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Abstract
The probabilistic dual hesitant fuzzy set (PDHFS), as an extension of generalization of the dual hesitant fuzzy set, contains

not only the hesitation values of membership degree (MD) and non-membership degree (NMD), but also considers the

probabilities corresponding to MDs and NMDs, which are the degree of support and confidence of the decision makers in

the evaluation value given by them. Distance measures, entropy measures, and cross-entropy measures are important tools

in multi-attribute decision-making. In the PDHFS environment, distance and entropy measures are improved, and cross-

entropy is proposed, and multi-attribute decision-making methods based on distance and entropy and cross-entropy are

given. First, in order to effectively compare the distances between different PDHFSs, we improve the existing distance

measures. Second, we review the existing formulations of probabilistic dual hesitant fuzzy entropy and find that they could

not effectively distinguish the uncertainty of different PDHFSs due to ignoring the uncertainty caused by the differences

between different MDs and between different NMDs, so we improve the existing entropy measure. Additionally, the

formulas and properties of the cross-entropy of PDHFS and the axiomatic definition of the generalized cross-entropy of

PDHFS are given. Finally, depending on the distance and entropy and cross-entropy built, we propose a new multi-attribute

decision method to solve the multi-attribute decision problem with completely unknown attribute weights. We apply the

proposed method to the protective decision-making for the release of radioactive substances, and the feasibility of the

method is verified by comparative analysis.

Keywords Multi-attribute group decision-making � Probabilistic dual hesitant fuzzy set � Entropy measure �
Cross-entropy measure � Distance measures

1 Introduction

As a crucial component of decision theory, multi-attribute

decision-making has been widely applied in economics,

management, industry, and other fields (Chen

et al.2009, 2017; Shahzaib et al. 2020; Dong et al. 2021;

She et al. 2021; Dhankhar et al.2022; Zeb et al. 2022;

Wang et al. 2023). However, in the actual decision-making

process, the variability of the decision environment and

decision information leads to decision makers frequently

being unable to give the exact values. Zadeh (1965) pro-

posed fuzzy set (FS). In order to better express decision

makers’ viewpoints and attitudes toward the decision,

Torra et al. (2010) proposed the definition of hesitating

fuzzy set (HFS), which allows decision makers to hesitate

between several different decision evaluation values, and

HFS is an important extension in fuzzy theory. Zhu et al.

(2012) proposed dual hesitating fuzzy set (DHFS) based on

HFS, which increases decision makers’ hesitation for

NMD. In more cases, decision makers have different

knowledge experiences and tendencies, and their prefer-

ences between MDs may be different and uphold different

support for different MDs. Xu et al. (2017) proposed

probabilistic hesitant fuzzy sets (PHFS) to achieve a more

accurate representation of decision makers’ mental states,

and PHFS gives the probability of occurrence of each MD,
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which also solves the case of inconsistent attitudes of

decision makers. Since NMD is an important information

in decision problems, PHFS does not take NMD into

account. Hao et al. (2017) combined the information of

MD, NMD and probability to propose probabilistic dual

hesitant fuzzy set (PDHFS), which contains more com-

prehensive information.

In these years, the research of PDHFS has gradually

attracted academic attention, and the existing research on

PDHFS has focused on multi-attribute decision methods

and multi-attribute group decision methods (Ren et al.

2019; Harish et al. 2019; Liu et al. 2019; Shao et al. 2021;

Song et al. 2021a, b; Li et al. 2022; Ning et al. 2022a, b, c;

Noor et al. 2022; Kumar et al. 2022). For example, Noor

et al. (2022) proposed multi-attribute group decision-

making based on probabilistic pairwise hesitant fuzzy

Maclaurin symmetric mean operator, and developed two

new methods to deal with multi-attribute group decision-

making problems based on improved agglomerative oper-

ator with the help of COPRAS technique. The distance

measure and information measure are important tools in

solving multi-attribute decision problems. There are

abundant studies on the distance measures of FS, HFS,

DHFS and PHFS (Biplab et al. 2019; Ali et al. 2021;

Zeeshan et al. 2022; Yan et al. 2022; Zeng et al. 2022), but

the existing distance measures of PDHFS are relatively few

and do not effectively compare the distances between dif-

ferent PDHFSs (Garg et al. 2018; Ning et al.2022a, b and

c), so this paper improves on the original distance measures

and proposes a formula that can effectively compare the

distances between PDHFSs.

Information measure is a measure of information con-

tent in fuzzy decision preferences, and entropy and cross-

entropy are the two most common ways, among which

there are many studies on fuzzy theoretical entropy and

cross-entropy (Chen et al. 2001; Zarandi 2010; Zeng 2011;

Jun 2016; Tiantian et al. 2017; Zhang 2020; Zhang et al.

2021; Erdal et al. 2023; Du et al. 2023; Boffa et al. 2023),

and fewer studies on the entropy of PDHFS. Hao et al.

(2017) gave the axiomatic definition and calculation for-

mula of probabilistic dual hesitant fuzzy entropy while

defining PDHFS, but ignored the existence of probabilistic

dual hesitant fuzzy elements with incomplete probability

situation. To remedy this deficiency, Su et al. (2022) took

the probabilistic incompleteness of MDs and NMDs into

the calculation of probabilistic dual hesitant fuzzy entropy

on this basis and defined the correlation coefficient. Simi-

larly, Ning et al. 2022a, b and c) proposed a decision-

making method based on probability dual hesitant fuzzy

entropy. However, the existing formulas for calculating the

probabilistic dual hesitant fuzzy entropy all have certain

defects, ignoring the hesitation degree brought about by the

differences between different MDs or between different

NMDs. Cross-Entropy (CE) is an important concept in

Shannon information theory, which is mainly used to

measure the discrepancy information between two proba-

bility distributions (Khalaj et al. 2020; Gao et al. 2021;

Rogulj et al. 2021). There is no clear definition of proba-

bilistic dual hesitant fuzzy cross-entropy in the current

study.

