigonometric
AOs for (p,q)—ROFS characteristics, but no studies
have been done to look into them in the corpus of
literature now in existence.

— The bulk of AOs for handling (p, ¢)—ROF data indicate
constraints and limitations; nevertheless, the traditional
DM techniques based on AOs are generalized using
various confusing and unclear bits of information.

— The SIR approach for MAGDM is essential for resolving
issues with decision-making. Out of a variety of options, it
presents the one that is most enticing and wanted.

Since uncertainty is a significant issue in various disci-
plines and its complexity increases day by day, it becomes
necessary for some improvements for g—ROFSs to keep up
with these developments. Recently, some authors have
suggested coping with the input data using different sig-
nificances for membership and non-membership degrees.
This approach will be useful to describe some real-life
issues and enlarge the spaces of data under study. To
address the aforementioned motivations, the key contri-
butions of this work are listed in the following list:

— The set of ST operations for (p,q)—ROFS has been
introduced, and the salient features of them have been
discussed.

— A number of AOs are introduced to aggregate the

(p, q)—ROFS, including (p,q)—ROFYWA,
(p,q)~ROFYOWA, (p, ¢)~ROFYHWA,
(p,q)~ROFYWG, (p,q)—~ROFYOWG,

(p, 9)—ROFYHWG, etc.

— We swiftly go over a few of the suggested operators’
advantageous and productive qualities.

— A technique termed (p,q)—ROF-SIR has been created
to quantify the relative performance of each option in a
clear mathematical way.

Moreover, the aims of writing this research are, first, to join
a new class of g—ROFSs called (p, ¢)-ROFSs with SIR
technique, which helps to expand the degrees of member-
ship and non-membership more than all types of g—RO
FSs classes. Second, the proposed method enables us to
evaluate the input data with different significance for
grades of membership and non-membership, which is
appropriate for some real-life issues. This matter is not

applicable to the other generalizations of ¢—ROFSs,
because they give an equal significance to grades of
membership and non-membership: 2 in PFSs, 3 in FFSs,
and g in g— ROFSs. Third, to establish new kinds of
weighted aggregation operators, STOLs scrutinize their
characterizations. Finally, we exhibit an multi-criteria
decision-making (MCDM) method based on the SIR
technique. Fuzzy based MCDM methods have been suc-
cessfully integrated into various problems (Bouraima et al.
2024; Xu et al. 2024; Yiiksel et al. 2024; Lo et al. 2024).

The SIR method is ranking the alternatives based on the
two ranking lists. In this method, alternatives are ranked by
superiority ranking list and inferiority ranking list. The main
advantage to utilize the SIR method is that it combines the
properties of other MCDM methods, namely, TOPSIS,
SAW, and PROMETHEE. In this paper, we first generalize
the notions of superiority and inferiority scores taking the
differences between criteria values and different types of
generalized criterion into account as what was done in the
first step of the PROMETHEE methods. For this purpose, in
step 1 of our method, the generalized criteria are carefully
chosen by the decision-maker and the analyst. Then, the
superiority matrix, made up of the superiority indexes, and
the inferiority matrix, made up of the inferiority indexes, are
built from the original decision matrix. In step 2, we employ
some aggregation procedure to derive two types of flows, the
superiority flow and the inferiority flow. Since different
aggregation procedures produce different kinds of flows, the
superiority and inferiority ranking (SIR) method is, in fact,
not a single method. It represents a family of methods. When
using simple additive weighting (SAW) as the aggregation
procedure in this step, our method coincides with the second
step of PROMETHEE methods, i.e., the derived superiority
flow and the inferiority flow are exactly the leaving flow and
the entering flow, respectively. However, we have more
choices here. Some other aggregation procedures can be
used in this step. It is in this sense that our method can be
thought of as a further extension of the PROMETHEE
methods. In step 3, the superiority and inferiority flows and
are used to derive two complete rankings, and of the alter-
natives and the two complete rankings are then combined
into a final partial ranking as the intersection of the two: in
step 4. Like the PROMETHEE methods, the SIR method
also gives a complete ranking of alternatives. When a
complete ranking is requested by the decision-maker, some
synthesizing flows, like the net low in PROMETHEE and
relative distance in TOPSIS, can be used to derive a com-
plete ranking. The derived ranking (partial or complete) is
then proposed to the decision-maker for further exploitation
before a final decision is made.

We go over certain ideas from Sect. 2 that are critical for
future study. We analyze the STOLs for (p, g)— ROF data
in Sect. 3. The concepts of ST-(p,q)—ROFWA, ST-
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(p, q)—ROFOWA, ST-(p,q)—ROFHWA, ST-
(p,q)—ROFWG,  ST-(p,q)—ROFOWG, and  ST-
(p,q)—ROFYHWG are investigated in Sect. 4. In Sect. 5,
some fundamental characteristics relating to the operators
are covered. In Sect. 6, the suggested approach for SIR
under (p,q)—ROF data is laid out. We carefully compare
the suggested method with a number of currently used
approaches in Sect. 7. Section 8 discusses conclusions,
flaws in the proposed work, and possible future study
direction. The abbreviations and acronyms used in this
work are mentioned in Table 1.

2 Preliminaries

Definition 1 (Senapati and Yager 2020) Let Q represents
a general set. According to the FFS F on Q

F={(x,Tr(x),Rr(x))},
T Rr:Q—[0,1] and nr(x) =

1= (Tr(@) - (Re(x))’ show MF, NMF and InF,
respectively.

wherever

Definition 2 (Yager 2017) A ¢-ROFS Q on domain Q is
elaborated by

0 ={(x,To(x),Ro(x))},

wherever To,Ro:Q—1[0,1] and no(x) =
Y1 = (To()? = (Ro(x))? show MF, NMF, and InF,
respectively.