In this study, the concepts of distance measure and

entropy measure in a fuzzy environment are reviewed, and

some problems were identified in the review process. The

motivations for this study are put forward as follows: (1)

PDHFS can more comprehensively express decision mak-

ers’ preference information in an increasingly complex

decision environment. (2) Existing distance formulas for

PDHFSs cannot effectively compare the distances between

different PDHFSs. (3) The existing probabilistic dual

hesitation fuzzy entropy measure cannot effectively dis-

tinguish the uncertainty of different PDHFEs, ignoring the

uncertainty caused by the differences between different

MDs or between different NMDs. (4) The probabilistic

dual hesitation cross-entropy has not been clearly defined,

and the existing studies lack knowledge information related

to the cross-entropy of PDHFS. (5) The existing proba-

bilistic dual hesitant fuzzy multi-attribute decision models

are obtained based on flawed distance formulas or entropy

formulas. For the multi-attribute decision problem with

completely unknown attribute weights, the method of

solving attribute weights needs to be updated. (6) The

release of radioactive substances from nuclear power plants

is a matter of public, social, and environmental issues, and

the emergency decision of radioactive substance release is

in urgent need of comprehensive decision information and

new decision methods.

To effectively compare the distances between different

PDHFSs, improve the probability dual hesitant fuzzy

entropy measure, accurately distinguish the uncertainty of

different PDHFEs, and supplement the cross-entropy defi-

nition of PDHFS. This study improves the existing axio-

matic definition and formula of probabilistic dual hesitant

fuzzy distance and entropy, and proposes the axiomatic

definition and formula of probabilistic dual hesitant fuzzy

cross-entropy and generalized cross-entropy. This paper

uses entropy and cross-entropy to determine the attribute

weights when the attributes are completely unknown, and

constructs a new multi-attribute decision model by com-

bining the proposed distance measure. Finally, this paper

validates the method model with an example of protective

decision-making for the release of radioactive substances

and comparative analysis. The main contributions of this

study are as follows: (1) The probabilistic dual hesitant

fuzzy distance measure is improved, and the new distance

formula can effectively compare the distance between

different PDHFSs. (2) The probabilistic dual hesitant fuzzy
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entropy measure is improved. The new entropy measure

formula adds the consideration of the difference between

different MDs or between different NMDs, and the new

entropy measure expresses a more comprehensive uncer-

tainty. (3) The formula and properties of the cross-entropy

of PDHFS and the axiomatic definition of generalized

cross-entropy of PDHFS are given, which fills the gap in

the research on the cross-entropy of PDHFS. (4) A multi-

attribute decision method based on entropy and cross-en-

tropy is proposed and applied to the example of protective

decision-making for the release of radioactive substances.

The attribute weight determination in the proposed method

is obtained based on the combination of entropy and cross-

entropy, and the combination of entropy and cross-entropy

considers both fuzziness and deviation, providing an idea

of the attribute weight determination method for the multi-

attribute decision-making problem with completely

unknown attribute weights.

The main work of this paper is as follows: Sect. 2

reviews the definition and formula of PDHFSs, points out

the shortcomings of the existing distance formula and

proposes an improved axiomatic definition and calculation

formula of distance; Sect. 3 reviews the existing formulas

of probabilistic dual hesitant fuzzy entropy and points out

the defects in the existing entropy formulas and proposes a

novel definition and calculation formula of probabilistic

dual hesitant fuzzy entropy. Section 4 gives the calculation

formula and properties of probabilistic dual hesitant fuzzy

cross-entropy and proposes the axiomatic definition of

generalized cross-entropy. Section 5 determines the attri-

bute weights using entropy and cross-entropy, and con-

structs a probabilistic dual hesitant fuzzy multi-attribute

decision model by combining the improved distance for-

mula. Section 6 applies the constructed model to the pro-

tective decision-making for the release of radioactive

substances and verifies the feasibility of the method by

comparative analysis. Section 7 describes the conclusions

of this study and future research directions.

2 Preliminaries

2.1 Probabilistic dual hesitant fuzzy sets

1 (Hao et al. 2017) Let Z be a fixed set, a PDHFS on Z is

recorded as:

A ¼ fhzi; hiðzÞjpiðzÞ; gi zð ÞjqiðzÞijzi 2 Z ð1Þ

The components hi zð ÞjpiðzÞ ¼ fcki jpki gðk ¼
1; 2; . . .;#hi;

P#hi
k¼1 p

k
i ¼ 1Þ and

gi zð ÞjqiðzÞ ¼ fgki jqki gðk ¼ 1; 2; . . .;#gi;
P#gi

k¼1 q
k
i ¼ 1Þ are

some possible elements of membership degree (MD) and

non-membership degree (NMD), where hi zð Þ and gi zð Þ are
the MD and NMD of zi 2 Z, respectively. piðzÞ and qiðzÞ
are the probabilistic information for hi zð Þ and gi zð Þ. Also,
0� cki ; g

k
i � 1; 0� max

k
cki
� �

þmax
k

gki
� �

� 1; 0� pki ; q
k
i � 1:

The element of PDHES n ¼ hhðzÞjpðzÞ; g zð ÞjqðzÞi is

called as the PDHFE, recorded n ¼ hhjp; gjqi, and the

elements in hjp and gjq are arranged in ascending order of

MD ck and NMD gk, respectively. The complementary set

of a is nc ¼ hgjq; hjpi.
If
P#hi

k¼1 p
k
i � 1,

P#gi
k¼1 q

k
i � 1, then A is called a general-

ized PDHFS.

Definition 2 (Hao et al. 2017) Let n ¼ hhjp; gjqi be a

PDHFE, then the score function of the PDHFE is built as:

s nð Þ ¼
X#h

k¼1

ckpk �
X#g

k¼1

gkqk: ð2Þ

Definition 3 (Hao et al. 2017) Let n ¼ hhjp; gjq be a

PDHFE, then the deviation degree of the PDHFE is built

as:

r nð Þ ¼
X#h

k¼1

ck � s nð Þ
� �2

pk þ
X#g

k¼1

ðgk � s nð ÞÞ2qk
 !1

2

ð3Þ

Definition 4 (Hao et al. 2017) Let niði ¼ 1; 2Þ be two

PDHFEs, s nð Þ and r nð Þ are the score function and the

deviation degree, respectively. Then,

(1) If s n1ð Þ[ s n2ð Þ, then the PDHFE n1 is superior to

n2, denoted by n1 [ n2; On the contrary, there is n1\n2;
(2) If s n1ð Þ ¼ s n2ð Þ, then,

r n1ð Þ[ r n2ð Þ ! n1 [ n2
r n1ð Þ ¼ r n2ð Þ ! n1 ¼ n2
r n1ð Þ\r n2ð Þ ! n1\n2

8
<

:
.

Definition 5 (Hao et al. 2017) Let niði ¼ 1; 2Þ be two

PDHFEs, then.

n1 � n2 ¼ [
c1 2 h1; c2 2 h2;

g1 2 g1; g2 2 g2

c1 þ c2 � c1c2ð Þjpc1pc2
� �

; g1g2jqg1qg2
� �� �

ð4Þ

hn ¼ [
c2h;g2g

ff1� 1� cð Þhjpcg; fghjqggg ð5Þ

Definition 6 (Hao et al. 2017) Let ni ¼ hhijpi; gijqiiði ¼
1; 2; . . .; nÞ be n PDHFEs and xiði ¼ 1; 2; . . .; nÞ be the
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weight with xi 2 ½0; 1� and
Pn

i¼1

xi ¼ 1. Then PDHFWA

operator is defined as:

Definition 7 (Hao et al. 2017) Let n ¼ hhjp; gjqi.If #h

C 2, #g C 2,
P#h

k¼1

pk � 1,
P#g

k¼1

qk � 1, then the normalized

form of a generalized PDHFS is denoted by:

en ¼ hh ep; gj jeqi ¼ hfckjepkg; fgkjeqkgi ð7Þ

where ~pk ¼ pk þ pkP#h

k¼1
pk

1�
P#h

k¼1 p
k

� �
, ~qk ¼ qk þ

qkP#g

k¼1
qk

1�ð
P#h

k¼1 q
kÞ.

2.2 Distance measures between PDHFSs

There are relatively few existing studies on the distance

measure of a PDHFE. The definition and calculation for-

mulas of the distance measure in the literature (Garg et al.

2018) are as follows.

Definition 8 (Garg et al. 2018) Let n1 ¼ hh1jp1; g1jq1i and
n2 ¼ hh2jp2; g2jq2i be 2 PDHFEs, the distance dðn1; n2Þ
measure of PDHFEs needs to satisfy the following three

axiomatic conditions:

(1) 0� dðn1; n2Þ� 1;

(2) d n1; n2ð Þ ¼ dðn2; n1Þ;
(3) d n1; n2ð Þ ¼ 0, if n1 ¼ n2.

Definition 9 (Garg et al. 2018) Let n1 ¼ hh1jp1; g1jq1i and
n2 ¼ hh2jp2; g2jq2i be 2 PDHFEs, then the distance

between the two is:

d n1; n2ð Þ ¼ 1

Lþ K

XL

k¼1

ck1p
k
1 � ck2p

k
2

�
�

�
�lþ

XK

k¼1

gk1q
k
1 � gk2q

k
2

�
�

�
�l

 !" #1
l

ð8Þ

where L ¼ max #h1;#h2ð Þ;K ¼ max #g1;#g2ð Þ. If l ¼ 1,

d n1; n2ð Þ becomes the Hamming distance dHD n1; n2ð Þ, and

if l ¼ 2, d n1; n2ð Þ becomes the Euclidean distance

dED n1; n2ð Þ.

Definition 10 (Garg et al. 2018) Let n1 ¼ hh1jp1; g1jq1i
and n2 ¼ hh2jp2; g2jq2i be 2 PDHFEs, then the distance

between the two is:

d n1; n2ð Þ ¼ 1

#h1

X#h1

k¼1

ck1p
k
1 �

1

#h2

X#h2

k¼1

ck2p
k
2

�
�
�
�
�

�
�
�
�
�

l 

þ 1

#g1

X#g1

k¼1

gk1q
k
1 �

1

#g2

X#g2

k¼1

gk2q
k
2

�
�
�
�
�

�
�
�
�
�

l Þ
1
l ð9Þ

If l ¼ 1, d n1; n2ð Þ becomes the Hamming distance

dHD n1; n2ð Þ, and if l ¼ 2, d n1; n2ð Þ becomes the Euclidean

distance dED n1; n2ð Þ.

Example 1 There are 2 PDHFEs n1 ¼
h 0:2 0:3; 0:4j j0:5f g; f0:1 0:2; 0:4j j0:3gi and n2 ¼ h 0:3f
0:2; 0:5j j0:4g; 0:2 0:1; 0:3j j0:4f gi, and the distance

d n1; n2ð Þ ¼ 0 between n1 and n2 was obtained according to

the distance formulas in the literature (Garg et al. 2018).

However, n1 and n2 are two different PDHFEs. Existing

distance formulas ignore the specific distributions of MDs

and NMDs, focusing only on the overall distribution of

MDs with their corresponding probabilities and the overall

distribution of NMDs with their corresponding probabili-

ties. Therefore, it is necessary to improve existing distance

formulas.

Definition 11 Let n1 ¼ hh1jp1; g1jq1i and n2 ¼
hh2jp2; g2jq2i be 2 PDHFEs, then the distance dðn1; n2Þ of
PDHFEs needs to satisfy the following three axiomatic

conditions:

(1) 0� dðn1; n2Þ� 1;

(2) d n1; n2ð Þ ¼ dðn2; n1Þ;
(3) d n1; n2ð Þ ¼ 0, if and only if n1 ¼ n2.

Definition 12 Let n1 ¼ hh1jp1; g1jq1i and n2 ¼
hh2jp2; g2jq2i be 2 PDHFEs, then the distance between the

two is:

PDHFWA n1; n2; . . .; nnð Þ ¼ �n
j¼1xkai

¼ [
c1 2 h1; c2 2 h2; . . .; cn 2 hn;
g1 2 g1; g2 2 g2; ::; gn 2 gn

1�
Yn

i¼1
1� cið Þxi

� �
j
Yn

i¼1
pci

n o
;
Yn

i¼1
gi

xi j
Yn

i¼1
qgi

n on o

ð6Þ
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d n1; n2ð Þ ¼ 1

2

1

2

XL1

k¼1

ck1p
k
1 � ck2p

k
2

�
�

�
�lþ ck1 � ck2
�
�

�
�lpk1p

k
2

� �
 "

þ 1

2

XL2

k¼1

ð gk1qk1 � gk2q
k
2

�
�

�
�lþ gk1 � gk2
�
�

�
�lqk1q

k
2

!#1
l

;

ð10Þ

where L1 = max{#h1, #h2}, L2 = max{#g1, #g2}.If

#h1\ #h2, then add c�1j0 (c�1 ¼ max
k

fck1g) to h1(p) until

#h1 = #h2;If #h1[ #h2, then add c�2j0 (c�2 ¼ max
k

fck2g) to

h2(p) until #h1 = #h2;If #g1\ #g2, then add g�1j0
(g�1 ¼ max

k
fgk1g) to g1(p) until #g1 = #g2; If #g1[ #g2, then

add g�2j0 (g�2 ¼ max
k

fgk2g) to g2 (p) until #g1 = #g2.