Definition 3 (Ibrahim et al. 2021) Assume Q is a uni-
versal set and N is a set of all natural numbers. Then, the
definition of the (p,q)—ROFS ¥, a collection of ordered
pairs over Q, is as follows:

Y ={(xTy(x),Re(x))},

wherever Ty, Ry:Q—[0,1] and Ty (x) =

"1 — (Ty(x)) — (Ry(x))?,p # g show MF, NMF, and
InF, respectively with condition:

0<(Ty () +(Ry(x))! < 1.

Definition 4 (Ibrahim et al. 2021) The score and accuracy
functions for (p,q)—ROFS are defined as

Table 1 Abbreviations and

acronyms Item Description
FS Fuzzy set
SS Soft set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
FFS Fermatean fuzzy set
FF Fermatean fuzzy
g-ROFS g-rung orthopair fuzzy set

(p,q)—ROFS (p, qg)—rung orthopair fuzzy set

(p,q)—ROFN (p, g)—rung orthopair fuzzy number

MF Membership function

NMF Non-membership function

DM Decision-making

MADM Multi-attribute decision-making

MGs Membership grades

IMS Intelligent manufacturing system

AO Aggregation operators

FFWPA Fermatean fuzzy weighted power average

q-RPFS g-rung picture fuzzy set

ST-(p, q)—ROFWA Sine trigonometric (p, ¢)—rung orthopair fuzzy weighted average

ST-(p, g)—ROFOWA Sine trigonometric (p, ¢)—rung orthopair fuzzy ordered weighted average
ST-(p, q)—ROFHWA Sine trigonometric (p, ¢)—rung orthopair fuzzy hybrid weighted average
ST-(p, q)—ROFWG Sine trigonometric (p, ¢)—rung orthopair fuzzy weighted geometric
ST-(p, 9) —ROFOWG Sine trigonometric (p, ¢)—rung orthopair fuzzy ordered weighted geometric
ST-(p, q)—ROFHWG Sine trigonometric (p, ¢)—rung orthopair fuzzy hybrid weighted geometric
MAGDM Multi-attribute group decision-making

SIR Superiority and inferiority ranking

@ Springer
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S(¥) =T% — R, S(P) € [-1,1],
A(P) =T%, + R, A(W) €0, 1.

Remark 1 In Fig. 1 the set of (p,q)—ROF MGs forp = 1,
q €1{2,3,4,...} is greater than the set of intuitionistic
MGs.

Remark 2 In Fig. 2, the set of (p,q)— ROF MGs for p =
2,9 =1{3,4,5,...} is greater than the set of Pythagorean
MGs.

Remark 3 1In Fig. 3, the set of (p,q)—ROF MGs for p =
3,qg€{4,5,6,...} is greater than the set of Fermatean
MGs.

Remark 4 In Fig. 4, the set of (p,q)—ROF MGs for p €
{4,5,6,---},q € {3,4,5,...} is greater than the sets of
Intuitionistic, Pythagorean, and Fermatean MGs.

Example 1 Suppose that 7 y(x) = 0.9 and Ry(x) = 0.7.
Hence, 09+07=16>1, (097 +(0.7)7=13>1
and (0.9)° +(0.7)* =1.072 > 1, but (0.9)* + (0.7)° =
0.9991<1 and (0.9)° +(0.7)* = 0.9691 <1.  Thus,

(0.9, 0.7) is both 3,4—ROFS and 4,3—ROFS, but is nei-
ther IFS nor PFS nor FFS.
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x+y0=1
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Fig. 1 MGs of (1,4)—ROFS with ¢ vary
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Fig. 2 MGs of (2,4)—ROFS with ¢ vary
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0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
MF

Fig. 3 MGs of (3,4)—ROFS with ¢ vary
3 (p,q)—ROFNs under STOLs
Definition 5 Let ¥ = {(x,7 y(x), Ry(x)) | x € Q} be an

(p,q)—ROFN on universal set Q, then a STOL of
(p,q)—ROFN ¥ is

sy ={ {wan(570) oo (35— or)

x € Q}.

(1)

By (p,q)—ROFN, 7y : Q—[0,1], Ry : Q — [0,1] and
0<(7T) + (R)? < 1. Furthermore

@ Springer
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Fig. 4 MGs of (p,q)—ROFS with (p, g) vary

sin(g’fq/) L0 —[0,1],

\”/151111’(2 1 - (Ry) ) Q- [0,1].
sin ¥ = {(x,sin(5 7 y),
{/1 = sin?(5 /T— (Ry)")} is a (p.q)~ROFN.

(T,R) is an (p,q)—ROFN. If

sin‘P:<sin(ng/),</ —smp(2 1—(RW)>

Therefore,

Definition 6 Suppose ¥ =

(2)

the function sin ¥ is known as ST operator and the value
sin ¥ is known as sine trigonometric (p,q)—ROFN (ST-
(p,q)—ROFN).

Theorem 1 For (p,q)—ROFN Y, the value of operator
sin¥ is an (p,q)—ROFN.

Proof To proof that sin¥ is an (p,q)—ROFN, we will
show that:

L. sin(37), (/1 —sin”(5{/1 - (R)?) € [0, 1].
2. sin”(GT)+1—sin’(3{/1 - (R)?) <1

As0<T<1,s00< %T < 7. Since “sin” is an increasing

function (InF) in 1st quadrant, that is why,
0<sin(37)<1. In the same way, as 0<R<I, so
0<ZI/1-(R)<EZ This implies

0< {/1 —sin”(3{/1 — (R)?) < 1. Assin” x,x € [0, 1] is an
InF, for 37,5¢/1—(R)? € [0,1] st 3T <3/1—(R)?

@ Springer

and by sin” x is an InF, we have

sin”(5)7 < sin” (5 {/1 —RY). This shows that

sin” (57) +1 = sin” (5 /1= (R)? ) <1.
2 2

Hence, sin ¥ is an (p,q)—ROFN.” 0

Vi = (TnRu), (h =

Theorem 2 Suppose 1,2) are

(p,q)— ROFNs and k,ky,ky > 0.

l. k(sin¥?; ®sin¥,) = ksin ¥ @ ksin P,.
2. (sin¥), ®sin ¥,)" = (sin ¥,)* @ (sin ¥5)".
3. kisin¥, ®kysin¥, = (k] + kz) sin ¥;.