If l ¼ 1, d n1; n2ð Þ becomes the Hamming distance

dHD n1; n2ð Þ, and if l ¼ 2, d n1; n2ð Þ becomes the Euclidean

distance dED n1; n2ð Þ.

Theorem 1 In Definition 12, the novel distance measure

determined by Eq. (10) satisfies the three axiomatic con-

ditions of the distance measure of PDHFEs given in Def-

inition 11.

Proof 1 The improved distance formula clearly satisfies

conditions (1) and (2) in Definition 11; therefore, we prove

that the formula satisfies condition (3).

(1) If d n1; n2ð Þ ¼ 0,then

ck1p
k
1 � ck2p

k
2

�
�

�
�l þ ck1 � ck2

�
�

�
�lpk1p

k
2 ¼ 0

gk1q
k
1 � gk2q

k
2

�
�

�
�l þ gk1 � gk2

�
�

�
�lqk1q

k
2 ¼ 0

(

,then

ck1p
k
1 � ck2p

k
2 ¼ 0

ck1 � ck2 ¼ 0

	

and
gk1q

k
1 � gk2q

k
2 ¼ 0

gk1 � gk2 ¼ 0

	

, then

ck1 ¼ ck2
pk1 ¼ pk2

	

and
gk1 ¼ gk2
qk1 ¼ qk2

	

, then n1 ¼ n2.

(2) If n1 ¼ n2, the above arguments can be reversed to

obtain d n1; n2ð Þ ¼ 0.

To illustrate the validity of the distance measure

proposed in this paper, the PDHFEs in Example 1 are

selected for calculation; then, d n1; n2ð Þ ¼ 0:0316, and the

distance between n1 and n2 can be clarified.

3 Entropy measure of PDHFEs

3.1 Classical probability dual hesitant fuzzy
entropy

Definition 13 [14] Let a PDHFE n ¼ hhjp; gjqi, the nor-

malized form of n is en ¼ hh ep; gj jeqi, then the entropy of n is
defined as:

E nð Þ ¼ 1

l

Xl

k¼1

1�
ckpk � gkqk
�
�

�
�aþ ckpk þ gkqk
�
�

�
�b

2

 !

ð11Þ

Example 2 There are two PDHFEs n1 ¼
h 0:1 0:6; 0:5j j0:4f g; f0:2 0:4; 0:4j j0:6gi and n2 ¼
h 0:1 0:3; 0:5j j0:2f g; 0:2 0:2; 0:4j j0:3f gi, n2 is transformed

into normalized PDHFE n2 ¼
h 0:1 0:6; 0:5j j0:4f g; 0:2 0:4; 0:4j j0:6f gi according to the

normalization method proposed by Hao et al. (2017) (see

Definition 7), taking a = b = 0.5, we get:

E n1ð Þ ¼ E n2ð Þ ¼ 0:6553. The method proposed by Hao

et al. (2017) cannot effectively compare the uncertainty of

both. The reason for this is considered in the literature (Su

et al. 2022), which ignores the uncertainty caused by

incomplete probabilistic information, so the literature (Su

et al. 2022) adds the consideration of probabilistic

incompleteness to the literature (Hao et al. 2017), see

definition 14.

Definition 14 (Su et al. 2022) Let a PDHFE n ¼ hhjp; gjqi
be transformed into an internally reconciled

PDHFE n
...

� hj€p; gj q... [ ; which is that its MD and NMD

sets have the same number of elements and the same

probability, then the entropy of n is defined as:

EðnÞ ¼ f
Xl

k¼1

p
...
kj c... k� g

...
kj;
Xl

k¼1

p
...
k c

...
kþ g

...
kð Þ; 0:5

X#h

k¼1

pk þ
X#g

k¼1

q
k

 ! !

;

ð12Þ

where f:[0,1]3 ? f:[0,1], taking f ðx; y; zÞ ¼ 1
3
ð3� x� y�

zÞ.

Example 3 There are 2 PDHFEs n1 ¼
h 0:4 0:4; 0:6j j0:6f g; f0:2 0:4; 0:2j j0:6gi and n2 ¼
h 0:1 0:4; 0:8jf j0:6g; 0:1 0:4; 0:2j j0:6f gi. The number of

elements of the MD and NMD sets and the probabilities in

these 2 PDHFEs are the same, so they are simultaneously

internally reconciled PDHFEs. The definition in the liter-

ature (Su et al. 2022) was used taken to calculate the

entropy of n1 and n2 separately to obtain

E n1ð Þ ¼ E n2ð Þ ¼ 0:32, which can be seen using the

entropy measure proposed by Su et al. (2022) and cannot

effectively compare the uncertainty of different PDHFEs.

Definition 15 (Ning et al. 2022a, b, c) Let a PDHFE

n ¼ hhjp; gjqi, then the entropy of n is defined as:

Granular Computing (2023) 8:1739–1750 1743

123



E nð Þ ¼
P#h

k¼1 c
kpk
P#g

k¼1 g
kqk þ 1�

P#h
k¼1 c

kpk �
P#g

k¼1 g
kqk

� �

P#h
k¼1 c

kpk
� �2

þ
P#g

k¼1 g
kqk

� �2
þ 1�

P#h
k¼1 c

kpk �
P#g

k¼1 g
kqk

� �

ð13Þ

Example 4 There are 2 PDHFEs n1 ¼ h 0:2 0:8; 0:6j j0:2f g;
f0:2 0:5; 0:4j j0:5gi and n2 ¼ h 0:1 0:4; 0:4j j0:6f g; 0:2jf
0:5; 0:4j0:5gi. The definition in the literature (Ning et al.

2022a, b, c) is taken to calculate the entropy of n1 and n2
separately to obtain E n1ð Þ ¼ E n2ð Þ ¼ 0:9993, it can be

seen the entropy measure proposed by Ning et al. (2022a;

b, c) also cannot effectively compare the uncertainty of

different PDHFEs.

The above analysis shows that the existing probabilistic

dual hesitant fuzzy entropy measure formulas do not

completely distinguish the uncertainty of PDHFE, mainly

because the formula does not consider the difference

between different MSs (or different NMDs). When there

are multiple different MDs (or different NMDs) in a

PDHFE, it characterizes the hesitation of the decision

maker. The greater the difference between different MDs

(or NMDs), the greater the degree of hesitation of the

decision maker. Moreover, the smaller the difference

between the probabilities of MD (or NMD), the less

uniform the decision-maker’s evaluation, and the greater

the degree of hesitation. The effect of hesitation on the

entropy value is that the greater the degree of hesitation,

the higher the entropy value. Therefore, this study proposes

a new axiomatic definition and calculation formula for

probabilistic dual hesitant fuzzy entropy to improve the

deficiencies of the existing calculation formulas.

3.2 Novel probability dual hesitant fuzzy
entropy

Definition 16 Let a PDHFE n ¼ hhjp; gjqi, the normalized

form of n is en ¼ hh ep; gj jeqi, a mapping E : n ! ½0; 1� is
named as entropy of PDHFE, if E satisfy the following four

conditions:\

(1) 0�EðnÞ� 1;

(2) E nð Þ ¼ 0 if and only if en ¼ h 0j1f g; 1j1f gi or

en ¼ h 1j1f g; 0j1f gi;
(3) E n1; n2ð Þ ¼ 1, if and only if en ¼ h 0j0f g; 0j0f gi;
(4) E nð Þ ¼ E ncð Þ, where nc ¼ hgjq; hjpi.

Definition 17 Let a PDHFE n ¼ hhjp; gjqi, the normalized

form of n is en ¼ hh ep; gj jeqi, then the entropy of n is:

EðnÞ ¼ f
XL

k¼1

jck ~pk � gk ~qkj
 !

;
XL

k¼1

ck ~pk þ gk ~qk
� �

;
1

2

X#h

k¼1

pk þ
X#g

k¼1

qk

 !

;

1

2
2� H ðh ð~pÞÞ � H ðgð~qÞÞð Þ

ð14Þ

H h ~pð Þð Þ ¼
P#h

k¼1

P#h

.¼kþ1

4~pk ~p. #h[ 1

0 #h ¼ 0

8
<

:
ð15Þ

H g ~qð Þð Þ ¼
P#g

k¼1

P#g

i¼kþ1

4~qk ~qi #g[ 1

0 #g ¼ 0

8
<

:
ð16Þ

where L = max{#h, #g}.If #h[ #g, then add g�j0
(g� ¼ max

k
fgkg) to gðeqÞ until #h = #g;If #h\ #g, then add

c�j0 (c� ¼ max
k

fckg) to h epð Þ until #h = #g.

The function f: [0, 1]4 ? [0, 1] in the entropy measure

satisfies the following conditions:

(1) x, y, z, k [ [0,1], f (x, y, z, k) is a monotonically

decreasing function with respect to x, y, z, k;

(2) f (x, y, z, k) = 0 if and only if x = y = z = k = 1;

(3) f (x, y, z, k) = 1 if and only if x = y = z = k = 0.

Theorem 2 In Definition 17, the novel entropy measure

determined by Eq. (14) satisfies the four axiomatic condi-

tions of the entropy measure of PDHFEs given in Defini-

tion 16.

The proposed probabilistic dual hesitant fuzzy entropy

clearly satisfies conditions (1–5) in Definition 16, so this is

not proven here. To illustrate the superiority of the

proposed probabilistic dual hesitant fuzzy entropy pro-

posed by this study, the PDHFEs in Examples 2, 3 and 4

are selected for the calculation.

(1) For the 2 PDHFEs n1 ¼ h 0:1 0:6; 0:5j j0:4f g; f0:2 0:4;j
0:4j0:6gi and n2 ¼ h 0:1 0:3; 0:5j j0:2f g; 0:2 0:2;jf
0:4j0:3gi in Example 2, we get E n1ð Þ ¼
0:412\E n2ð Þ ¼ 0:537.

(2) For the 2 PDHFEs n1 ¼ h 0:4 0:4; 0:6j j0:6f g; f0:2 0:4;j
0:2j0:6gi and n2 ¼ h 0:1 0:4; 0:8j j0:6f g; 0:1 0:4;jf
0:2j0:6gi in Example 3, we get E n1ð Þ ¼ 0:264\
E n2ð Þ ¼ 0:336

(3) For the 2 PDHFEs n1 ¼ h 0:2 0:8; 0:6j j0:2f g; f0:2 0:5;j
0:4j0:5gi and n2 ¼ h 0:1 0:4; 0:4j j0:6f g; 0:2 0:5;jf
0:4j0:5gi in Example 4, we get E n1ð Þ ¼ 0:337\
E n2ð Þ ¼ 0:391.

It can be seen that the entropy measure of PDHFEs

proposed in this study can effectively distinguish the

uncertainty of different PDHFEs, which measures both the

closeness between MD and NMD in PDHFEs, the uncer-

tainty caused by the lack of probabilistic information, and
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reflects the deviation between different MDs (or different

MDs), the uncertainty caused by the closeness between the

probabilities corresponding to the respective MD, and the

entropy measure of PDHFE is more comprehensive.

4 Cross-entropy measure of PDHFEs

4.1 Cross-entropy of PDHFEs

Cross-entropy is a common tool used to measure the degree

of difference between fuzzy information, and is widely

used in fuzzy fields. In this study, we define probabilistic

dual hesitant fuzzy cross-entropy.

Definition 18 Let n1 ¼ hh1jp1; g1jq1i and n2 ¼
hh2jp2; g2jq2i be 2 PDHFEs, then CE n1; n2ð Þ is named as

cross-entropy measure between two PDHFEs, if CE n1; n2ð Þ
satisfies:

(1) CE n1; n2ð Þ ¼ CE n2; n1ð Þ;
(2) CE n1; n2ð Þ ¼ 0 if and only if n1 ¼ n2;
(3) 0�CE n1; n2ð Þ� 1;

(4) CE n1; n2ð Þ ¼ 1 if and only if n1 ¼ h1j1; 0j0i and

n2 ¼ h0j0; 1j1i or n1 ¼ h0j0; 1j1i and

n2 ¼ h1j1; 0j0i.

Definition 19 Let n1 ¼ hh1jp1; g1jq1i and n2 ¼
hh2jp2; g2jq2i be 2 PDHFEs, the normalized form of n1 and

n2 are en1 ¼ hh1 ep1; g1j jeq1i and en2 ¼ hh2 ep2; g2j jeq2i, then

the cross-entropy of n1 and n2 are defined as:

where T1 ¼ 2 1þ bð Þln 1þ bð Þ � ð2þ bÞðln 2þ bð Þ�ð
ln2ÞÞ, b[ 0, L1 = max{#h1,#h2}, L2 = max{#g1,#g2}.