4. ((sin¥))")* = (sin ¥,)"%.

Proof 1. “For (p,q)—ROFNs ¥, = (T, R;) and k > 0.
Let Sy, = sin”(374), 3, = sin”(5/1 — (Ry)?). From Def-

<\p/(\_h7{/1 —5h> for i = 1,2 and
sin ¥ & sin ¥, <{/1

ST T
SEESE
Ja-afgo-wr)
(- a-sot o)
ea<” 1= (=95 {/(1 =3 >

=ksin V| @ ksin ¥5.

inition 6, sin ¥ =

I—J] 1—(32),

k(sin ¥; @ sin ¥5) :< (/1 —(1—

3. As kysin WV @ kp sin ¥,

~({1-a-90 ,V<1—al>"'>
o (§1-a-s0" {fu-5))
<\/1 k1+k2’</(1_31)k1+k2>

=(k; + ky) sin ¥;.

O
Theorem 3 Let ¥ = (Ty,Ry) and L= (T, R.) be
(p,q)—ROFNs st Tw>T7; and Ry <R, then
sin ¥ > sin L.
Proof For (p,q)—ROFNs =(Ty,Ry) and L=

(T, RY) st Ty>T ;. As “sin” is an InF for [0,%], so
sin(37y) > sin(3 7). Similarly, for Ry <Ry,
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an (5T > (3T )

=
1 —si? (Z0/1— (Ry)? ) < {1 —sin? (Z¢/1 — (Ry)
2 2
This concludes sin ¥ > sin L. O

Theorem 4 For (p,q)—ROFNs, ¥, = (Tn, R and
=(T,R), sinP; ®sin P> sin ¥ ® sin V.

Proof For (p,q)—ROFNs ¥; and ¥, let S =sin”(57),

Sy = sin” (5 T5), 3=sin”(3{/1 - (R)?) and
3p = sin”(2¢/1 — (Ry)?), then
sin ¥, @ sin ¥ <</1 1-Sn(1-9),

(3)

YT/ 1)
and
(V/SnS, /1 = 343)- (4)

As %7%%375/‘1 € [071] and
1= (1= S)(1 —9) >SS

sin?; ®sin¥ =

Cy. Ck. . . .
%2%%% this implies

Y1 —(1=S5)(1 =) > /39
Similarly

Y1 =33> /1 —3,.4/1 -3

Therefore, using Eqgs. 3 and 4

sin ¥; @ sin ¥ > sin ¥; ® sin .
O

Theorem 5 For (p,q)—ROFN ¥ and j>0,
jsin® > (sin Y iff j > 1 and jsin ¥ < (sin ¥) if and only
ifj € (0,1].

Proof 1t is easily demonstrated using the same justifica-
tions as in Theorem 4 which are applied. O

4 AOs for (p,q) —ROFNs under ST function

Definition 7 Let ¥, = (T;,Ru)(h=1,2,...,n) be a
series of (p,q)—ROFNs and
ST — (p,q) — ROFWA : 0" — 0, if ST — (p,q) — ROFWA
=Asin?, @ Arsin¥Vr, H--- P A,sin¥,, (5)

where A, = (41,42, .. ., A,,)T is the weight vector (WV) of
sin ¥, with condition 4, >0, Y, | 4, = 1.

Theorem 6 Let ¥, =(T;,R;) be a series of
(p,q)—ROFNs. The compiled value by applying the ST —
(p,q) — ROFWA operator is given by

ST — (p,q) - ROFWA('Pl, 'Pz, ooy 'P,,)

e

Proof Utilizing the idea of operational law for
(p,q)—ROFNs and concepts of sin ¥, one may demon-

strate the validity of Eq. 6. U
Property 1 If all (p,g)—ROFNs ¥;, = ¥, then
ST — (p,q) — ROFWA(¥,,¥s, ..., ¥,) =sin ¥.
Proof As ¥, =W, Vh, then A4,¥; = 4;¥. Therefore,
using the idea » ,_, 4, = 1 and Eq. 6
ST — (p,q) - ROF‘/VA(IIII7 'Pg, cey .Pn)
n
= Aysin ¥ =sin .
=1
l
Property 2 If V= (TnRu), ¥ =
(ming {7 4}, max{Rs}) and pt =
(max; {7}, min{Rs}) be (p,q)—ROFNS, then
sin = <ST — (p,q) — ROFWA(¥,,¥>,...,¥,) < sinP".

Proof As ming{7,;} <7< max;{7,;}, VA and
min; {Rs} <Ry < max;{R;}. It means that
Y- <Y, <YY" It can be assumed that ST — (p,q)—
ROFWA(Y,,%3,...,¥,) =sin¥ = (Ty,Ry),sin¥P~ =
(Th Ry-),sin P = (Ty+,Ry+). By the outcomes of
ST function, Sy, = sin(Gminy{7;}) < sin(537;) = Sy,
and Sy = sin(Fmax;{7T5}) = sin(37;) = Sy,. Thus

Ty \”/1 — [ =Sy
h=1
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H o

=1

< \/1 - H(l - \s,ﬁ)Ar’

h=1
=Ty

Similarly
Tl[/ S T)I/Jr .

In this way, 7 y- <7y <7 y+. Likewise, we can obtain
Ry- <Ry < Ry-+. Therefore, given result is completed. [

Property 3 Assume ¥, = (T, Ru) and V; = (T}, R;})
are two collection of (p,q)—ROFNs. If T, <T,, Rz >R},
then
ST — (p7q) 7R0FWA('P17 'PZa SRR3) 'Pn)

<ST — (p,q) — ROFWA(¥}, ¥5,...,P%).

Proof In the approach outlined above, we can show it. [J

Definition 8 Suppose ¥ = (T4, Ru)(hi=1,2,...,n)is a
series of (p, 9)—ROFNs and suppose
ST — (p, q) — ROFWG : 0" — 0, if ST — (p,q) — ROFWG

(sin V)" @(sin ¥,) @ - - - @ (sin ¥,,) "

n 7
Wn g T ) "
h=1

here, ST — (p,q) — ROFWG) is used.

Definiton 9 Let ¥, =(7;,R;) be a series of
(p,q)—ROFNs and suppose
ST — (p,q) — ROFOWA : 0" — 0, if
ST — (p,q) — ROFOWA

=Aysin Vo) @ A 8in Py0) © -+ - B Ay sin Py

(- f s o
h=1

where o) = sin” (57 o)) 3G(h) = sm”
and o is the permutation of (1,2,.

)
s

Definition 10 Let ¥, = (7, Rﬁ> be a series of
(p,q)—ROFNs and suppose
ST — (p,q) — ROFOWG : 0" — 0, if
ST — (p.q) — ROFOWG

:(sin 'P(,(l))Al ®(sin lf’a(z))Az(@ & (sin 'P(;(n)>An

:<</H(%0(h))Ahv (1 - H(3a(h))Ah>§
Pl =1

here, ST — (p,q) — ROFOWG) is used.

@ Springer

Definition 11 The operator ST — (p,q) — ROFHWA is a
mapping ST — (p,q) — ROFHWA : 0" — 0 with
E=(51,5,...,5,)", En>0and Yj_, E; = 1, given by
ST — (p,q) — ROFHWA

=5, sin li/o(l) @ =, sin ljjg(2> D ---

n n
:<,, 1—H(1—C\\‘ W) H(l (h)):h>7
h=1 h=1

where Y = nd,¥, and C}o(h) = sin”(§ Tg(h)),

So) = S’ (3 {/ 1 = (Rom)”)-

@ =, sin 'PU(”)

Definition 12 The operator ST — (p,q) — ROFHWG is a
mapping ST — (p,q) — ROFHWG : 0" — 0 with
E=(8,5,...,5)", 8 >0and Y}_, 5, = 1, given by
ST — (p, q) — ROFHWG

=(sin ¥ sm‘l’()) ®-- ®(Sln'{’())5

, LoE 9)
<\/H )7, (1= H(Sa(h))—“>,
A=l

where ¥ = ).

Remark 5 The ST-(p, q)-ROFWG, ST-(p, q)-ROFOWA,
and ST-(p, q)-ROFOWG operators satisfy qualities 1, 2 and
3 but only boundedness and monotonicity are satisfied by
ST-(p, q)-ROFHWA, ST-(p, q)-ROFHWG operators.

5 Basic characteristics of sine trigonometric
(p, 9) — rung orthopair fuzzy AOs

Here, we discusses the numerous links between the sug-
gested operators.

Lemma 1 For j, >0 and 0, >0 with Y, _, 05 =1
n n

H]Zh < Zoﬁji-

=1 =1

Equality holds iff j; =j, =+ = j,.

Lemma 2 Suppose j,o0 € [0,1] and f>1 be an integer,
then {/1 — —of) > jo.
Theorem 7 For (p,q)—ROFNs ¥, the following

inequality holds between operators ST-(p, q)-ROFWA and
ST-(p, q)-ROFWG:

ST — (p,q) — ROFWA(Y,,¥3,...,¥,) >

ST — (p,q) — ROFWG(¥1, V2, ..., Vy),

and equality takes iff V1 =¥, =.---=Y,.
Proof As ST — (p,q) — ROFWA(Y,¥,,...,V,)
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)% PH1_3hAh>

~(i/i-To-

and ST — (p q ROFWG(WI,Wz,...,q’n)
(oo - fo)
h=1
Utilizing Lemma 1
L=JJA =S =1 451 = S)
h=1 h=
-3 4,
=1
> [Jsw™,

which means

11— ﬁ(] — Q) > {/ﬁ(sh)“ﬁ. (10)

h=1

[0, 1]

(/ﬁ(l—%)""z{/l—ﬁ(&)"ﬁ. (11)
h=1 h=1

Equations 10 and 11 are used to verify the necessary
result. O

By Lemma 1 and for 4,3, €

Theorem 8 Suppose ¥y, ¥ are (p,q)—ROFNs, then

1. ST —(p,q) —ROFWA(Y & ¥, Y, ¥,..., V.0
¥)>ST — (p,q) — ROFWA(P, @ ¥, ¥, @ ¥, ...,
Y, @ ¥),

2. ST-(p,q) —ROFWG(¥Y, &V, V0 Y,..., YV,
¥Y)>ST — (p,q) — ROFWG(¥, @ ¥, ¥, @ ¥,...,
v, V).

Proof We obtain ¥, ® ¥ > ¥, ® ¥ using the operational
laws for (p, g) —ROFNs ¥, V. As a result, according to the
ST-(p, q)-ROFWA operator’s monotonicity property, we
have ST — (p,q) — ROFWA(¥Y, @V, V0 V,..., ¥, ®
¥)>ST — (p,q) —ROFWA(V, @ P, V. Y,...,

v, V). O

Theorem 9 For (p,q)—ROFNs ¥, ¥

1. ST- (p,q) — ROFWA('I’l,'I/Q,...,'P,,)@sm‘[’>
ST — (p,q) — ROFWA(¥,, ¥, ..., ¥,) ®

2. ST (p,q) — ROFWG(EPI,Yfz,...,'I/n)easm‘I/>
— (p,q) — ROFWG(¥,, ¥,...,V,) ®

Proof Since (p,q)—ROFNs are the values for the opera-
tors ST — (p,q) — ROFWA, ST — (p,q) — ROFWG, and

sin Y. As a result, by Theorem 4, we reach the intended
result. O

Theorem 10 For (p,q)—ROFNs ¥, ¥ and A € [0, 1]