CE2 n1; n2ð Þ

¼ 1

T2

½ 1
L1

XL1

k¼1

ck1ep
k
1

� �d
þ ck2ep

k
2

� �d

2
� ck1ep

k
1 þ ck2ep

k
2

2

 !d
0

B
@

þ
1� ck1ep

k
1

� �d
þ 1� ck2ep

k
2

� �d

2
� 2� ck1ep

k
1 � ck2ep

k
2

2

 !d
1

C
A

þ 1

L2

XL2

k¼1

gk1eq
k
1

� �d
þ gk2eq

k
2

� �d

2
� gk1eq

k
1 þ gk2eq

k
2

2

 !d
0

B
@

þ
1� gk1eq

k
1

� �d
þ 1� gk2eq

k
2

� �d

2
� 2� gk1eq

k
1 � gk2eq

k
2

2

 !d
1

C
A�

ð18Þ

where T2 ¼ 2 1� 21�d
� �

, d[ 1, L1 = max {#h1,#h2}, L2-
= max {#g1,#g2}.

Theorem 3 In Definition 19, the cross-entropy measures

determined by Eq. (17) and Eq. (18) satisfy the four

axiomatic conditions of the cross-entropy measure of

PDHFEs given in Definition 18.

Proof 2 For CE1 n1; n2ð Þ, dT1

db ¼ ln 2þ2b
2þb

� �
[ ln1 ¼ 0, then

T1 increases with the increase of b, if b = 0, then T1 = 0,

due to b[ 0, then 1
T1

[ 0. For CE2 n1; n2ð Þ, d[ 1, then

T2 ¼ 2 1� 21�d
� �

[ 0, then 1
T2

[ 0. For u1 xð Þ ¼
1þ bxð Þln 1þ bxð Þ and u2 xð Þ ¼ xd, due to x 2 ½0; 1� and
b[ 0, d[ 1, then

duðxÞ
dx [ 0,

d2uðxÞ
dx2 [ 0, then u1 xð Þ and

u2 xð Þ are concave functions about x. Therefore,

CE1 n1; n2ð Þ

¼ 1

T1

½ 1
L1

XL1

k¼1

1þ bck1ep
k
1

� �
ln 1þ bck1ep

k
1

� �

2
þ

1þ bck2ep
k
2

� �
ln 1þ bck2ep

k
2

� �

2
�

2þ bck1ep
k
1 þ bck2ep

k
2

� �
ln 2þ bck1ep

k
1 þ bck2ep

k
2

� �

2

0

@

þ
1þ b 1� ck1ep

k
1

� �� �
ln 1þ b 1� ck1ep

k
1

� �� �

2
þ

1þ b 1� ck2ep
k
2

� �� �
ln 1þ b 1� ck2ep

k
2

� �� �

2

�
2þ b 2� ck1ep

k
1 � ck2ep

k
2

� �� �

2
ln

2þ b 2� ck1ep
k
1 � ck2ep

k
2

� �� �

2
Þ

þ 1

L2

XL2
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1þ bgk1eq
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� �
ln 1þ bgk1eq
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2
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CE n1; n2ð Þ� 0. we can get the condition (1), condition (2)

and condition (4) by combining the formulas of cross-

entropy.

4.2 Generalized cross-entropy of PDHFEs

A definition of the generalized cross-entropy of PDHFEs is

proposed based on the above cross-entropy of PDHFEs.

Definition 20 Let n1 ¼ hh1jp1; g1jq1i and n2 ¼
hh2jp2; g2jq2i be 2 PDHFEs, CEi n1; n2ð Þði ¼ 1; 2Þ are

cross-entropy of n1 and n2, then the generalized cross-en-

tropy of n1 and n2 is defined as:

DE n1; n2ð Þ ¼ uðCE1 n1; n2ð Þ;CE2 n1; n2ð ÞÞ ð19Þ

where u x; yð Þ : ½0; 1�2 ! ½0; 1� satisfies the following

conditions:

(1) u x; yð Þ ¼ 0 if and only if x = y = 0;

(2) u x; yð Þ ¼ 1 if and only if x = y = 1;

(3) u x; yð Þ increases with the increase of x, y.

At the same time DE n1; n2ð Þ satisfies all the properties

of the cross-entropy CE n1; n2ð Þ.

5 Probabilistic dual hesitant fuzzy multi-
attribute decision model based
on entropy and cross-entropy

The probabilistic dual hesitant fuzzy multi-attribute deci-

sion problem can be described as follows: The alternative

set X = {x1, x2,…, xi,…, xm}, the attribute set C = {c1,

c2,…, cj,…, cn}, the attribute weights are W = [w1,w2,…,-

wj,…,wn]
T, and the set of decision evaluation values

O = {n11, n12, …, nij,…, nmn}.

5.1 Attribute determination method based
on entropy and cross-entropy

The probabilistic dual hesitant fuzzy entropy of attribute cj
is
Pm

i¼1 E nij
� �

, and if the entropy value of an attribute is

larger, the less useful information the attribute provides to

the decision maker, the smaller the value assigned to

weight of the attribute. Similarly, the average cross-entropy

of alternative xi with other alternatives under attribute cj is
1

m�1

Pm
s¼1;s 6¼i DE nij; nsj

� �
,and the total cross-entropy of all

alternatives under attribute cj is
Pm

i¼1
1

m�1

Pm
s¼1;s 6¼i DE nij; nsj

� �
. The greater the difference

between evaluations of alternatives under the same attri-

bute, the greater the role the attribute plays in the ranking

of alternatives, and the greater the value assigned to the

attribute weight; conversely, the smaller the value assigned

to the attribute weight.

Therefore, the weights of attribute cj can be obtained as:

wj ¼
Pm

i¼1 1� E nij
� �� �

þ 1
m�1

Pm
s¼1;s6¼i DE nij; nsj

� �� �

Pn
j¼1

Pm
i¼1 1� E nij

� �� �
þ 1

m�1

Pm
s¼1;s 6¼i DE nij; nsj

� �� � :

ð20Þ

5.2 Process steps of the decision model

The steps of the constructed multi-attribute model are as

follows:

Step1: Unifying the attribute types. The cost type should

be converted into benefit type according to the method

proposed by Zhao et al. (2020): the complementary set of

cost type evaluation is its corresponding benefit type

evaluation: nij ! nij
c.

Step2: Calculate attribute weights W based on the

probability dual hesitant fuzzy entropy and cross-entropy

in Sect. 5.2.

Step3: Selecting positive and negative ideal solutions

based on the score function: xþ ¼ fnjþjj ¼ 1; 2; . . .; ng
and x� ¼ fnj�jj ¼ 1; 2; . . .; ng, where

nj
þ ¼ max

i
fnijjj ¼ 1; 2; . . .; ng,

nj
� ¼ min

i
fnijjj ¼ 1; 2; . . .; ng. The larger the score func-

tion s nij
� �

, the larger nij.
Step4: Calculate the distances D(xi,x

?) and D(xi, x
-) of

each alternative from the positive and negative ideal

solutions based on the proposed distance measure

formula with attribute weights.