1. ST — (p,q) — ROFWA(¥,,¥,,...,V,) ®sin ¥ >
(ST — (p,q) — ROFWA(Y¥1, ¥, ..., 'Pn))i 2.

2. ST — (p,q) — ROFWG(¥,,¥>,...,¥,) ® sin‘l’z
(ST — (p,q) — ROFWG(¥,, ¥, . .,'I’n))

3. (ST — (p,q) — ROFWA(Y¥1,¥,,...,V,))" @smsv>
IST — (p,q) — ROFWA(¥,,¥,...,¥,) ®

4. (ST = (p,q) — ROFWG(¥\,¥,, ..., ¥,))" @sm‘P>
ST — (p,q) — ROFWG(¥,,¥s,...,¥,) ®

Proof For A€0,1] and (p,q)—ROFNs ¥, 7,

JST — (p,q) — ROFWA(¥1, ¥5,...,¥,)
< H AA/, P H AA;,>

and (ST — (p,q) — ROFWA(¥1, Vs, ..., V)"

—<</(1 - ﬁ(l - %h)“”y, {/1 —(1- f[(l - 3h)Aﬁ)2>.
h=1 h=1

Hence, AST — (p,q) — ROFWA(¥,¥,,...,¥,) ®sin¥
n 2
:W““—@(HU—%W) ,
h=1 (12)
\/ (1—3) H (1 =3 >
h=1
and (ST - (P,C]) - ROFWA('I’la 'I’Za RS lFVl))i @V
:<</s(1 ~TJa - %h)“”)/ﬂ
h=1 (13)
{/1 - -JJa- sh)"”)i'3lb>'
=1
As Z:I(l - Sh)"”)i €[0,1]. Therefore, applying

Lemma 2

" Y i Y
s<1 -Ja- sﬁ‘&) +(1-9) (Hu - sh)“ﬁ> <1.

This implies that
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In the same way, for 3  (J[(1—3,)")"

(1= TT(1=Sn)™)*

%1 —»(JJa W)’kj - (1 ~1I0 shr‘h) N
h=1 =1

Therefore, result (i) holds for 4 € [0,1] according to
Egs. 12 and 13. O

€ [0,1]. Then, by Lemma 2

6 (p,q)— rung orthopair fuzzy SIR
technique

A group of decision-makers, a list of requirements, and a
finite number of possibilities make up an MAGDM prob-
lem. The finest option among those provided must be
picked to address a MAGDM issue. Let C =
{c1,¢2,..ycn} and u = {uy,uy,...,u,} be the collection
of criteria and options, respectively. Assume that the group
of decision-makers has the composition E =
{e1,e2,...,¢;} and that their weight vector has the com-
position £ = {&}, 5,, ..., 5}, where all of the weights are
(p,q)—ROFNs. Create the individual decision matrices
H;, = (hll‘;j)mxn’ where h’,gj represents the evaluation data of
the alternative uy, i =1,2,3,...,m, with respect to the
criterion ¢;, j=1,2,3,...,n, supplied by the decision-
maker ¢, k = 1,2,3,...,1, in the form of (p,q)—ROFNs.
Assume that the criterion weight matrix ¢ = (qo]") s U =
1,2,3,...,n,k=1,2,3,...,1) is the matrix in which the
weight of the criteria ¢;, j = 1,2,3,...,n, assigned by the
decision-maker e, k=1,2,3,...,/, in the form of
(p,q)—ROFNs is represented by o}
G=1,2,3,..,n,k=1,2,3,...,]). To solve the MAGDM
problem, the (p, g)—ROF-SIR approach is described in this
section. Following are the steps for applying this technique:

@ Springer

Step 1.  Calculate relative propinquity coefficient for

each Z;, k= 1,2,...,1, using the equation

)

(—- ;—v)
=) =
Sy S

QU

Me = (B
T d(ELE) +

(14)

& \[I]

|[11

wherever & = (rnkm( =), m;?x(R ). E=
(ml?x(’f s mkm(R ) These relative coeffi-

cients measure interrelationships among
behaviors as a direct function of their intrinsic
organization within a sequence. The coefficient
does not depend on a user-defined “window “
of analysis and provides an efficient use of data
that facilitates comparisons across decision-
makers.

Then, these relative closeness coefficients
e,k =1,2,...,1 are normalized using Eq. 15

Step 2.

Mk

Ck 22:1 Nk (15)
Thus, a normalized vector of relative propin-
quity  coefficients of the form (=
{{1,85,..., ¢} is obtained.

Using the ST — (p,q) — ROFWA operator, the
accumulated (p,q)— rung orthopair fuzzy
decision matrix is obtained as follows: the cri-
terion weight vector as follows:

I/’[h; =S5T — (paQ)

:<,, 1— ﬁ(l - sin”(g’]’l,;j)lk,

k=1

Step 3.

— ROFWA(hy;, by, . .. hy)

1

’ H(l —sin”(g /1 - (R’,;j)q)g)

k=1
(16)

Similarly, the criterion weight vector is com-
puted as follows:

@; =ST — (p,q) — ROFWA ((p}, @y <p,’-)

]
P . /9 ¢
:<[ 1 - I |(1 - SIHP(ET(/)?)Q"

k=1

I
H (1- sm” r/— (R(p')q)lk>.
k:l J

(17)

Note that, j =1,2,3,...,n, k=1,2,3,.../1,
h=1,2,3,...,m,pand g are parametric values
ranging from p,q =1,2,3,....
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Step 4.

Step 5.

Step 6.

The following steps can be taken to obtain the
relative efficiency function fj;:
d(hj, )

Jij = (18)
d(h;»,j7 h) + d(hhj, h)

wherever h = (mln(T~ ), max(R~)), h=
(mrflx(’f ~), m1n(R~ ). The relative’d éfficiency

Iy [ hpy

function f;; estimates the relative efficiency
value of alternatives with respect to the criteria.
Calculate the preference intensity
PLi(up,u) (Bt =1,2,.. . ,mh#1), which
indicates the extent to which alternative uy is
preferred over alternative u, with respect to
criteria ¢;. It is defined as follows:

Pl (un, ur) = 155 (fi — f), (19)
j=123,..,n h=123,...,m The k
threshold function is given by

i (x) = 0.01, x> 0;

N 0, x<o.

The superiority matrix S =
inferiority matrix I = (Ir;),,»,
using the following equations:

n = Zm: ki (fw — 1) (20)

(Shj)l‘ﬂXI’l and the
are calculated

i Zi’fj(ﬁj—ﬁj)' (21)

Note that the superiority matrix obtained from
the superiority indices and inferiority matrix
computed from the inferiority indices are
obtained from the original decision matrix.

Step 7.

Step 8.

Step 9.

Step 10.

The superiority flow (S-flow) and inferiority
flow (I-flow) can be found by the following:

K (up) =ST — (p,q) — ROFWA@, o, ;;j)

(-0

QH“ B ﬁ>>

J=1

(22)

K" (up) =ST — (p, q) — ROFWA(})] 0. 5})

sl

e
AT —sinr G o/ =R-0) ).
i=1 2 Y

7

)
sm” LN

./=1

(23)

These flows can be calculated through differ-
ent kinds of aggregation operators. Thus, the
distinct techniques can produce different types
of flows.

Calculate the scoring formulas of k*(uy) and

k" (up), h =1,2,...,m, by using Definition 4.
Use the SR-laws (superiority ranking laws) and
IR-laws (inferiority ranking laws) in the man-
ner described below: SR Law: If
k* (up)=1* (u;) and x"(uz) < k" (u;), then
Up>—Us.

If k& (up)>=rx*(u;) and k" (uz) =
Up>—Us.
If KA (uﬁ) =
Up—Us.
IR Law: If  x*(u) <x*(w,) and
k" (up)>=x" (u,), then uy < u.

k" (u;), then

k™ (u;) and k" (up) < k" (u,), then

If < (up) < k™ (u,) and k" (up) = k¥ (u,), then
up < Uy.
If «k*(up) = k*(u;) and x" (up)=rx" (u,), then
up < Uy.

Hence, the superiority flow and inferiority flow
are utilized to derive two complete rankings.
These two complete rankings are then com-
bined to obtain a new final ranking. The
obtained ranking is then proposed to decision-
makers for further exploitation before giving a
final decision.
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6.1 lllustrative example

For researchers and academics, looking to publish their
work and make a contribution to the scholarly community,
choosing the top journals is an essential task. When
choosing the best publication for a specific research paper,
a number of important aspects are taken into consideration.
To guarantee that their work gets seen by the right people
and is given the credit it merits, researchers must first
locate journals that are respected in their particular field of
study. Second, the subject and goals of the research must
coincide with the journal’s breadth and concentration.
Submissions to journals that focus on the particular topic
have a higher chance of being accepted and generate more
interest from readers who are really interested in the
research field.

It can also be helpful to take the journal’s impact factor
and citation data into account. An academic journal’s
influence and reach are often indicated by the frequency
with which its articles are cited, or impact factor. To
choose the finest journal, it is important to carefully ana-
lyze a number of variables, such as reputation, relevance,
influence, accessibility, and practical considerations.
Researchers can greatly advance the body of knowledge in
their subject and maximize the impact of their work by
making an informed choice.

We present a numerical example for choosing the best
journal for submitting the research article using (p,q)—R
OFNs to explain the strategy we suggested. Four potential
journals are listed on a panel for selection:
up(fi = 1,2,3,4). Three criteria are chosen by the experts
to compare the four potential journals:

— () stands for indexing,
— (C, stands for journal rank,
— (3 stands for impact factor.

The (p,q)—ROF weights of decision-makers are given in
Table 2. These weights represent the relative preference of
each decision-maker corresponding to their capabilities.

The relative importance of each criterion is represented
in Table 3 provided by the decision-makers e; in terms of
(p,q)—ROFNs. The decision-makers provide their evalu-
ation via (p,q)—ROFNs after evaluating each alternative
uy, in relation to each criterion C;.

In Tables 4, 5, 6 three decision matrices are provided
corresponding to three decision-makers ej, e;, and e3,
respectively.

Step 1. Using Eq. 14, the following relative propinquity
coefficients are calculated:
n={1,0.269,0}. (24)
Step 2. Using Eq. 15, the normalized vector is created as
follows:
{=1{0.79,0.21,0}. (25)
Step 3. Using Eq. 16, which is shown in Table 7, the
collected (p,q)—ROF decision matrix is
acquired. The collected weights of the criterion
are calculated using Eq. 17, and they are as
follows.
¢, =(0.66,0.35)
¢, =(0.98,2.6 x 107%) (26)
@5 =(0.86,0.04).
Step 4. Using Eq. 18, we can calculate the relative effi-
ciency function as follows:
0.279 1 0.99
= 0.471 0 0.418 27)
"~ | 0193 0080 0655 |
1 0.844 0.584
Step 5.

— The preference intensity (superiority) for alternative u;
over the other alternatives u,,t = 2,3,4 is 0, 0.01, 0,
respectively, corresponding to parameter C;.

— The preference intensity (superiority) for alternative u;
over the other alternatives u,,t = 2,3,4 is 0.01, 0.01,
0.01, respectively, corresponding to parameter C,.

— The preference intensity (superiority) for alternative u;
over the other alternatives u,,t = 2,3,4 is 0.01, 0.01,
0.01, respectively, corresponding to parameter Cs.