D xi; x
þð Þ ¼

Xn

j¼1

wjdED nij; n
þ
j

� �
i ¼ 1; 2; . . .;mð Þ ð21Þ

D xi; x
�ð Þ ¼

Xn

j¼1

wjdED nij; n
�
j

� �
i ¼ 1; 2; . . .;mð Þ ð22Þ

Step5: Calculate the closeness degree ti of the alternative

based on the distance between the alternative and

positive and negative ideal solutions. A larger ti value

indicates a better alternative xi.

ti ¼
D xi; x

�ð Þ
D xi; xþð Þ þ D xi; x�ð Þ ð23Þ

6 Analysis of calculation example

When a nuclear accident occurs, decision makers need to

make a choice in a short period of time to select the optimal

nuclear emergency response action to minimize the

1746 Granular Computing (2023) 8:1739–1750

123



damage caused by the nuclear accident. It is a complex

problem; that involves not only the evolution of nuclear

accidents and the environment, but also public health,

economic loss, and political impact, and is a multi-attribute

risk decision problem.

In the event of an accident at a nuclear power plant,

which results in the release of radioactive material to the

outside, exposing staff and the public to radiation over time

or at a level equivalent to the specified limit, it is known as

a nuclear leak. The harmful pathway of radioactive mate-

rial release is that the rays directly harm the human body,

followed by a damaging effect on the human body through

contaminated air, soil, water, and food. When a certain

dose of radioactive material enters the human body, it has

an ionizing effect on tissues, causing cell deformation,

tissue damage, organ dysfunction, metabolic disorders, and

other diseases. In the event of a serious release of

radioactive material from a nuclear facility, certain forms

of emergency protective measures, such as concealment,

administration of stabilized iodine, evacuation, relocation,

and food control, are required to protect public health and

safety. When, where, and what measures should be taken

are decisions that should be made by emergency com-

manders. Different decision-making behaviors often pro-

duce different effects, and choosing the right decision can

help minimize the harm caused by radioactive materials to

society, the public, the environment, and the economy. In

this paper, the constructed model is presented as an

example of protective decision-making for the release of

radioactive substances.

6.1 Decision-making for the protection against
releases of radiation substances

In this study, the release of radiation substances under the

PWR5 accident source of nuclear power plant A was used

as an example for the selection of multi-attribute decisions.

The radiation prevention effect of a nuclear accident was

evaluated under four attributes: negative psychosocial

impact c1, economic cost c2, preventable maximum indi-

vidual dose c3, and preventable collective dose c4, for

which the attribute weights were completely unknown. To

facilitate the calculation, the PDHFE evaluation values of

the given alternatives under different attributes were nor-

malized PDHFEs, as shown in Table 1.

Step1: The negative psychosocial impact c1, and the

economic cost c2 belong to the cost type, so they were

transformed into the benefit type, and the probabilistic

dual hesitant fuzzy multi-attribute decision matrix was

obtained, as shown in Table 2.

Step2: In this study, we chose f(x,y,z,k) = 1
4
(4-x–y-z-k),

CE1 n1; n2ð Þ to calculate the entropy and cross-entropy,

respectively, took b = 2, and obtained the attribute

weights W = [0.2559,0.2120,0.2625, 0.2696]T based on

Eq. (20).

Step3: The positive and negative ideal solutions were

selected based on the score function.

Step4: The distances of each alternative from the

positive and negative ideal solutions were obtained

based on the distance measure formula and attribute

weights: D (x1,x
?) = 0.0495, D (x1,x

-) = 0.1621; D

(x2,x
?) = 0.0996, D (x2,x

-) = 0.1381; D

(x3,x
?) = 0.0708, D (x3,x

-) = 0.1705; D

(x2,x
?) = 0.1769, D (x2,x

-) = 0.0421.

Step5: The closeness degrees of the alternatives were

calculated to obtain t1 = 7660, t2 = 5810, t3 = 7065, and

t4 = 1924, so the ranking of the alternatives is: x1[ x3-
[ x2[ x4, and alternative x1 is the best.

6.2 Comparative analysis

To further illustrate the effectiveness and feasibility of the

multi-attribute decision scheme proposed in this study, the

distance and method of determining attribute weights

proposed in the literature (Garg et al. 2018) are used to

calculate the decision evaluation values in the examples.

The attribute weights in the decision-making method pro-

posed in the literature (Garg et al. 2018) were obtained

based on the maximum deviation method of the distance

formulas, which are shown in Definitions 9 and 10. The

ranking of the alternatives is: x3[ x1[ x2[ x4.The

ranking of the alternatives obtained by the decision model

in this study is compared with the ranking of the alterna-

tives obtained using the distance measure in the literature

(Garg et al. 2018), which shows that the optimal alternative

is different and the ranking of the other alternatives is the

same. The distance measure in the literature (Garg et al.

2018) ignores the specific distribution of MDs and NMDs,

and the determination of attribute weights is obtained based

on this distance formula; therefore, it is somewhat biased

with the ranking of the solutions derived in this study.

The entropy formula proposed by Hao et al. (2017) was

used to calculate the decision evaluation value in the

example, as shown in Definition 13. The entropy formula

proposed by Hao et al. (2017) was used to calculate attri-

bute weights, and the ranking of the alternatives obtained

by combining the distance formula proposed in this paper

was x1[ x3[ x2[ x4, which is consistent with the rank-

ing of the alternatives obtained by the method proposed in

this paper. This indicates the effectiveness of the entropy

formula and the attribute weight calculation method pro-

posed in this study.
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The distance formula proposed in this paper not only

considers the distance of the product between the MDs and

the corresponding probabilities and the distance of the

product between the NMDs and the corresponding proba-

bilities, but also considers the specific distribution of MDs

and NMDs to improve the distance measure between

PDHFEs. The determination of attribute weights in this

study is obtained based on entropy and cross-entropy,

considering the individual effects of PDHFS and their

interactions. The combination of entropy and cross-entropy

can consider both the degree of fuzziness and the degree of

deviation, which is important for multi-attribute decision-

making.