Table 3 (p,q)—ROF weights of criteria

Table 2 (p, g)—ROF weights of

decision-makers Decision makers Weights Cy G Cs
ey (0.9,0.3) e (0.5,0.3) (0.9,0.1) (0.7,0.4)
e (0.6,0.5) e (0.2,0.4) (0.5,0.3) (0.4,0.2)
e3 (0.4,0.7) e3 (0.6,0.5) (0.7,0.3) (0.9,0.3)
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Table 4 (p,q)—ROF decision matrix H;

Cl Cz C’;
Uy (0.5,0.6) (0.9,0.2) (0.7,0.4])
u (0.6,0.2) (0.3,0.7) (0.7,0.5)
us (0.1,0.5) (0.4,0.6) (0.6,0.3)
s (0.8,0.2) (0.8,0.3) (0.7,0.4)

Table 5 (p,q)—ROF decision matrix H,

Cl Cz C3
uy (0.5,0.2) (0.8,0.5) (0.7,0.5)
i (0.1,0.5) (0.4,0.6) (0.6,0.3)
uz (0.6,0.2) (0.3,0.7) (0.7,0.5)
s (0.7,0.2) (0.6,0.3) (0.7,0.6)

Table 6 (p,q)—ROF decision matrix Hs

C C G
U (0.7,0.1) (0.8,0.4) (0.3,0.5)
” (0.7,0.3) (0.8,0.2) (0.3,0.6)
s (0.6,0.5) (0.7,0.1) (0.4,0.7)
Uy (0.1,0.7) (0.9,0.3) (0.2,0.5)

Table 7 Accumulated (p, g)—ROF decision matrix

Cl C2 C3
uy ((0.707,0.105)) ((0.983,0.017)) ((0.89,0.074))
U ((0.766,0.638)) ((0.484,0.276)) ((0.878,0.088))
us ((0.531,0.186)) ((0.566,0.215)) ((0.831,0.040))
s ((0.942,0.010)) ((0.936,0.03)) ((0.891,0.708))

— The preference intensity (inferiority) for alternative u;
over the other alternatives u,,t = 2,3,4 is 0.01, 0, 0.01,
respectively, corresponding to parameter C;.

— The preference intensity (inferiority) for alternative u;
over the other alternatives u,,t=2,3,4 is 0, 0, O,
respectively, corresponding to parameter Cj.

— The preference intensity (inferiority) for alternative u;
over the other alternatives u,,t =2,3,4 is 0, 0, O,
respectively, corresponding to parameter Cs.

Similarly, we can calculate for other alternatives.

Step 6.

Step 7

Step 8

Step 9.

Step 10.

The following is how the superiority and inferi-
ority matrices are created using Eq. 20 and
Eq. 21:

0.01 0.03 0.03

002 0 0
S= (28)
0 001 002
0.03 0.02 001
002 0 0
0.01 0.03 0.03
I= (29)
0.03 0.02 0.01
0 001 002

To find the S-flow and I-flow for each alternative
h=1,2,3,4, utilize Egs. 22 and 23. Table 8
represents the result of S-flow and I-flow for
each alternative.

To find out the score value for each A*(u;) and
2" (up) h=1,2,3,4, apply the Definition 4.
Table 9 represents the result of score values for
them.
Table 8’s ranking is as follows after applying
SR-laws to it:

Up—Ugs U3 >UY.

The following ranking order is obtained by
applying IR-laws to Table 8:

Up—UsU3>UD.

The best option is based on both SR and IR
rules, and it is u;, as shown in Fig. 5”.

7 Comparison analysis

It has demonstrated that the (p,q)—ROF-SIR techniques
are applicable in actual circumstances by overcoming the
best journal selection problem. “In addition, to demon-
strate the compatibility of our conclusions, we apply the
various MADM methodologies to the same situation.

Table 8 The (p, ¢)-ROF-SIR

flows

/1)\ (14,) )VY (M,)
U (0.63,0) (0.52,0)
U (0.27,0) (0.63,0)
U3 (0.48,0) (0.55,0)
s (0.55,0) (0.53,0)
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Table 9 Score values of A*(uy)

and 2" (ur) Ser(Z* (1)) Ser(2Y (up))
u  0.25 0.14
u, 0.02 0.25
uz 0.11 0.17
uy 0.17 0.15

7.1 g-ROF-SIR technique

The optimal journal selection problem is demonstrated in
this subsection using the g-ROF-SIR approach (Zhu et al.
2021). Four possibilities are taken into account as journal
options, and three criteria are taken into account, to illus-
trate the aforementioned technique. The rest of the data and
values are taken to be identical to those in Sect. 6. The
ranking order of alternatives is given as uy>us>-uz>uy,
shown in Fig. 6.

7.2 g—ROF TOPSIS technique

Pinar et al. (2021) created and suggested the g-ROF
TOPSIS approach. This method obtains the preference
weights of DMs and modifies linguistic evaluations to g-
ROFNs. The value of the q parameter is assumed to be
three throughout the calculations. After that, the linguistic
weights are converted to g-ROFNs, and the g-ROFWA
operator is used to aggregate the data. Finally, the ranking
order of alternatives is given as u; >u4>u3>uy, as shown in
Fig. 7.

us

Fig. 5 Ranking orders of alternatives
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7.3 Comparison with several other techniques

We continue to employ more techniques based on the
FFYWA (Garg et al. 2020), FFYWG (Liu et al. 2022), FF
TOPSIS (Senapati and Yager 2020), IF-SIR (Chai and Liu
2010), and PF-SIR (Ul Hagq et al. 2022). Table 10 presents
the findings. Table 10 demonstrates that all outcomes
solved by the all techniques have the same ranking order of
alternatives except IF-SIR (Chai and Liu 2010). Addi-
tionally, u, is the solution provided by all approaches to be
the best alternative. Through comparison with other
existing methodologies, the (p,q)—ROF-SIR technique’s
practical usefulness and consistency have been confirmed.
The data shown in Figs. 6, 7 show how each alternative
was ranked using various methodologies, and it is seen that
u; is always the best choice. “The numerous criteria
involved in the aforementioned methodologies account for
the variation in the ranking order of other alternatives. The
AOs were completely applied to the aforementioned
approaches. Most present theories can be handled only if
the qualities are independent of one another. On the other
hand, the methodology used in this work typically relies on
outranking techniques that ignore the independence or
dependence between the qualities. As a result, the
(p,q)—ROF-SIR technique produces a more logical eval-
uation of options than other theories.

7.4 Results and discussion
From the above, it can be noted that the selection of the
optimal journal is based on two factors, first one is the type

of (p,q)—ROFSs, which are estimated by the system
experts. The second one is the aggregation operator

Uy

Uy

us

Fig. 6 Final ranking order of alternatives through g—ROF—SIR
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Fig. 7 Final ranking order of alternatives through g—ROF TOPSIS

combined with SIR technique applied to evaluate the
journals. According to the given illustrative example, one
can note the following: It cannot handle the ordered pairs
of data given in the illustrative example using IFSs,
because the sum of the degrees of non-membership and
membership is greater than one. The decision-makers
proposed different importance for the degrees of mem-
bership and non-membership, which cannot be treated
using the extensions of IFSs known in the published
manuscripts. Herein, we have discussed a new type of
orthopair fuzzy sets called (p,q)—ROFSs and revealed its
connections with other kinds of orthopair fuzzy sets. Two
of the merits of (p,q)—ROFSs are to, first, expand the
grades of membership and non-membership more than
q—ROFSs in a way that enables us to cover more situations
than IFSs, PFSs, and ¢—ROFSs. That is, make us in a
position to cope with the information data in which the sum
of their grades of membership and non-membership grades
is greater than one. Second, to create appropriate envi-
ronments to address numerous kinds of real-life problems
that cannot be evaluated under the same ranks of impor-
tance for the membership and non-membership grades. On
the other hand, the different importance given for the
grades of membership and non-membership is a new task

for the evaluation process induced from the proposed
approach which does not exist in the foregoing general-
izations of IFSs, PFSs, and ¢g—ROFSs. In fact, it needs a
comprehensive realization of the situation under study by
the experts authorized to evaluate the system inputs.

Through this paper, we have familiarized some proper-
ties and AOs for (p,q)—ROFSs and characterized them.
Then, the SIR method, as a widely used and popular
method in soft computing, has been extended to be used
with (p, ¢)—ROFSs. In the end, these aggregation operators
and SIR technique have been employed to diagnose and
analyze decision-making issues. An interpretative example
has been provided to illustrate how the proposed approach
assisted us with being effective in decision problems than
cannot be coped with by the previous classes of IFSs, PFSs,
and g—ROFSs.”

7.5 Benefits of the proposed strategy

By comparing the strategy based exclusively on (p,q)—
ROFNs to existing methodologies and assessing the
adaptability and effectiveness of the suggested operators,
we discover that the proposed scheme has the following
benefits:

— The membership grades (p,q)—ROF integrate the IF,
PF, FF, and ¢-ROF while producing the proper area of
unclear facts and figures.

— When the parameter p, g is increased, (p,q)—ROFSs
have a greater capacity to deal with unclear and
imprecise information than other extensions.

— The methodologies mentioned in Garg et al. (2020) are
entirely dependent on the aggregation operators. Typ-
ically, these strategies necessitate attribute indepen-
dence. While the proposed (p, ¢) —ROF-SIR approaches
fall under the category of outranking methods, which
are unconcerned about whether the qualities are inde-
pendent or dependent on one another. We can see from
the above numerical example that it is unable to ensure
the independence of the various attributes
Ci(j=1,2,3). As a result, the (p,q)—ROF-SIR

Table 10 Comparison analysis Methods

Ranking order Optimal result

Proposed Technique
FFYWA (Garg et al. 2020)
FFYWG (Liu et al. 2022)

FF TOPSIS (Senapati and Yager 2020)

IF-SIR (Chai and Liu 2010)
PF-SIR (Ul Haq et al. 2022)

Up>Ug>=U3 U up
Uy =Ug=U3 U up
Uy >Ug U3 U uj
Uy >=Ug>=U3 U2 uj

- No solution

Uy > Ug > U3 > U up

@ Springer
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approaches produce a more rational ranking of possi-
bilities than the other methods.

— The strategies presented in Chai and Liu (2010) fail to
deal with the given data, since their area is limited as
compared to proposed theory.

8 Conclusions

In this study, we used SIR approach to work on an
aggregation operator called the (p,g)— ROF sine trigono-
metric operator for the (p, g)— ROFNS. We analyze certain
features, including idempotency, boundedness, and mono-
tonicity, depending on the (p,q)—ROF aggregating oper-
ator. This ST AO structure is more generalized and
successfully integrates the complex problems, since it is
built on t-norm and t-conorm with SIR approaches. “For
the MADM problems with (p,q)—ROFSs, the
(p,q)—ROF-SIR method is given. First, the entropy of
(p, q)—ROFSs was introduced to describe the uncertainty
of (p,q)—ROFSs. Then, we developed the PD of
(p,q)—ROFNs to reasonably measure the possibility
degree of one (p,q)—ROFN no less than another. Next, we
introduced the PI of (p,q)— ROFNs to improve the pref-
erence intensity. Subsequently, considering the weight
vector of attributes, S-flow and I-flow were obtained to
rank alternatives. If the attribute weights were not given,
the (p, q)—ROF-EW method was applied to determine the
weights of the attribute. After that, the scores of S-flow and
I-flow were employed to determine the partial ranking
order of alternatives in the (p,q)—ROF-SIR I method.

Moreover, we analyzed the sensitivity of parameters
(p, g@) in the proposed work. Further, we compared the
proposed method with other aggregation methods as well
as the PF-SIR method. The final results show that the
(p,q)—ROF-SIR method has two main characteristics.
First, it is reasonable to use the PD of (p,q)—ROFNs to
compare two (p, q)—ROFNSs. Second, the proposed method
is more reliable and powerful than the other mentioned
methods.

We will expand our research into various aggregation
operators using SIR approaches, including power mean
AOs, Bonferroni mean AOs, Hamacher AOs, Hamy mean
AOs, and Dombi AOQOs. Machine learning, information
retrieval, data mining, artificial intelligence, social network
analysis”, and many more fields have a lot of potential in
the future. These are all great subjects to research in the
future.
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