7 Conclusions

In this study, we systematically reviewed related studies on

PDHFS, which can more comprehensively represent fuzzy

information and uncertainty in multi-attribute decision-

making. We found that the distance and entropy measures

of the PDHFS have some shortcomings, and the definition

of cross-entropy has not been given. Therefore, in this

study, we improve the distance measure so that the distance

formula can effectively compare the distances between

different PDHFSs to compensate for the shortcomings of

existing distance measures. The entropy measure is

improved, and the new entropy measure considers the

uncertainty caused by the difference between different

MDs (different NMDs) and the uncertainty caused by the

proximity between the probabilities of the respective MDs

(or NMDs). Cross-entropy was proposed to fill the research

gap in the cross-entropy of PDHFS. A new multi-attribute

decision method in the PDHFS environment was proposed

and applied to protective decision-making for the release of

radioactive substances. The new multi-attribute decision

method provides rich and comprehensive decision infor-

mation and objective attribute weights to the protective

decision-making for the release of radioactive substances.

The applicability of the new multi-attribute decision

method is explained, and its effectiveness is confirmed by

comparative analysis.

Considering that there is little research on group con-

tingency decision-making methods for PDHFSs, solving

the consensus problem in group decision-making requires

further research.

Author contributions Wang Pingping: conceptualization, writing—

original draft preparation, methodology, supervision; Chen Jiahua:

writing—review and editing, validation. All authors have read and

agreed to the published version of the manuscript.

Data availability Not applicable.

Declarations

Conflict of interest The authors declare no conflict of interest.

Institutional review board statement Not applicable.

Informed consent Not applicable.

References

Ali Z, Mahmood T, Ullah K (2021) Picture hesitant fuzzy clustering

based on generalized picture hesitant fuzzy distance measures.

Knowledge 1(1):40–51

Biplab S, Mausumi S, Nidul S (2019) Modified distance measure on

hesitant fuzzy sets and its application in multi-criteria decision-

making problem. Opsearch 57(2):584–602

Boffa S, Ciucci D (2023) Logical entropy and aggregation of fuzzy

orthopartitions. Fuzzy Sets and Syst 455:77–101

Chen SJ, Chen SM (2001) A new method to measure the similarity

between fuzzy numbers. In: 10th IEEE International Conference

on Fuzzy Systems..

Chen SM, Phuong BDH (2017) Fuzzy time series forecasting based

on optimal partitions of intervals and optimal weighting vectors.

Knowled-Based Syst. https://doi.org/10.1016/j.knosys.2016.11.

019

Chen SM, Wang CH (2009) Fuzzy risk analysis based on ranking

fuzzy numbers using alpha-cuts, belief features and signal/noise

ratios. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2008.06.

112

Dhankhar C, Kumar K (2022) Multi-attribute decision-making based

on the advanced possibility degree measure of intuitionistic

fuzzy numbers. Granular Comput 8(3):467–478

Dong JY, Wan SP, Chen SM (2021) Fuzzy best-worst method based

on triangular fuzzy numbers for multi-criteria decision-making.

Informat Sci 547(1):1080–1104

Du YW, Zhong JJ (2023) Dynamic multicriteria group decision-

making method with automatic reliability and weight calcula-

tion. Informat Sci 634:400–422

Erdal H, Kurtay KG, Dagistanli HA, Altundas A (2023) Evaluation of

anti-tank guided missiles: an integrated fuzzy entropy and fuzzy

CoCoSo multi criteria methodology using technical and simu-

lation data. Appl Soft Comp J 137:110145

Gao XZ, Pan LP, Deng Y (2021) Cross entropy of mass function and

its application in similarity measure. Applied Intelligence, 2021.

Garg H, Kaur G (2018) Algorithm for probabilistic dual hesitant

fuzzy multi-criteria decision-making based on aggregation

operators with new distance measures. Mathematics 6(12):280

Hao ZN, Xu ZS, Zhao H, Su Z (2017) Probabilistic dual hesitant

fuzzy set and its application in risk evaluation. Knowled-Based

Syst 127:16–28

Harish G, Gagandeep K (2019) A robust correlation coefficient for

probabilistic dual hesitant fuzzy sets and its applications. Neural

Comp Appl 32(13):8847–8866

Jun Y (2016) Cross-entropy of dual hesitant fuzzy sets for multiple

attribute decision-making. Int J Decis Supp Syst Technol

(IJDSST) 8(3):20–30

Khalaj M, Tavakkoli MR, Khalaj F, Siadat A (2020) New definition

of the cross entropy based on the Dempster-Shafer theory and its

application in a decision-making process. Communicat Statist—

Theory Methods 49(4):909–923

Kumar D, Kumari A (2022) Reliability appraisal of a system using

interval-valued probabilistic dual hesitant fuzzy element. Mater

Today 57(P5):1995–2001

Granular Computing (2023) 8:1739–1750 1749

123

https://doi.org/10.1016/j.knosys.2016.11.019
https://doi.org/10.1016/j.knosys.2016.11.019
https://doi.org/10.1016/j.eswa.2008.06.112
https://doi.org/10.1016/j.eswa.2008.06.112


Li ZY, Zhang XY, Wang WJ, Li Z (2022) Multi-criteria probabilistic

dual hesitant fuzzy group decision making for supply chain

finance credit risk assessments. Expert Syst. https://doi.org/10.

1111/exsy.13015

Liu PD, Cheng SF (2019) Interval-valued probabilistic dual hesitant

fuzzy sets for multi-criteria group decision-making. Int J Comput

Intell Syst 12(2):1393

Ning BQ, Lei F, Wei GW (2022a) CODAS method for multi-attribute

decision-making based on some novel distance and entropy

measures under probabilistic dual hesitant fuzzy sets. Int J Fuzzy

Syst 24(8):3626–3649

Ning BQ, Wei GW, Guo YF (2022b) Some novel distance and

similarity measures for probabilistic dual hesitant fuzzy sets and

their applications to MAGDM. Int J Mach Learn Cybern

13(12):3887–3907

Ning BQ, Wei GW, Lin R, Guo YF (2022c) A novel MADM

technique based on extended power generalized Maclaurin

symmetric mean operators under probabilistic dual hesitant

fuzzy setting and its application to sustainable suppliers selec-

tion. Expert Syst Appl 204:117419

Noor Q, Rashid T, Beg I (2022) Multi-attribute group decision-

making based on probabilistic dual hesitant fuzzy Maclaurin

symmetric mean operators. Granular Comput 8(3):633–666

Ren ZL, Xu ZS, Wang H (2019) The strategy selection problem on

artificial intelligence with an integrated VIKOR and AHP

method under probabilistic dual hesitant fuzzy information.

IEEE Access. https://doi.org/10.1109/ACCESS.2019.2931405
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